Kategórie
Psychologický slovník

Vývoj neurónov

Vývoj nervovej sústavy zahŕňa procesy, ktoré vytvárajú, formujú a pretvárajú nervovú sústavu od najranejších štádií embryogenézy až po posledné roky života. Cieľom štúdia nervového vývoja je opísať bunkový základ vývoja mozgu a zaoberať sa základnými mechanizmami. Táto oblasť čerpá z neurovedy aj vývojovej biológie, aby poskytla pohľad na bunkové a molekulárne mechanizmy, pomocou ktorých sa vyvíjajú zložité nervové systémy. Defekty v nervovom vývoji môžu viesť ku kognitívnemu, motorickému a intelektuálnemu postihnutiu, ako aj k neurologickým poruchám, ako je autizmus, Rettov syndróm a mentálna retardácia.

Prehľad vývoja mozgu

Mozog vzniká počas embryonálneho vývoja z neurálnej trubice, čo je raná embryonálna štruktúra. Najprednejšia časť neurálnej trubice sa nazýva telencefalón, ktorý sa rýchlo rozširuje v dôsledku proliferácie buniek a nakoniec z neho vzniká mozog. Postupne sa niektoré bunky prestanú deliť a diferencujú sa na neuróny a gliové bunky, ktoré sú hlavnými bunkovými zložkami mozgu. Novovzniknuté neuróny migrujú do rôznych častí vyvíjajúceho sa mozgu a samoorganizujú sa do rôznych mozgových štruktúr. Keď neuróny dosiahnu svoje regionálne pozície, predlžujú axóny a dendrity, ktoré im umožňujú komunikovať s inými neurónmi prostredníctvom synapsií. Synaptická komunikácia medzi neurónmi vedie k vytvoreniu funkčných nervových obvodov, ktoré sprostredkúvajú senzorické a motorické procesy a sú základom správania.

Vysoko schematická schéma vývoja ľudského mozgu.

Aspekty nervového vývoja

Niektoré medzníky nervového vývoja zahŕňajú zrod a diferenciáciu neurónov z prekurzorov kmeňových buniek, migráciu nezrelých neurónov z miesta ich zrodu v embryu do ich konečnej polohy, vyrastanie axónov a dendritov z neurónov, vedenie pohyblivého rastového kužeľa embryom smerom k postsynaptickým partnerom, vytváranie synapsií medzi týmito axónmi a ich postsynaptickými partnermi a napokon celoživotné zmeny v synapsiách, ktoré sú považované za základ učenia a pamäti.

Vývojová neuroveda využíva rôzne živočíšne modely vrátane myší Mus musculus , ovocných mušiek Drosophila melanogaster , zebričiek Danio rerio , hlaváčov Xenopus laevis a červov Caenorhabditis elegans a ďalších.

Počas skorého embryonálneho vývoja sa ektoderma špecifikuje tak, aby dala vzniknúť epiderme (koži) a neurálnej platničke. Premena nediferencovaného ektodermu na neuroektoderm si vyžaduje signály z mezodermu. Na začiatku gastrulácie sa predpokladané mezodermálne bunky presúvajú cez dorzálny blastopór a vytvárajú vrstvu medzi endodermom a ektodermom. Tieto mezodermálne bunky, ktoré migrujú pozdĺž dorzálnej stredovej línie, dávajú vzniknúť štruktúre nazývanej notochord. Ektodermálne bunky prekrývajúce notochord sa vyvíjajú do neurálnej platničky ako odpoveď na difúzny signál produkovaný notochordom. Zo zvyšku ektodermy vzniká epiderma (koža). Schopnosť mezodermy premeniť nadložný ektoderm na nervové tkanivo sa nazýva neurálna indukcia.

Neurálna platnička sa v treťom týždni gravidity prehýba smerom von a vytvára neurálnu ryhu. Od budúcej oblasti krku sa neurálne záhyby tejto ryhy uzatvárajú a vytvárajú neurálnu trubicu. Tvorba neurálnej trubice z ektodermy sa nazýva neurulácia. Predná (predná) časť neurálnej trubice sa nazýva bazálna platnička; zadná (zadná) časť sa nazýva alárna platnička. Dutý vnútrajšok sa nazýva neurálny kanál. Koncom štvrtého týždňa tehotenstva sa otvorené konce neurálnej trubice (neuropóry) uzavrú.

Identifikácia nervových induktorov

Transplantovaný blastoporálny pysk môže premeniť ektoderm na nervové tkanivo a hovorí sa, že má indukčný účinok. Neurálne induktory sú molekuly, ktoré môžu indukovať expresiu neurálnych génov v explantátoch ektodermy bez toho, aby indukovali aj mezodermálne gény. Neurálna indukcia sa často študuje na embryách Xenopus, pretože majú jednoduchý telesný vzor a existujú dobré markery na rozlíšenie neurálneho a neurálneho tkaniva. Príkladom neurálnych induktorov sú molekuly Noggin a Chordin.

Keď sa embryonálne ektodermálne bunky kultivujú pri nízkej hustote v neprítomnosti mezodermálnych buniek, podliehajú neurálnej diferenciácii (exprimujú neurálne gény), čo naznačuje, že neurálna diferenciácia je predvoleným osudom ektodermálnych buniek. V explantátových kultúrach (ktoré umožňujú priame interakcie medzi bunkami) sa tie isté bunky diferencujú na epidermu. Je to spôsobené pôsobením BMP4 (proteínu rodiny TGF-β), ktorý indukuje diferenciáciu ektodermálnych kultúr na epidermis. Počas neurálnej indukcie sú Noggin a Chordin produkované dorzálnym mezodermom (notochordom) a difundujú do nadväzujúceho ektodermu, aby inhibovali aktivitu BMP4. Táto inhibícia BMP4 spôsobuje diferenciáciu buniek na neurálne bunky.

Koncom štvrtého týždňa sa horná časť neurálnej trubice ohýba na úrovni budúceho stredného mozgu – mezencefala. Nad mezencefalom je prosencefalon (budúci predný mozog) a pod ním je rombencefalon (budúci zadný mozog).

Optický mechúrik (ktorý sa nakoniec stane zrakovým nervom, sietnicou a dúhovkou) sa vytvára na bazálnej platničke prosencefala. Alárna platňa prosencefala sa rozširuje a vytvára mozgové hemisféry (telencefalon), zatiaľ čo jeho bazálna platňa sa stáva diencefalonom. Nakoniec sa optický mechúrik zväčší a vytvorí optický výrastok.

Vzorkovanie nervového systému

U chordátov tvorí dorzálny ektoderm celé nervové tkanivo a nervovú sústavu. K modelovaniu dochádza v dôsledku špecifických podmienok prostredia – rôznych koncentrácií signálnych molekúl

Ventrálnu polovicu neurálnej platničky ovláda notochord, ktorý funguje ako „organizátor“. Dorzálnu polovicu ovláda ektodermová platnička, ktorá lemuje neurálnu platničku z oboch strán.

Ektoderm sa štandardnou cestou stáva nervovým tkanivom. Dôkazom toho sú jednotlivé kultivované bunky ektodermy, z ktorých sa vytvorí nervové tkanivo. Predpokladá sa, že je to spôsobené nedostatkom BMP, ktoré sú blokované organizátorom. Organizátor môže produkovať molekuly ako follistatín, noggin a chordin, ktoré inhibujú BMP.

Ventrálna neurálna trubica je modelovaná Shh z notochordu, ktorý funguje ako indukčné tkanivo. Induktor Shh spôsobuje diferenciáciu podlahovej dosky. Shh-nulové tkanivo nedokáže vytvoriť všetky typy buniek ventrálnej trubice, čo naznačuje, že Shh je potrebný na jej indukciu. Predpokladaný mechanizmus naznačuje, že Shh viaže patch, čím zmierňuje inhibíciu patch hladkého konca, čo vedie k aktivácii transkripčných faktorov gli.

V tomto kontexte Shh pôsobí ako morfogén – indukuje diferenciáciu buniek v závislosti od svojej koncentrácie. Pri nízkych koncentráciách vytvára ventrálne interneuróny, pri vyšších koncentráciách indukuje vývoj motorických neurónov a pri najvyšších koncentráciách indukuje diferenciáciu dnových platničiek. Zlyhanie diferenciácie modulovanej Shh spôsobuje haloprosencefáliu.

Dorzálna neurálna trubica sa formuje pomocou BMP z epidermálneho ektodermu, ktorý obklopuje neurálnu platničku. Tie indukujú senzorické interneuróny aktiváciou Sr/Thr kináz a zmenou hladín transkripčných faktorov SMAD.

Dorzoventrálna indukcia ventrálneho tkaniva exprimuje charakteristické predné tkanivo. Diferenciáciu zadných tkanív riadia aj iné signály vrátane FGF a kyseliny retinovej.

Napríklad zadný mozog je modelovaný Hox génmi, ktoré sa exprimujú v prekrývajúcich sa oblastiach pozdĺž prednej a zadnej osi. 5′ gény v tomto zoskupení a exprimujú sa najviac vzadu. Hoxb-1 je exprimovaný v rhombomere 4 a dáva vznik tvárovému nervu. Bez expresie tohto Hoxb-1 vzniká nerv, ktorý je podobný trojklannému nervu.

Kortikogenéza: mladšie neuróny migrujú za staršími pomocou radiálnych glií ako lešenia. Cajalove-Retziove bunky (červené) uvoľňujú reelín (oranžový).

Migrácia neurónov je spôsob, akým sa neuróny presúvajú z miesta svojho vzniku alebo zrodu na konečné miesto v mozgu. Existuje niekoľko spôsobov, ako to môžu robiť, napr. radiálnou migráciou alebo tangenciálnou migráciou. (pozri časozberné sekvencie radiálnej migrácie (známej aj ako gliové vedenie) a somálnej translokácie).

Tangenciálna migrácia interneurónov z gangliovej eminencie.

Radiálna migrácia
Neuronálne prekurzorové bunky sa množia vo ventrikulárnej zóne vyvíjajúceho sa neokortexu. Prvé postmitotické bunky, ktoré migrujú, tvoria preplát, ktorý je určený na to, aby sa stal Cajal-Retziovými bunkami a subplátovými neurónmi. Tieto bunky tak robia somálnou translokáciou. Neuróny migrujúce týmto spôsobom lokomócie sú bipolárne a pripájajú sa predným okrajom procesu k pia. Soma sa potom transportuje na povrch pionu nukleokinézou, čo je proces, pri ktorom sa mikrotubulárna „klietka“ okolo jadra predlžuje a kontrahuje v spojení s centrozómom, aby viedla jadro na konečné miesto určenia. Radiálna glia, ktorej vlákna slúžia ako lešenie pre migrujúce bunky, sa môže sama deliť alebo premiestniť na kortikálnu platničku a diferencovať sa buď na astrocyty, alebo na neuróny. K somálnej translokácii môže dôjsť kedykoľvek počas vývoja.

Následné vlny neurónov rozdeľujú preplatňu migráciou pozdĺž radiálnych gliových vlákien a vytvárajú kortikálnu platňu. Každá vlna migrujúcich buniek sa pohybuje okolo svojich predchodcov a vytvára vrstvy smerom dovnútra, čo znamená, že najmladšie neuróny sú najbližšie k povrchu. Odhaduje sa, že migrácia vedená gliou predstavuje 90 % migrujúcich neurónov u ľudí a približne 75 % u hlodavcov.

Tangenciálna migrácia
Väčšina interneurónov migruje tangenciálne prostredníctvom viacerých spôsobov migrácie, aby sa dostali na príslušné miesto v kôre. Príkladom tangenciálnej migrácie je pohyb interneurónov z gangliovej eminencie do mozgovej kôry. Jedným z príkladov prebiehajúcej tangenciálnej migrácie v zrelom organizme, pozorovanej u niektorých zvierat, je rostrálny migračný prúd spájajúci subventrikulárnu zónu a čuchový bulbus.

Iné spôsoby migrácie
Existuje aj spôsob migrácie neurónov nazývaný multipolárna migrácia. Tá sa prejavuje v multipolárnych bunkách, ktoré sú hojne zastúpené v kortikálnej intermediálnej zóne. Nepodobajú sa na bunky migrujúce lokomóciou alebo somálnou translokáciou. Namiesto toho tieto multipolárne bunky exprimujú neuronálne markery a vysúvajú početné tenké výbežky rôznymi smermi nezávisle od radiálnych gliových vlákien.

Nervový rastový faktor (NGF): Rita Levi Montalcini a Stanley Cohen purifikovali prvý trofický faktor, nervový rastový faktor (NGF), za čo dostali Nobelovu cenu. Existujú tri trofické faktory súvisiace s NGF: BDNF, NT3 a NT4, ktoré regulujú prežívanie rôznych populácií neurónov. Proteíny Trk fungujú ako receptory pre NGF a príbuzné faktory. Trk je receptorová tyrozínkináza. Dimerizácia a fosforylácia Trk vedie k aktivácii rôznych vnútrobunkových signálnych dráh vrátane dráh MAP kinázy, Akt a PKC.

CNTF: Ciliárny neurotrofický faktor je ďalší proteín, ktorý pôsobí ako faktor prežitia motorických neurónov. CNTF pôsobí prostredníctvom receptorového komplexu, ktorý zahŕňa CNTFRα, GP130 a LIFRβ. Aktivácia receptora vedie k fosforylácii a náboru kinázy JAK, ktorá následne fosforyluje LIFRβ. LIFRβ pôsobí ako dokovacie miesto pre transkripčné faktory STAT. Kináza JAK fosforyluje proteíny STAT, ktoré sa oddeľujú od receptora a premiestňujú sa do jadra, aby regulovali expresiu génov.

GDNF: Gliálny neurotrofický faktor je členom rodiny proteínov TGFb a je silným trofickým faktorom pre striatálne neuróny. Funkčný receptor je heterodimér, ktorý sa skladá z receptorov typu 1 a typu 2. Aktivácia receptora typu 1 vedie k fosforylácii proteínov Smad, ktoré sa premiestňujú do jadra a aktivujú expresiu génov.

Neuromuskulárne spojenie
Veľká časť našich poznatkov o tvorbe synapsií pochádza zo štúdií na neuromuskulárnom spojení. Vysielačom v tejto synapsii je acetylcholín. Acetylcholínový receptor (AchR) je prítomný na povrchu svalových buniek pred vytvorením synapsy. Príchod nervu vyvolá zoskupenie receptorov v synapsii. McMahan a Sanes ukázali, že synaptogénny signál sa sústreďuje na bazálnej lamine. Ukázali tiež, že synaptogénny signál je produkovaný nervom, a tento faktor identifikovali ako agrín. Agrin vyvoláva zoskupenie AchRs na povrchu svalu a u myší s knockoutom agrinu je narušená tvorba synapsií. Agrin prenáša signál cez receptor MuSK na rapsyn. Fischbach a jeho kolegovia ukázali, že receptorové podjednotky sa selektívne prepisujú z jadier vedľa miesta synaptického výskytu. Je to sprostredkované neuregulínmi.

V zrelej synapsii je každé svalové vlákno inervované jedným motorickým neurónom. Počas vývoja sú však mnohé vlákna inervované viacerými axónmi. Lichtman a jeho kolegovia skúmali proces eliminácie synapsií. Ide o udalosť závislú od aktivity. Čiastočné zablokovanie receptora vedie k stiahnutiu príslušných presynaptických terminálov.

synapsie CNS
Agrín zrejme nie je centrálnym mediátorom tvorby synapsií CNS a o identifikáciu signálov, ktoré sprostredkúvajú synaptogenézu CNS, je aktívny záujem. Na neurónoch v kultúre sa vytvárajú synapsie, ktoré sú podobné tým, ktoré sa tvoria in vivo, čo naznačuje, že synaptogénne signály môžu správne fungovať in vitro. Štúdie synaptogenézy CNS sa zameriavajú najmä na glutamátergické synapsie. Zobrazovacie experimenty ukazujú, že dendrity sú počas vývoja veľmi dynamické a často iniciujú kontakt s axónmi. Nasleduje nábor postsynaptických proteínov do miesta kontaktu. Stephen Smith a jeho kolegovia ukázali, že kontakt iniciovaný dendritickými filopódiami sa môže vyvinúť do synapsií.

Indukcia tvorby synáps gliovými faktormi: Barres a jeho kolegovia zistili, že faktory v gliových podmienených médiách indukujú tvorbu synapsií v kultúrach gangliových buniek sietnice. Tvorba synapsií v CNS súvisí s diferenciáciou astrocytov, čo naznačuje, že astrocyty môžu poskytovať synaptogénny faktor. Identita astrocytárnych faktorov zatiaľ nie je známa.

Neuroligíny a SynCAM ako synaptogénne signály: Sudhof, Serafini, Scheiffele a ich kolegovia preukázali, že neuroligíny a SynCAM môžu pôsobiť ako faktory, ktoré indukujú presynaptickú diferenciáciu. Neuroligíny sú koncentrované v postsynaptickom mieste a pôsobia prostredníctvom neurexínov koncentrovaných v presynaptických axónoch. SynCAM je adhezívna bunková molekula, ktorá je prítomná v pre- aj postsynaptických membránach.

O každú nervovosvalovú križovatku súperí niekoľko motorneurónov, ale len jeden prežije do dospelosti. Ukázalo sa, že konkurencia in vitro zahŕňa obmedzenú neurotrofickú látku, ktorá sa uvoľňuje, alebo že nervová aktivita dáva výhodu silným postsynaptickým spojeniam tým, že dáva odolnosť toxínu, ktorý sa tiež uvoľňuje pri nervovej stimulácii. In vivo sa predpokladá, že svalové vlákna si vyberajú najsilnejší neurón prostredníctvom spätného signálu.

Vývoj neurónov/neurulácia – Neurula – Neurálne záhyby – Neurálna ryha – Neurálna trubica – Neurálny hrebeň – Neuroméra (Rhomboméra) – Notochord – Neurálna platnička

Vývoj oka – Zrakové mechúriky – Zraková stopka – Zrakový pohárik – Sluchový mechúrik – Sluchová jamka

Kategórie
Psychologický slovník

Ischémia

V medicíne je ischémia (grécky ισχαιμία, isch- je obmedzenie, hema alebo haemablood) kardiovaskulárna porucha, pri ktorej dochádza k obmedzeniu prívodu krvi, zvyčajne v dôsledku faktorov v cievach, s následným poškodením alebo dysfunkciou tkaniva. Môže sa tiež písať ischémia alebo ischæmia.

Skôr ako pri hypoxii, všeobecnejšom termíne označujúcom nedostatok kyslíka (zvyčajne v dôsledku nedostatku kyslíka vo vdychovanom vzduchu), je ischémia absolútny alebo relatívny nedostatok krvného zásobenia orgánu, t. j. nedostatok kyslíka, glukózy a iných krvných palív. Relatívny nedostatok znamená nesúlad medzi prívodom krvi (dodávka kyslíka/palív) a požiadavkou krvi na primeraný metabolizmus tkaniva. Ischémia má za následok poškodenie tkaniva z dôvodu nedostatku kyslíka a živín. V konečnom dôsledku to môže spôsobiť vážne poškodenie z dôvodu možnosti hromadenia metabolických odpadov.

Ischémiu možno tiež opísať ako nedostatočný prietok krvi do určitej časti tela, ktorý je spôsobený zúžením alebo zablokovaním ciev, ktoré ju zásobujú. Ischémia srdcového svalu spôsobuje angínu pektoris.

Keďže kyslík je viazaný najmä na hemoglobín v červených krvinkách, nedostatočné prekrvenie spôsobuje hypoxiu tkaniva, alebo ak kyslík nie je dodávaný vôbec, anoxiu. To môže spôsobiť onkózu (t. j. odumretie buniek lýzou). Vo veľmi aeróbnych tkanivách, ako je srdce a mozog, trvá pri telesnej teplote nekróza spôsobená ischémiou zvyčajne približne 3 – 4 hodiny, kým sa stane nezvratnou. Táto skutočnosť a zvyčajne aj určitý kolaterálny obeh do ischemickej oblasti vysvetľujú účinnosť liekov „na zrážanie krvi“, ako je napríklad altepláza, ktoré sa podávajú pri mŕtvici a infarkte v tomto časovom období. Úplné zastavenie okysličovania týchto orgánov na viac ako 20 minút však zvyčajne vedie k nezvratnému poškodeniu.

Ischémia je charakteristická pre ochorenia srdca, prechodné ischemické ataky, cerebrovaskulárne príhody, prasknuté arteriovenózne malformácie a okluzívne ochorenia periférnych tepien.
Srdce, obličky a mozog patria medzi orgány, ktoré sú najcitlivejšie na nedostatočné zásobovanie krvou. Ischémia v mozgovom tkanive, napríklad v dôsledku mozgovej príhody alebo poranenia hlavy, spôsobuje spustenie procesu nazývaného ischemická kaskáda, pri ktorom proteolytické enzýmy, reaktívne formy kyslíka a iné škodlivé chemické látky poškodzujú a v konečnom dôsledku môžu spôsobiť zánik mozgového tkaniva.

Obnovenie prietoku krvi po období ischémie môže byť v skutočnosti škodlivejšie ako samotná ischémia. Opätovné zavedenie kyslíka spôsobuje väčšiu produkciu škodlivých voľných radikálov, čo vedie k reperfúznemu poškodeniu. Pri reperfúznom poškodení sa môže výrazne urýchliť nekróza. Zistilo sa, že nízke dávky sírovodíka (H2S) chránia pred regionálnym ischemicko-reperfúznym poškodením myokardu.

Mechanizmus ischémie závisí od typu. Jedným z dôležitých typov je srdcová ischémia, ďalším je ischémia čriev.

Ischémia srdca môže spôsobiť bolesť na hrudníku, známu ako angína pektoris

Počiatočné hodnotenie pacientov s bolesťami na hrudníku zahŕňa 12-vodičový elektrokardiogram (EKG) a kardiálne markery, ako sú troponíny. Tieto testy sú vysoko špecifické, ale veľmi necitlivé a často vyžadujú ďalšie vyšetrenia na stanovenie presnej diagnózy. Magnetokardiografické zobrazovanie (MCG) využíva supravodivé kvantové interferenčné zariadenia (SQUID) na detekciu slabých magnetických polí generovaných elektrickými poliami srdca. Existuje priama korelácia medzi abnormálnou depolarizáciou alebo repolarizáciou srdca a abnormalitou v mape magnetického poľa. V júli 2004 Úrad pre kontrolu potravín a liečiv (FDA) schválil CardioMag Imaging MCG ako bezpečné zariadenie na neinvazívnu detekciu ischémie.

Ischémia v hrubom čreve spôsobená zápalom vedie k ischemickej kolitíde. Na druhej strane ischémia v tenkom čreve spôsobená zápalom má za následok mezenterickú ischémiu.

Znížený prietok krvi do vrstiev kože môže mať za následok škvrnitosť alebo nerovnomerné, nerovnomerné zafarbenie kože.

Choroba – Nekróza – Infekcia – Ischémia – Zápal – Hojenie rán – Neoplázia

Chirurgická patológia – Cytopatológia – Pitva – Molekulárna patológia – Súdna patológia – Zubná patológia Hrubé vyšetrenie – Histopatológia – Imunohistochémia – Elektrónová mikroskopia – Imunofluorescencia – Fluorescenčná in situ hybridizácia

Klinická chémia – Hematopatológia – Transfúzna medicína – Lekárska mikrobiológia – Diagnostická imunológia Enzýmový test – Hmotnostná spektrometria – Chromatografia – Prietoková cytometria – Krvná banka – Mikrobiologické kultúry – Sérológia

Kategórie
Psychologický slovník

Ucho

Ucho je zmyslový orgán, ktorý vníma zvuky. Ucho stavovcov má spoločnú biológiu od rýb až po človeka, pričom jeho štruktúra sa líši podľa radu a druhu. Funguje nielen ako prijímač zvuku, ale zohráva významnú úlohu pri vnímaní rovnováhy a polohy tela. Ucho je súčasťou sluchového systému.

Úvod do uší a sluchu

Sluch je vedecký názov pre vnímanie zvuku. Zvuk je forma energie, ktorá sa pohybuje vzduchom, vodou a inou hmotou vo forme tlakových vĺn. Zvuk je prostriedkom sluchovej komunikácie vrátane žabích volaní, vtáčieho spevu a hovorenej reči. Hoci ucho je zmyslový orgán stavovcov, ktorý zvuk rozpoznáva, „počuje“ ho mozog a centrálna nervová sústava. Zvukové vlny vníma mozog prostredníctvom vzplanutia nervových buniek v sluchovej časti centrálneho nervového systému. Ucho mení zvukové tlakové vlny z vonkajšieho sveta na signál nervových impulzov vysielaných do mozgu.

Zvuk sa zhromažďuje vo vonkajšej časti ucha. Tento zvukový tlak sa zosilňuje cez strednú časť ucha a u suchozemských živočíchov prechádza zo vzduchu do kvapalného prostredia. K zmene zo vzduchu na kvapalinu dochádza preto, lebo vzduch obklopuje hlavu a je obsiahnutý v zvukovode a strednom uchu, ale nie vo vnútornom uchu. Vnútorné ucho je duté, uložené v spánkovej kosti, najhustejšej kosti tela. Duté kanáliky vnútorného ucha sú vyplnené tekutinou a obsahujú zmyslový epitel, ktorý je posiaty vláskovými bunkami. Mikroskopické „vlásky“ týchto buniek sú štrukturálne bielkovinové vlákna, ktoré vyčnievajú do tekutiny. Vláskové bunky sú mechanoreceptory, ktoré pri stimulácii uvoľňujú chemický neurotransmiter. Zvukové vlny pohybujúce sa tekutinou tlačia na vlákna; ak sa vlákna dostatočne prehnú, spôsobí to, že vlasové bunky vystrelia. Týmto spôsobom sa zvukové vlny transformujú na nervové impulzy. Pri videní hrajú tyčinky a čapíky sietnice podobnú úlohu pri svetle ako vláskové bunky pri zvuku. Nervové impulzy sa šíria z ľavého a pravého ucha cez ôsmy lebečný nerv do oboch strán mozgového kmeňa a až do časti mozgovej kôry určenej pre zvuk. Táto sluchová časť mozgovej kôry sa nachádza v spánkovom laloku.

Časť ucha, ktorá je určená na vnímanie rovnováhy a polohy, tiež vysiela impulzy prostredníctvom ôsmeho lebečného nervu, VIII. nervu vestibulárnej časti. Tieto impulzy sa posielajú do vestibulárnej časti centrálneho nervového systému.
Ľudské ucho vo všeobecnosti počuje zvuky s frekvenciami od 20 Hz do 20 kHz (zvukový rozsah). Hoci si sluchový vnem vyžaduje neporušenú a funkčnú sluchovú časť centrálneho nervového systému, ako aj funkčné ucho, ľudská hluchota (extrémna necitlivosť na zvuk) sa najčastejšie vyskytuje v dôsledku abnormalít vnútorného ucha, a nie nervov alebo dráh centrálneho sluchového systému.

Netopiere majú rôzne veľkosti a tvary

Tvar vonkajšieho ucha cicavcov sa u rôznych druhov veľmi líši. Vnútorná štruktúra uší cicavcov (vrátane ľudských) je však veľmi podobná.

Vonkajšie ucho (ušnica, zvukovod, povrch bubienka)

Vonkajšie ucho je najvzdialenejšia časť ucha. Vonkajšie ucho zahŕňa ušnicu (nazývanú aj ušnica), zvukovod a najvrchnejšiu vrstvu ušného bubienka (nazývanú aj bubienková blana). U človeka a takmer všetkých stavovcov je jedinou viditeľnou časťou ucha vonkajšie ucho. Hoci slovo „ucho“ sa môže správne vzťahovať na ušnicu (chrupavkový výbežok pokrytý mäsom na oboch stranách hlavy), táto časť ucha nie je pre sluch nevyhnutná. Vonkajšie ucho síce pomáha dostať zvuk (a zavádza filtráciu), ale veľmi dôležitý je zvukovod. Ak nie je zvukovod otvorený, sluch je utlmený. Ušný maz (lekársky názov – cerumen) produkujú žľazy v koži vonkajšej časti zvukovodu. Táto koža vonkajšieho zvukovodu sa prikladá na chrupavku; tenšia koža hlbokého zvukovodu leží na kosti lebky. Iba hrubšia koža zvukovodu produkujúca cerumen má chĺpky. Vonkajšie ucho sa končí na najvrchnejšej vrstve bubienka. Bubienková blana sa bežne nazýva ušný bubienok.

Ľudské vonkajšie ucho a kultúra

Natiahnutie ušného lalôčika a rôzne piercingy chrupaviek

Ušnice majú tiež vplyv na vzhľad tváre. V západných spoločnostiach sa odstávajúce uši (prítomné asi u 5 % etnických Európanov) považujú za neatraktívne, najmä ak sú asymetrické. Prvá operácia na zmenšenie odstávajúcich uší bola v lekárskej literatúre publikovaná v roku 1881.

Uši sa tiež už tisíce rokov zdobia šperkami, tradične prepichovaním ušného lalôčika. V niektorých kultúrach sa ozdoby umiestňujú tak, aby sa ušné lalôčiky roztiahli a zväčšili, aby boli veľmi veľké. Odtrhnutie ušného lalôčika od váhy ťažkých náušníc alebo od traumatického ťahu náušnice (napríklad zachytením o vyzliekaný sveter) je pomerne časté. Oprava takéhoto roztrhnutia zvyčajne nie je náročná.

Kozmetický chirurgický zákrok na zmenšenie veľkosti alebo zmenu tvaru ucha sa nazýva otoplastika. V zriedkavých prípadoch, keď sa ušnica nevytvorí (atrézia) alebo je extrémne malá (mikrotózia), je možná rekonštrukcia ušnice. Najčastejšie sa na vytvorenie matrice ucha používa chrupavkový štep z inej časti tela (zvyčajne rebrová chrupavka) a na krytie kože sa používajú kožné štepy alebo rotačné chlopne. Ak sa však deti narodia bez ušnice na jednej alebo oboch stranách alebo ak je ušnica veľmi malá, zvukovod je zvyčajne malý alebo chýba a stredné ucho má často deformácie. Prvotný lekársky zásah je zameraný na posúdenie sluchu dieťaťa a stavu zvukovodu, ako aj stredného a vnútorného ucha. V závislosti od výsledkov vyšetrení sa postupne vykonáva rekonštrukcia vonkajšieho ucha, pričom sa plánuje aj prípadná oprava zvyšku ucha.

U ľudí a iných suchozemských živočíchov je stredné ucho (podobne ako zvukovod) normálne naplnené vzduchom. Na rozdiel od otvoreného zvukovodu však vzduch v strednom uchu nie je v priamom kontakte s atmosférou mimo tela. Eustachova trubica spája komoru stredného ucha so zadnou časťou hltana. Stredné ucho sa veľmi podobá špecializovanej prínosovej dutine, ktorá sa nazýva bubienková dutina; podobne ako prínosové dutiny je to dutá sliznicou vystlaná dutina v lebke, ktorá sa vetrá nosom. V mastoidnej časti ľudskej spánkovej kosti, ktorú možno nahmatať ako hrbolček v lebke za ušnicou, sa tiež nachádza vzduch, ktorý sa odvetráva cez stredné ucho.

Za normálnych okolností je Eustachova trubica uzavretá, ale pri prehĺtaní aj pri pozitívnom tlaku sa otvára. Pri štarte lietadla sa tlak okolitého vzduchu mení z vyššieho (na zemi) na nižší (na oblohe). Vzduch v strednom uchu sa s pribúdajúcou výškou lietadla rozširuje a tlačí sa do zadnej časti nosa a úst. Pri zostupe sa objem vzduchu v strednom uchu zmenšuje a vzniká mierny podtlak. Na vyrovnanie tlaku medzi stredným uchom a okolitou atmosférou pri klesaní lietadla je potrebné aktívne otváranie Eustachovej trubice. Potápač tiež zažíva túto zmenu tlaku, ale s väčšou rýchlosťou zmeny tlaku; aktívne otváranie Eustachovej trubice je potrebné častejšie, keď potápač ide hlbšie do vyššieho tlaku.

Usporiadanie bubienka a kostičiek účinne spája zvuk z otvoru zvukovodu do slimáka. Existuje niekoľko jednoduchých mechanizmov, ktoré spoločne zvyšujú tlak zvuku. Prvým je „hydraulický princíp“. Povrch bubienkovej membrány je mnohonásobne väčší ako povrch stapesovej nožičky. Zvuková energia dopadá na bubienkovú membránu a sústreďuje sa na menšiu nožičku. Druhým mechanizmom je „pákový princíp“. Rozmery kĺbových ušných kostičiek vedú k zvýšeniu sily pôsobiacej na stapesovu nožičku v porovnaní so silou pôsobiacou na kladivko. Tretí mechanizmus smeruje akustický tlak na jeden koniec slimáka a chráni druhý koniec pred zasiahnutím zvukovými vlnami. U ľudí sa tento proces nazýva „ochrana okrúhleho okna“ a podrobnejšie sa mu budeme venovať v nasledujúcej časti.

Abnormality, ako je zanesený ušný maz (oklúzia vonkajšieho zvukovodu), pevné alebo chýbajúce kostičky alebo diery v bubienkovej membráne, zvyčajne spôsobujú vodivú stratu sluchu. Vodivú stratu sluchu môže spôsobiť aj zápal stredného ucha, ktorý spôsobuje nahromadenie tekutiny v priestore normálne naplnenom vzduchom. Tympanoplastika je všeobecný názov operácie na opravu bubienka a kostičiek stredného ucha. Na obnovu neporušeného bubienka sa zvyčajne používajú štepy zo svalovej fascie. Niekedy sa na miesto poškodených ušných kostí umiestnia umelé kostičky alebo sa obnoví narušený reťazec kostičiek, aby mohol účinne viesť zvuk.

Vnútorné ucho: slimák, predsieň a polokruhové kanáliky

Vláskové bunky sú tiež receptorovými bunkami, ktoré sa podieľajú na rovnováhe, hoci vláskové bunky sluchového a vestibulárneho systému ucha nie sú totožné. Vestibulárne vláskové bunky sú stimulované pohybom tekutiny v polokruhovitých kanálikoch a v uterku a saku. Pálenie vestibulárnych vláskových buniek stimuluje vestibulárnu časť ôsmeho lebečného nervu.

Ušnica sa môže ľahko poškodiť. Keďže ide o chrupavku pokrytú kožou, ktorá má len tenkú výstelku zo spojivového tkaniva, hrubé zaobchádzanie s uchom môže spôsobiť taký opuch, ktorý ohrozí zásobovanie jeho kostry, ušnej chrupavky, krvou. Celá táto chrupavková kostra je vyživovaná tenkou krycou membránou nazývanou perichondrium (čo doslova znamená: okolo chrupavky). Akákoľvek tekutina z opuchu alebo krv z poranenia, ktorá sa hromadí medzi perichondriom a základnou chrupavkou, ohrozuje chrupavku, že bude odlúčená od zásobovania živinami. Ak časti chrupavky vyhladovejú a odumrú, ucho sa už nikdy nezahojí do normálneho tvaru. Namiesto toho sa chrupavka stane hrudkovitou a zdeformovanou. Zápasnícke ucho je jeden z termínov, ktorý sa používa na opis výsledku, pretože zápasenie je jedným z najčastejších spôsobov, ako k takémuto zraneniu dochádza. Karfiolové ucho je ďalší názov pre rovnaký stav, pretože zhrubnutá ušnica môže pripomínať túto zeleninu.

Ušný lalôčik je jediná časť ušnice, ktorá za normálnych okolností neobsahuje chrupavku. Namiesto toho je to klin tukového tkaniva (tuku) pokrytý kožou. Existuje mnoho normálnych variácií tvaru ušného lalôčika, ktorý môže byť malý alebo veľký. Trhliny ušného lalôčika sa dajú spravidla opraviť s dobrými výsledkami. Keďže sa v uchu nenachádza chrupavka, nehrozí deformácia v dôsledku krvnej zrazeniny alebo poranenia ušného lalôčika tlakom.

Iné poranenia vonkajšieho ucha sa vyskytujú pomerne často a môžu zanechať veľkú deformitu. Medzi najčastejšie patria poranenia o sklo, nože, uhryznutia, avulzie, rakovina, omrzliny a popáleniny.

Poranenia zvukovodu môžu spôsobiť petardy a iné výbušniny a mechanické poranenia spôsobené umiestnením cudzích telies do ucha. Ušný kanál sa najčastejšie traumatizuje sám pri čistení ucha. Vonkajšia časť zvukovodu sa opiera o telo hlavy; vnútorná časť sa opiera o otvor kostnatej lebky (tzv. vonkajší zvukovod). Koža je na každej časti veľmi odlišná. Vonkajšia koža je hrubá a obsahuje žľazy aj vlasové folikuly. Žľazy vytvárajú cerumen (nazývaný aj ušný maz). Koža vonkajšej časti sa trochu pohybuje, ak sa ušnica potiahne; je len voľne priložená k podkladovým tkanivám. Na druhej strane koža kostného kanála patrí nielen medzi najjemnejšiu kožu v ľudskom tele, ale je pevne priložená k pod ňou ležiacej kosti. Štíhly predmet používaný na čistenie cerumenu z ucha naslepo často vedie namiesto toho k zatlačeniu vosku dovnútra a kontakt s tenkou kožou kostného kanála môže viesť k poraneniu a krvácaniu.

Podobne ako úraz vonkajšieho ucha, aj úraz stredného ucha najčastejšie vzniká v dôsledku poranenia výbuchom a v dôsledku vniknutia cudzích predmetov do ucha. Zlomeniny lebky, ktoré prechádzajú cez časť lebky obsahujúcu štruktúry ucha (spánková kosť), môžu tiež spôsobiť poškodenie stredného ucha. Malé perforácie bubienkovej membrány sa zvyčajne zahoja samé, ale veľké perforácie si môžu vyžadovať transplantáciu. Posunutie kostičiek spôsobí vodivú stratu sluchu, ktorá sa dá odstrániť len chirurgicky. Násilné posunutie strmienka do vnútorného ucha môže spôsobiť senzorickú nervovú stratu sluchu, ktorá sa nedá upraviť ani vtedy, ak sa kostičky vrátia do správnej polohy. Keďže ľudská koža má vrchnú vodotesnú vrstvu odumretých kožných buniek, ktoré sa neustále odlučujú, posunutie častí bubienka alebo zvukovodu do stredného ucha alebo hlbších oblastí úrazom môže byť obzvlášť traumatizujúce. Ak sa posunutá koža nachádza v uzavretom priestore, odlúpený povrch sa v priebehu mesiacov a rokov nahromadí a vytvorí cholesteatóm. Koncovka -oma v tomto slove označuje v lekárskej terminológii nádor, a hoci cholesteatóm nie je novotvar (ale kožná cysta), môže sa zväčšovať a erodovať štruktúry ucha. Liečba cholesteatómu je chirurgická.

V industrializovanej spoločnosti existujú dva hlavné mechanizmy poškodenia vnútorného ucha, pričom oba poškodzujú vláskové bunky. Prvým je vystavenie zvýšenej hladine zvuku (hluková trauma) a druhým je vystavenie liekom a iným látkam (ototoxicita).

V roku 1972 americká agentúra EPA informovala Kongres, že najmenej 34 miliónov ľudí je denne vystavených hluku, ktorý môže viesť k výraznej strate sluchu. V celosvetovom meradle by sa táto exponovaná populácia v priemyselných krajinách počítala na stovky miliónov.

Porovnávacia anatómia uší primátov: Človek (vľavo) a makak barbarský (vpravo).

Už dlho je známe, že ľudia a aj iné primáty, ako napríklad šimpanz, gorila a orangutan, majú minimálne vyvinuté a nefunkčné ušné svaly, ktoré sú však stále dostatočne veľké na to, aby sa dali ľahko identifikovať. Tieto nevyvinuté svaly sú vestigiálne štruktúry. O svale, ktorý z akéhokoľvek dôvodu nedokáže pohybovať uchom, sa už nedá povedať, že by mal nejakú biologickú funkciu. Slúži to ako dôkaz homológie medzi príbuznými druhmi. U ľudí existuje variabilita týchto svalov, takže niektorí ľudia sú schopní pohybovať ušami rôznymi smermi a hovorí sa, že u iných je možné získať takýto pohyb opakovanými pokusmi.

Orgány sluchu bezstavovcov

Uši majú len stavovce, hoci mnohé bezstavovce dokážu zvuk zachytiť aj inými zmyslovými orgánmi. U hmyzu sa na počúvanie vzdialených zvukov používajú bubienkové orgány. Nie sú obmedzené na hlavu, ale môžu sa vyskytovať na rôznych miestach v závislosti od skupiny hmyzu.

Jednoduchšie štruktúry umožňujú článkonožcom detekovať zvuky v blízkom poli. Napríklad pavúky a šváby majú na nohách chĺpky, ktoré slúžia na detekciu zvuku. Aj húsenice môžu mať na tele chĺpky, ktoré vnímajú vibrácie a umožňujú im reagovať na zvuk.

Pinna (Helix, Antihelix, Tragus, Antitragus, Incisura anterior auris, ušný lalôčik) – Ušný kanál – Ušné svaly

Ušný bubienok (Umbo, Pars flaccida)

Labyrintová stena/medialita: Ovalné okienko – Okrúhle okienko – Sekundárna bubienková membrána – Výbežok tvárového kanála – Výbežok bubienkovej dutiny

Mastoidálna stena/posterior: Aditus k mastoidnému antrum – Pyramidálna eminencia

Tegmentálna stena/strecha: Epitympanický výklenok

Malleus (krčok mallea, horný väz mallea, bočný väz mallea, predný väz mallea) – Incus (horný väz incusu, zadný väz incusu) – Stapes (predný väz stapesu)

Stapedius – Tensor tympani

Kostená časť faryngotympanálnej trubice – Chrupavka faryngotympanálnej trubice (Torus tubarius)

Scala vestibuli – Helicotrema – Scala tympani – Modiolus – Cochlear cupula

Perilymfa – kochleárny akvadukt

Reissnerova/vestibulárna membrána – Bazilárna membrána

Endolymfa – Stria vascularis – Spirálny väz

Cortiho orgán: Stereocílie – Tektóriová membrána – Sulcus spiralis (externus, internus) – Špirálový limbus

Statický/translačný/vestibulárny/endolymfatický kanál: Utrikulum (makula) – sakula (makula, endolymfatický vak) – kinocílium – otolit – vestibulárny akvadukt – canalis reuniens

Kinetika/rotácie: Ampulárna kupula – Ampuly (Crista ampullaris)

Zápal stredného ucha – Mastoiditída (Bezoldov absces) – Cholesteatóm – Perforovaný bubienok

Otoskleróza – Porucha rovnováhy – Ménièrova choroba – Benígne paroxyzmálne polohové závrate – Vestibulárna neuronitída – Vertigo – Labyrintitída – Perilymfofistula – Syndróm dehiscencie horného kanála (SCDS)

Konduktívna strata sluchu – Senzorineurálna strata sluchu – Presbycusis

Kategórie
Psychologický slovník

Reumatoidná artritída

Reumatoidná artritída (RA) je chronické systémové autoimunitné ochorenie, ktoré najčastejšie spôsobuje zápal a poškodenie tkaniva kĺbov (artritída) a šľachových puzdier spolu s anémiou. Môže tiež spôsobiť difúzny zápal v pľúcach, osrdcovníku, pohrudnici a sklére oka a tiež uzlovité lézie, najčastejšie v podkožnom tkanive pod kožou. Môže ísť o invalidizujúce a bolestivé ochorenie, ktoré môže viesť k výraznej strate funkčnosti a pohyblivosti. Diagnostikuje sa najmä na základe príznakov a znakov, ale aj pomocou krvných testov (najmä testu nazývaného reumatoidný faktor) a röntgenových snímok. Diagnostiku a dlhodobú liečbu zvyčajne vykonáva reumatológ, odborník na ochorenia kĺbov a spojivových tkanív.

K dispozícii sú rôzne procedúry. Nefarmakologická liečba zahŕňa fyzikálnu terapiu a ergoterapiu. Na potlačenie príznakov sa používajú analgetiká (lieky proti bolesti) a protizápalové lieky, ako aj steroidy, zatiaľ čo na potlačenie alebo zastavenie základného imunitného procesu a zabránenie dlhodobému poškodeniu sú často potrebné chorobu modifikujúce antireumatické lieky (DMARD). V poslednom čase rozšírila možnosti liečby novšia skupina biologických liekov.

Názov vychádza z termínu „reumatická horúčka“, ochorenia, ktoré zahŕňa bolesť kĺbov, a je odvodený od gréckeho slova rheumatos („tečúci“). Prípona -oid („pripomínajúci“) dáva preklad ako zápal kĺbov, ktorý sa podobá reumatickej horúčke. Prvý uznaný opis reumatoidnej artritídy urobil v roku 1800 doktor Augustin Jacob Landré-Beauvais (1772 – 1840) z Paríža.

Aj keď reumatoidná artritída postihuje predovšetkým kĺby, je známe, že sa vyskytujú aj problémy s inými telesnými orgánmi. Extraartikulárne („mimo kĺbov“) prejavy okrem anémie (ktorá je veľmi častá) sú klinicky zjavné približne u 15 – 25 % jedincov s reumatoidnou artritídou. Môže byť ťažké určiť, či sú prejavy ochorenia spôsobené priamo samotným reumatoidným procesom alebo vedľajšími účinkami liekov, ktoré sa bežne používajú na liečbu – napríklad fibróza pľúc po metotrexáte alebo osteoporóza po kortikosteroidoch.

Reumatoidná artritída je spôsobená synovitídou, čo je zápal synoviálnej membrány, ktorá vystiela kĺby a šľachové puzdrá. Kĺby sú opuchnuté, citlivé a teplé a stuhnutosť bráni ich používaniu. Časom RA takmer vždy postihuje viacero kĺbov (ide o polyartritídu). Najčastejšie sú postihnuté malé kĺby rúk, nôh a krčnej chrbtice, ale môžu byť postihnuté aj väčšie kĺby, ako napríklad rameno a koleno, pričom sa to u každého jednotlivca líši. Synovitída môže viesť k zviazaniu tkaniva so stratou pohybu a erózii povrchu kĺbu, čo spôsobuje deformitu a stratu funkcie.

Zápal v kĺboch sa prejavuje ako mäkký, „cestovitý“ opuch, ktorý spôsobuje bolesť a citlivosť na pohmat a pohyb, pocit lokálneho tepla a obmedzený pohyb. Zvýšená stuhnutosť po prebudení je často výrazným znakom a môže trvať viac ako hodinu. Tieto príznaky pomáhajú odlíšiť reumatoidnú artritídu od nezápalových problémov kĺbov, ktoré sa často označujú ako osteoartritída alebo „opotrebovaná“ artritída. Pri RA sú kĺby často postihnuté pomerne symetricky, hoci to nie je špecifické a počiatočný prejav môže byť asymetrický.

S postupujúcou patológiou vedie zápalová aktivita k zväzovaniu šliach, erózii a deštrukcii povrchu kĺbu, čo zhoršuje rozsah pohybu a vedie k deformite. Prsty môžu trpieť takmer akoukoľvek deformitou v závislosti od toho, ktoré kĺby sú najviac postihnuté. Študenti medicíny sa učia názvy špecifických deformít, ako je ulnárna deviácia, boutonniere deformita, deformita labutieho krku a „Z-palec“, ale tie nemajú väčší význam pre diagnózu alebo postihnutie ako iné varianty.

Reumatoidný uzol, ktorý je často podkožný, je najcharakteristickejším znakom reumatoidnej artritídy. Počiatočný patologický proces pri tvorbe uzlíkov nie je známy, ale môže byť v podstate rovnaký ako pri synovitíde, pretože v oboch prípadoch sa vyskytujú podobné štrukturálne znaky. Uzlík má centrálnu oblasť fibrinoidnej nekrózy, ktorá môže byť prasknutá a ktorá zodpovedá nekrotickému materiálu bohatému na fibrín, ktorý sa nachádza v postihnutom synoviálnom priestore a jeho okolí. Okolo nekrózy je vrstva palisád makrofágov a fibroblastov, ktorá zodpovedá intimálnej vrstve v synovii, a manžeta spojivového tkaniva obsahujúca zhluky lymfocytov a plazmatických buniek, ktorá zodpovedá subintimálnej zóne pri synovitíde. Typický reumatoidný uzol môže mať priemer niekoľko milimetrov až niekoľko centimetrov a zvyčajne sa nachádza nad kostnými výbežkami, ako je napríklad olekranón, kalkaneálna tuberozita, metakarpofalangeálne kĺby alebo iné oblasti, ktoré sú opakovane mechanicky namáhané. Uzly sú spojené s pozitívnym titrom RF (reumatoidného faktora) a ťažkou erozívnou artritídou. Zriedkavo sa môžu vyskytnúť vo vnútorných orgánoch.

Pri reumatoidnej artritíde sa vyskytuje niekoľko foriem vaskulitídy. Benígna forma sa vyskytuje ako mikroinfarkty okolo nechtových záhybov. K závažnejším formám patrí livedo reticularis, čo je sieť (retikulum) erytematózneho až purpurového sfarbenia kože v dôsledku prítomnosti obliterujúcej kožnej kapilaropatie.

Fibróza pľúc je uznávanou reakciou na reumatoidné ochorenie. Je tiež zriedkavým, ale dobre známym dôsledkom liečby (napríklad metotrexátom a leflunomidom). Caplanov syndróm opisuje pľúcne uzlíky u jedincov s reumatoidnou artritídou a dodatočnou expozíciou uhoľnému prachu. S reumatoidnou artritídou sa spájajú aj pleurálne výpotky.

Renálna amyloidóza môže vzniknúť ako dôsledok chronického zápalu. Reumatoidná artritída môže ovplyvniť glomerulus obličky priamo prostredníctvom vaskulopatie alebo mezangiálneho infiltrátu, ale je to menej zdokumentované. Liečba penicilamínom a soľami zlata sú uznávanými príčinami membranóznej nefropatie.

U ľudí s polyartritídou sa zvyčajne vykonáva röntgenové vyšetrenie rúk a nôh. Pri reumatoidnej artritíde sa na nich v počiatočných štádiách ochorenia nemusia prejaviť žiadne zmeny, ale v pokročilejších prípadoch sa prejavujú erózie a resorpcia kostí. Röntgenové snímky iných kĺbov sa môžu vykonať, ak sa v týchto kĺboch objavia príznaky bolesti alebo opuchu [Ako odkazovať a odkazovať na zhrnutie alebo text].

Pri klinickom podozrení na RA sú potrebné imunologické štúdie, napríklad testovanie na prítomnosť reumatoidného faktora (RF, špecifická protilátka). Negatívny RF nevylučuje RA; artritída sa skôr nazýva séronegatívna. To je prípad približne 15 % pacientov. Počas prvého roka ochorenia je pravdepodobnejšie, že reumatoidný faktor bude negatívny, pričom u niektorých jedincov sa časom zmení na séropozitívny. RF sa vyskytuje aj pri iných ochoreniach, napríklad pri Sjögrenovom syndróme, a približne u 10 % zdravej populácie, preto test nie je veľmi špecifický.

Vzhľadom na túto nízku špecifickosť bol vyvinutý nový sérologický test, ktorý testuje prítomnosť tzv. anticitrulinovaných proteínových protilátok (ACPA). Podobne ako RF je tento test pozitívny len v časti (67 %) všetkých prípadov RA, ale zriedkavo je pozitívny, ak RA nie je prítomná, čo mu dáva špecifickosť približne 95 %. Podobne ako v prípade RF existujú dôkazy o tom, že ACPA sú prítomné v mnohých prípadoch ešte pred nástupom klinického ochorenia. [Ako odkazovať a odkazovať na zhrnutie alebo text] V súčasnosti je najbežnejším testom na ACPA test anti-CCP (cyklický citrulinovaný peptid).

Tiež, niekoľko ďalších krvných testov sa zvyčajne vykonáva, aby sa na iné príčiny artritídy, ako je lupus erythematosus. V tejto fáze sa vykonáva sedimentácia erytrocytov (ESR), C-reaktívny proteín, kompletný krvný obraz, funkcia obličiek, pečeňové enzýmy a ďalšie imunologické testy (napr. antinukleárne protilátky/ANA). Zvýšená hladina feritínu môže odhaliť hemochromatózu, ktorá napodobňuje RA, alebo môže byť príznakom Stillovej choroby, séronegatívneho, zvyčajne juvenilného variantu reumatoidnej choroby.

American College of Rheumatology definovala (1987) nasledujúce kritériá klasifikácie reumatoidnej artritídy:

Na klasifikáciu ako RA musia byť splnené aspoň štyri kritériá. Tieto kritériá nie sú určené na diagnostiku pre bežnú klinickú starostlivosť; boli určené predovšetkým na kategorizáciu vo výskume. Napríklad: jedným z kritérií je prítomnosť kostnej erózie na röntgenovom snímku. Prevencia kostnej erózie je jedným z hlavných cieľov liečby, pretože je vo všeobecnosti nezvratná. Čakanie, kým sa splnia všetky kritériá ACR pre reumatoidnú artritídu, môže niekedy viesť k horšiemu výsledku. Väčšina chorých a reumatológov by sa zhodla na tom, že by bolo lepšie liečiť ochorenie čo najskôr a zabrániť vzniku kostnej erózie, aj keď to znamená liečiť ľudí, ktorí nespĺňajú kritériá ACR. Kritériá ACR sú však veľmi užitočné na kategorizáciu zistenej reumatoidnej artritídy, napríklad na epidemiologické účely [Ako odkazovať a odkazovať na zhrnutie alebo text].

Viaceré iné ochorenia môžu pripomínať RA a zvyčajne je potrebné ich od nej v čase stanovenia diagnózy odlíšiť:

Zriedkavejšie príčiny, ktoré sa zvyčajne správajú inak, ale môžu spôsobiť bolesti kĺbov:

Abnormality kĺbov pri reumatoidnej artritíde

Reumatoidná artritída je forma autoimunity, ktorej príčiny sú stále neúplne známe. Ide o systémové (celotelové) ochorenie postihujúce najmä synoviálne tkanivá.

Kľúčové dôkazy týkajúce sa patogenézy sú:

1. Genetická súvislosť s HLA-DR4 a príbuznými alotypmi MHC II. triedy a s T-bunkami asociovaným proteínom PTPN22.

2. Súvislosť s fajčením cigariet, ktorá sa zdá byť príčinná.

3. Dramatická odpoveď v mnohých prípadoch na blokádu cytokínu TNF (alfa).

4. Podobná dramatická odpoveď v mnohých prípadoch na depléciu B lymfocytov, ale žiadna porovnateľná odpoveď na depléciu T lymfocytov.

5. Viac-menej náhodný vzorec toho, či a kedy sú predisponovaní jedinci postihnutí.

6. Prítomnosť autoprotilátok proti IgGFc, známych ako reumatoidné faktory (RF), a protilátok proti citrulinovaným peptidom (ACPA).

Tieto údaje naznačujú, že ochorenie zahŕňa abnormálnu interakciu B buniek a T buniek, pričom prezentácia antigénov B bunkami T bunkám prostredníctvom HLA-DR vyvoláva pomoc T buniek a následnú produkciu RF a ACPA. Zápal je potom vyvolaný buď produktmi B buniek alebo T buniek, ktoré stimulujú uvoľňovanie TNF a iných cytokínov. Tento proces môže byť uľahčený vplyvom fajčenia na citrulinizáciu, ale stochastická (náhodná) epidemiológia naznačuje, že rýchlostne limitujúcim krokom v genéze ochorenia u predisponovaných jedincov môže byť vlastný stochastický proces v rámci imunitnej odpovede, ako je rekombinácia a mutácia génov imunoglobulínov alebo receptorov T buniek. (Všeobecné mechanizmy sú uvedené v položke autoimunita.)

Ak je uvoľňovanie TNF stimulované produktmi B buniek vo forme RF alebo ACPA – obsahujúcich imunitné komplexy, prostredníctvom aktivácie imunoglobulínových Fc receptorov, potom možno RA považovať za formu precitlivenosti III. typu. Ak je uvoľňovanie TNF stimulované produktmi T-buniek, ako je interleukín-17, možno to považovať za bližšie k hypersenzitivite IV. typu, hoci táto terminológia môže byť už trochu zastaraná a neužitočná. Diskusia o relatívnej úlohe imunitných komplexov a produktov T-buniek v zápale pri RA trvá už 30 rokov. Je len málo pochybností o tom, že B aj T bunky sú pre ochorenie nevyhnutné. Existujú však dobré dôkazy o tom, že v mieste zápalu nie je potrebná ani jedna z týchto buniek. To svedčí skôr v prospech imunitných komplexov (na báze protilátok syntetizovaných inde) ako iniciátorov, aj keď nie jediných pôvodcov zápalu. Okrem toho práca Thurlingsa a ďalších v skupine Paula-Petra Taku a tiež v skupine Arthura Kavanagha naznačuje, že ak sú nejaké imunitné bunky lokálne dôležité, sú to plazmatické bunky, ktoré pochádzajú z B-buniek a vo veľkom produkujú protilátky vybrané v štádiu B-buniek.

Hoci sa zdá, že TNF je dominantný, na zápale pri RA sa pravdepodobne podieľajú aj iné cytokíny (chemické mediátory). Blokáda TNF neprospieva všetkým pacientom ani všetkým tkanivám (ochorenie pľúc a uzlín sa môže zhoršiť). Blokáda IL-1, IL-15 a IL-6 má tiež priaznivé účinky a dôležitý môže byť aj IL-17. Konštitučné príznaky, ako je horúčka, malátnosť, strata chuti do jedla a úbytok hmotnosti, sú tiež spôsobené cytokínmi uvoľňovanými do krvného obehu.

Tak ako pri väčšine autoimunitných ochorení je dôležité rozlišovať medzi príčinou (príčinami), ktoré spúšťajú proces, a príčinami, ktoré môžu umožniť jeho pretrvávanie a postup.

Už dlho sa predpokladá, že určité infekcie môžu byť spúšťačom tohto ochorenia. Teória „zámeny identity“ predpokladá, že infekcia vyvolá imunitnú reakciu a zanechá po sebe protilátky, ktoré by mali byť špecifické pre daný organizmus. Protilátky však nie sú dostatočne špecifické a spustia imunitný útok proti časti hostiteľa. Pretože normálna molekula hostiteľa „vyzerá“ ako molekula na útočnom organizme, ktorá spustila počiatočnú imunitnú reakciu – tento jav sa nazýva molekulárna mimikry. Medzi infekčné organizmy podozrivé zo spúšťania reumatoidnej artritídy patria mykoplazmy, Erysipelothrix, parvovírus B19 a rubeola, ale tieto súvislosti neboli nikdy potvrdené v epidemiologických štúdiách. Presvedčivé dôkazy neboli predložené ani v prípade iných typov spúšťačov, ako sú potravinové alergie.

Neexistujú tiež jasné dôkazy o tom, že by spúšťačom ochorenia mohli byť fyzické a emocionálne vplyvy, stres a nesprávna strava. Mnohé negatívne nálezy naznačujú, že buď sa spúšťač mení, alebo že by v skutočnosti mohlo ísť o náhodnú udalosť, ktorá je vlastná imunitnej reakcii, ako to navrhol Edwards a kol .

Epidemiologické štúdie potvrdili potenciálnu súvislosť medzi RA a dvoma herpetickými vírusmi: Epstein-Barrovej (EBV) a ľudským herpesvírusom 6 (HHV-6). U jedincov s RA je pravdepodobnejšie, že sa u nich prejaví abnormálna imunitná odpoveď na vírus Epsteina-Barrovej. Alela HLA-DRB1*0404 sa spája s nízkou frekvenciou T-buniek špecifických pre glykoproteín 110 EBV a predurčuje človeka na vznik RA.

Faktory, ktoré umožňujú, aby sa abnormálna imunitná reakcia po jej spustení stala trvalou a chronickou, sú čoraz jasnejšie pochopené. Genetické spojenie s HLA-DR4, ako aj novoobjavené spojenia s génom PTPN22 a s ďalšími dvoma génmi , poukazujú na zmenené prahové hodnoty v regulácii adaptívnej imunitnej odpovede. Z nedávnych štúdií tiež vyplynulo, že tieto genetické faktory môžu interagovať s najjasnejšie definovaným environmentálnym rizikovým faktorom reumatoidnej artritídy, a to fajčením cigariet Zdá sa, že aj iné environmentálne faktory modulujú riziko vzniku RA a hormonálne faktory u jednotlivca môžu vysvetľovať niektoré črty ochorenia, ako je vyšší výskyt u žien, nezriedkavý nástup po pôrode a (mierna) modulácia rizika ochorenia hormonálnymi liekmi. Presne to, ako zmenené regulačné prahy umožňujú spustenie špecifickej autoimunitnej reakcie, zostáva neisté. Jednou z možností však je, že mechanizmy negatívnej spätnej väzby, ktoré za normálnych okolností udržiavajú toleranciu voči sebe samému, sú prekonané aberantnými mechanizmami pozitívnej spätnej väzby pre určité antigény, ako je IgG Fc (viazaný RF) a citrulinovaný fibrinogén (viazaný ACPA) (pozri heslo o autoimunite).

Keď sa abnormálna imunitná odpoveď vytvorí (čo môže trvať niekoľko rokov, kým sa objavia akékoľvek príznaky), plazmatické bunky odvodené od B lymfocytov produkujú vo veľkom množstve reumatoidné faktory a ACPA triedy IgG a IgM. Tieto sa neukladajú tak, ako je to pri systémovom lupuse. Zdá sa, že skôr aktivujú makrofágy prostredníctvom väzby na Fc receptor a možno aj komplement. To môže prispieť k zápalu synovie v zmysle edému, vazodilatácie a infiltrácie aktivovanými T-bunkami (hlavne CD4 v uzlovitých agregátoch a CD8 v difúznych infiltrátoch). Synoviálne makrofágy a dendritické bunky ďalej fungujú ako antigén prezentujúce bunky expresiou molekúl MHC II. triedy, čo vedie k vytvorenej lokálnej imunitnej reakcii v tkanive. Ochorenie postupuje spoločne s tvorbou granulačného tkaniva na okrajoch synoviálnej výstelky (pannus) s rozsiahlou angiogenézou a produkciou enzýmov, ktoré spôsobujú poškodenie tkaniva. Moderná farmakologická liečba RA je zameraná na tieto mediátory. Po vzniku zápalovej reakcie sa synovia zhrubne, chrupavka a pod ňou ležiaca kosť sa začnú rozpadávať a pribúdajú dôkazy o deštrukcii kĺbu.

Neexistuje žiadny známy liek na reumatoidnú artritídu, ale mnoho rôznych typov liečby môže zmierniť príznaky a/alebo upraviť proces ochorenia.

Kortizónová terapia v minulosti prinášala úľavu, ale jej dlhodobé účinky sa považovali za nežiaduce. Kortizónové injekcie však môžu byť cenným doplnkom dlhodobého liečebného plánu a používanie nízkych denných dávok kortizónu (napr. prednizón alebo prednizolón, 5 – 7,5 mg denne) môže mať tiež významný prínos, ak sa pridá k správnej špecifickej antireumatickej liečbe [Ako odkazovať a odkazovať na zhrnutie alebo text].

Farmakologickú liečbu RA možno rozdeliť na chorobu modifikujúce antireumatiká (DMARD), protizápalové látky a analgetiká.
Liečba zahŕňa aj odpočinok a fyzickú aktivitu.

Antireumatické lieky modifikujúce ochorenie (DMARDs)

Termín DMARD (Disease modifying anti-rheumatic drug) pôvodne znamenal liek, ktorý ovplyvňuje biologické ukazovatele, ako sú ESR a hladiny hemoglobínu a autoprotilátok, ale v súčasnosti sa zvyčajne používa na označenie lieku, ktorý znižuje mieru poškodenia kostí a chrupaviek. Zistilo sa, že DMARD vyvolávajú trvalé symptomatické remisie a odďaľujú alebo zastavujú progresiu. To je dôležité, pretože takéto poškodenie je zvyčajne nezvratné. Protizápalové lieky a analgetiká zlepšujú bolesť a stuhnutosť, ale nezabraňujú poškodeniu kĺbov ani nespomaľujú progresiu ochorenia.

Reumatológovia čoraz viac uznávajú, že k trvalému poškodeniu kĺbov dochádza už vo veľmi skorom štádiu ochorenia. V minulosti sa bežne začínalo len s protizápalovým liekom a progresia sa posudzovala klinicky a pomocou röntgenových snímok. Ak sa preukázalo, že začína dochádzať k poškodeniu kĺbov, predpísal sa silnejší DMARD. Ultrazvuk a magnetická rezonancia sú citlivejšie metódy zobrazovania kĺbov a preukázali, že k poškodeniu kĺbov dochádza oveľa skôr a u väčšieho počtu pacientov, ako sa doteraz predpokladalo. Ľudia s normálnym röntgenovým vyšetrením majú často erózie zistiteľné ultrazvukom, ktoré röntgen nemohol preukázať. Cieľom je teraz liečiť skôr, ako dôjde k poškodeniu.

Môžu existovať aj iné dôvody, prečo je skoré začatie liečby DMARDs prospešné, ako aj prevencia štrukturálneho poškodenia kĺbov. Kĺby sú od najranejších štádií ochorenia infiltrované bunkami imunitného systému, ktoré si navzájom dávajú signály spôsobom, ktorý môže zahŕňať rôzne pozitívne spätné väzby (už dlho sa pozoruje, že jediná injekcia kortikosteroidu môže na dlhé obdobie prerušiť synovitídu v určitom kĺbe). Zdá sa, že čo najskoršie prerušenie tohto procesu účinným DMARD (ako je metotrexát) zlepšuje výsledky z RA na roky potom. Odloženie liečby už o niekoľko mesiacov po objavení sa príznakov môže mať z dlhodobého hľadiska za následok horšie výsledky. Existuje preto značný záujem o stanovenie najúčinnejšej terapie pri včasnej artritíde, keď sú na liečbu najcitlivejší a môžu najviac získať.

Tradičné lieky s malou molekulovou hmotnosťou

Chemicky syntetizované DMARDs:

Najdôležitejšie a najčastejšie nežiaduce udalosti sa týkajú toxicity pečene a kostnej drene (MTX, SSZ, leflunomid, azatioprín, zlúčeniny zlata, D-penicilamín), renálnej toxicity (cyklosporín A, parenterálne soli zlata, D-penicilamín), pneumonitídy (MTX), alergických kožných reakcií (zlúčeniny zlata, SSZ), autoimunity (D-penicilamín, SSZ, minocyklín) a infekcií (azatioprín, cyklosporín A). Hydroxychlorochín môže spôsobiť očnú toxicitu, hoci je to zriedkavé, a keďže hydroxychlorochín nemá vplyv na kostnú dreň alebo pečeň, často sa považuje za DMARD s najmenšou toxicitou. Nanešťastie hydroxychlorochín nie je veľmi účinný a zvyčajne nestačí na to, aby sám kontroloval príznaky.

Mnohí reumatológovia považujú metotrexát za najdôležitejší a najužitočnejší DMARD, najmä kvôli nižšej miere vysadenia z dôvodu toxicity. Napriek tomu sa metotrexát často považuje za veľmi „toxický“ liek. Táto povesť nie je úplne oprávnená a niekedy môže viesť k tomu, že ľuďom je odopretá najúčinnejšia liečba ich artritídy. Hoci metotrexát má potenciál potlačiť kostnú dreň alebo spôsobiť hepatitídu, tieto účinky sa dajú monitorovať pomocou pravidelných krvných testov a liek sa môže vysadiť v počiatočnom štádiu, ak sú testy abnormálne, skôr ako dôjde k vážnemu poškodeniu (zvyčajne sa krvné testy po vysadení lieku vrátia do normálu). V klinických štúdiách, v ktorých sa používal jeden z rôznych DMARD, ľudia, ktorým bol predpísaný metotrexát, zotrvali na lieku najdlhšie (ostatní prestali užívať liek buď pre vedľajšie účinky, alebo pre neschopnosť lieku kontrolovať artritídu). Reumatológovia často uprednostňujú metotrexát, pretože ak sám o sebe nezvláda artritídu, potom dobre funguje v kombinácii s mnohými inými liekmi, najmä s biologickými látkami. Iné DMARDs nemusia byť v kombinácii s biologickými látkami také účinné alebo bezpečné.

Protizápalové látky a analgetiká

Prístroj na filtrovanie krvi v kolóne Prosorba bol schválený FDA na liečbu RA v roku 1999 Výsledky však boli veľmi skromné [Ako odkazovať a odkazovať na zhrnutie alebo text].

V minulosti sa pri liečbe RA používal aj odpočinok, ľad, kompresia a elevácia, akupunktúra, jablková diéta, muškátový oriešok, občasné ľahké cvičenie, žihľava, včelí jed, medené náramky, rebarbora, odpočinok, extrakcia zubov, pôst, med, vitamíny, inzulín, magnety a elektrokonvulzívna terapia (ECT). Väčšina z nich buď nemala žiadny účinok, alebo ich účinky boli mierne a prechodné, pričom sa nedali zovšeobecniť.

Ďalšími terapiami sú redukcia hmotnosti, ergoterapia, podiatria, fyzioterapia, kĺbové injekcie a špeciálne nástroje na zlepšenie ťažkých pohybov (napr. špeciálne otvárače plechoviek). Pravidelné cvičenie je dôležité na udržanie pohyblivosti kĺbov a posilnenie kĺbových svalov. Zvlášť vhodné je plávanie, ktoré umožňuje cvičenie s minimálnym zaťažením kĺbov. Aplikácie tepla a chladu sú spôsoby, ktoré môžu zmierniť príznaky pred a po cvičení. Bolesť kĺbov niekedy zmierňuje perorálne podávaný ibuprofén alebo iný protizápalový prostriedok. Ostatné oblasti tela, ako sú oči a sliznica srdca, sa liečia individuálne. Rybí olej môže mať protizápalové účinky.

Radónová terapia, populárna v Nemecku a východnej Európe, môže mať priaznivé dlhodobé účinky na reumatoidnú artritídu.

Prieskum v Spojenom kráľovstve v rokoch 1998 až 2002 zistil, že medzi piatimi najčastejšími dôvodmi užívania konope na lekárske účely sa uvádza artritída.

Pacienti s reumatoidnou artritídou nemajú z akupunktúry prospech. Ťažko postihnuté kĺby môžu vyžadovať operáciu, napríklad výmenu kolena.

Priebeh ochorenia sa značne líši. Niektorí ľudia majú mierne krátkodobé príznaky, ale u väčšiny ochorenie postupuje celý život. Približne 20 – 30 % pacientov má podkožné uzlíky (tzv. reumatoidné uzlíky), ktoré sú spojené so zlou prognózou.

Medzi zlé prognostické faktory patria pretrvávajúca synovitída, skoré erozívne ochorenie, mimokĺbové nálezy (vrátane podkožných reumatoidných uzlíkov), pozitívne nálezy RF v sére, pozitívne autoprotilátky anti-CCP v sére, nosičstvo alel HLA-DR4 „Shared Epitope“, rodinná anamnéza RA, zlý funkčný stav, socioekonomické faktory, zvýšená reakcia na akútnu fázu (rýchlosť sedimentácie erytrocytov [ESR], C-reaktívny proteín [CRP]) a zvýšená klinická závažnosť.

Výskyt RA sa pohybuje okolo 3 prípadov na 10 000 obyvateľov ročne. Výskyt je zriedkavý vo veku do 15 rokov a odvtedy výskyt stúpa s vekom až do veku 80 rokov. Prevalencia je 1 %, pričom ženy sú postihnuté tri až päťkrát častejšie ako muži. U fajčiarov sa vyskytuje 4-krát častejšie ako u nefajčiarov. Niektoré indiánske skupiny majú vyššiu mieru výskytu (5 – 6 %) a ľudia z karibskej oblasti majú nižšiu mieru výskytu. Miera výskytu u prvostupňových príbuzných je 2 – 3 % a genetická zhoda ochorenia u jednovaječných dvojčiat je približne 15 – 20 % [Ako odkazovať a odkazovať na zhrnutie alebo text].

Je silne spojená s dedičným typom hlavného histokompatibilného komplexu (MHC) antigénu HLA-DR4 (konkrétne DR0401 a 0404) – preto je rodinná anamnéza dôležitým rizikovým faktorom [Ako odkazovať a odkazovať na zhrnutie alebo text].

Reumatoidná artritída postihuje ženy trikrát častejšie ako mužov a môže sa objaviť v akomkoľvek veku. Zdá sa, že riziko prvého výskytu ochorenia (výskyt ochorenia) je najväčšie u žien medzi 40. a 50. rokom života a u mužov o niečo neskôr. RA je chronické ochorenie, a hoci sa zriedkavo môže vyskytnúť spontánna remisia, prirodzený priebeh je takmer vždy spojený s pretrvávajúcimi príznakmi, ktorých intenzita sa mení a klesá, a s postupným zhoršovaním kĺbových štruktúr, ktoré vedie k deformáciám a invalidite.

Prvé známe stopy artritídy pochádzajú minimálne z obdobia 4500 rokov pred naším letopočtom. V texte z roku 123 n. l. sa prvýkrát opisujú príznaky veľmi podobné reumatoidnej artritíde. Bola zaznamenaná u kostrových pozostatkov pôvodných obyvateľov Ameriky nájdených v Tennessee. V Starom svete je toto ochorenie pred rokom 1600 mizivé a na základe toho sa bádatelia domnievajú, že sa rozšírilo cez Atlantik počas doby objavovania. V roku 1859 získala choroba svoj súčasný názov.

Pri skúmaní predkolumbovských kostí bola zistená anomália. Kosti z náleziska v Tennessee nevykazujú žiadne známky tuberkulózy, hoci v tom čase bola rozšírená v celej Amerike. Jim Mobley zo spoločnosti Pfizer objavil historický vzorec epidémií tuberkulózy, po ktorých o niekoľko generácií neskôr nasledoval prudký nárast počtu prípadov reumatoidnej artritídy. Mobley pripisuje prudký nárast výskytu artritídy selektívnemu tlaku spôsobenému tuberkulózou. Hyperaktívny imunitný systém chráni pred tuberkulózou za cenu zvýšeného rizika autoimunitného ochorenia.

Umenie Petra Paula Rubensa môže zobrazovať účinky reumatoidnej artritídy. Na jeho neskorších obrazoch sa podľa názoru niektorých lekárov objavujú čoraz väčšie deformácie rúk, ktoré zodpovedajú príznakom tejto choroby. Zdá sa, že reumatoidná artritída bola podľa niektorých zobrazená už na maľbách zo 16. storočia. V umeleckohistorických kruhoch sa však všeobecne uznáva, že maľovanie rúk v 16. a 17. storočí sa riadilo určitými štylizovanými konvenciami, ktoré sú najzreteľnejšie viditeľné v manieristickom hnutí. Konvenčné bolo napríklad zobrazovať zdvihnutú pravú ruku Krista v polohe, ktorá sa dnes javí ako deformovaná. Tieto konvencie sa dajú ľahko nesprávne interpretovať ako zobrazenie choroby. Sú príliš rozšírené na to, aby to bolo vierohodné.

Prvý známy opis reumatoidnej artritídy urobil v roku 1800 francúzsky lekár Dr. Augustin Jacob Landré-Beauvais (1772-1840), ktorý pôsobil v známej parížskej nemocnici Salpêtrière. Samotný názov „reumatoidná artritída“ vytvoril v roku 1859 britský reumatológ Dr. Alfred Baring Garrod.

Septická artritída – Tuberkulózna artritída – Reaktívna artritída (nepriamo)

Osteoartróza: Heberdenov uzol – Bouchardove uzly

krvácanie (Hemartróza) – bolesť (Artralgia) – osteofyt – villonodulárna synovitída (Pigmentovaná villonodulárna synovitída) – stuhnutosť kĺbov

Kategórie
Psychologický slovník

Oko (anatómia)

Tento článok je o oku cicavcov. Pre iné skupiny pozri anatómiu oka nesamcovitých

Detailný záber na modrozelené ľudské oko.

Oko je zrakový orgán, ktorý vníma svetlo. Rôzne druhy orgánov citlivých na svetlo sa nachádzajú v rôznych organizmoch. Najjednoduchšie oči nerobia nič iné, len zisťujú, či je okolie svetlé alebo tmavé, zatiaľ čo zložitejšie oči dokážu rozlišovať tvary a farby. Mnohé živočíchy vrátane niektorých cicavcov, vtákov, plazov a rýb majú dve oči, ktoré môžu byť umiestnené v rovnakej rovine, aby sa interpretovali ako jeden trojrozmerný „obraz“ (binokulárne videnie), ako je to u ľudí; alebo v rôznych rovinách, ktoré vytvárajú dva samostatné „obrazy“ (monokulárne videnie), ako je to u králikov a chameleónov.

Zložené oči vážky.

U väčšiny stavovcov a niektorých mäkkýšov funguje oko tak, že doň vstupuje svetlo, ktoré sa premieta na svetlocitlivú bunku známu ako sietnica v zadnej časti oka, kde sa svetlo detekuje a premieňa na elektrické signály, ktoré sa potom prostredníctvom zrakového nervu prenášajú do mozgu. Takéto oči sú zvyčajne približne guľovité, vyplnené priehľadnou gélovou látkou nazývanou sklovec, so zaostrovacou šošovkou a často s dúhovkou, ktorá reguluje intenzitu svetla, ktoré vstupuje do oka. Oči hlavonožcov, rýb, obojživelníkov a hadov majú zvyčajne pevný tvar šošovky a zaostrenie zraku sa dosahuje teleskopovaním šošovky – podobne ako pri zaostrovaní fotoaparátom.

Zložené oči sa vyskytujú medzi článkonožcami a sú zložené z mnohých jednoduchých faziet, ktoré vytvárajú pixelový obraz (nie viacero obrazov, ako sa často predpokladá). Každý senzor má vlastnú šošovku a svetlocitlivú bunku (bunky). Niektoré oči majú až 28 000 takýchto snímačov, ktoré sú usporiadané šesťuholníkovo a ktoré môžu poskytnúť celé 360-stupňové zorné pole. Zložené oči sú veľmi citlivé na pohyb. Niektoré článkonožce a mnohé Strepsiptera majú zložené oko zložené z niekoľkých faziet, pričom každá z nich má sietnicu schopnú vytvárať obraz, ktorý však poskytuje videnie s viacerými obrazmi. Keď každé oko vidí pod iným uhlom, v mozgu sa vytvorí spojený obraz zo všetkých očí, ktorý poskytuje veľmi širokouhlý obraz s vysokým rozlíšením.

Trilobity, ktoré už vymreli, mali jedinečné zložené oči. Na vytvorenie očných šošoviek používali číre kryštály kalcitu. Tým sa líšia od väčšiny ostatných článkonožcov, ktoré majú mäkké oči. Počet šošoviek v takomto oku sa však líšil: niektoré trilobity mali len jednu a niektoré mali tisíce šošoviek v jednom oku.

Niektoré z najjednoduchších očí, tzv. ocelli, sa nachádzajú u živočíchov, ako sú slimáky, ktoré v skutočnosti nevidia v bežnom zmysle slova. Majú síce svetlocitlivé bunky, ale nemajú šošovky ani iné prostriedky na premietanie obrazu na tieto bunky. Dokážu rozlišovať medzi svetlom a tmou, ale nič viac. To slimákom umožňuje vyhýbať sa priamemu slnečnému svetlu. Skákajúce pavúky majú jednoduché oči, ktoré sú také veľké a podporované sústavou ďalších menších očí, že dokážu získať dostatok vizuálnych informácií na lov a vrhnutie sa na korisť. Niektoré larvy hmyzu, napríklad húsenice, majú iný typ jednoduchého oka (stemmata), ktoré poskytuje hrubý obraz.

Primitívne oko nautilusa sa svojou konštrukciou podobá dierkovému fotoaparátu.

Spoločný pôvod (monofylia) všetkých živočíšnych očí je dnes všeobecne uznávaný ako fakt na základe spoločných anatomických a genetických znakov všetkých očí, to znamená, že všetky moderné oči, aj keď sú rôznorodé, majú svoj pôvod v protoočiach, o ktorých sa predpokladá, že sa vyvinuli približne pred 540 miliónmi rokov. Predpokladá sa, že väčšina pokrokov v prvých očiach sa vyvinula len za niekoľko miliónov rokov, pretože prvý predátor, ktorý získal skutočné zobrazovanie, by spustil „preteky v zbrojení“. Korisť aj konkurenčné predátory by boli nútené rýchlo sa vyrovnať alebo prekonať všetky takéto schopnosti, aby prežili. Preto sa paralelne vyvíjali viaceré typy a podtypy očí.

Oči rôznych živočíchov sa prispôsobujú ich požiadavkám. Napríklad dravé vtáky majú oveľa väčšiu ostrosť videnia ako ľudia a niektoré vidia ultrafialové svetlo. Rôzne formy očí napríklad u stavovcov a mäkkýšov sa často uvádzajú ako príklady paralelnej evolúcie, napriek ich vzdialenému spoločnému pôvodu.

Zložené oko antarktického krilu.

Tenký porast priehľadných buniek nad očným otvorom, ktorý sa pôvodne vytvoril, aby zabránil poškodeniu očnej škvrny, umožnil, aby sa oddelený obsah očnej komory špecializoval na priehľadný humor, ktorý optimalizoval filtrovanie farieb, blokoval škodlivé žiarenie, zlepšil index lomu oka a umožnil fungovanie mimo vody. Priehľadné ochranné bunky sa nakoniec rozdelili na dve vrstvy, medzi ktorými sa nachádzala cirkulujúca tekutina, ktorá umožnila širšie zorné uhly a väčšie rozlíšenie obrazu, a hrúbka priehľadnej vrstvy sa postupne zväčšovala, u väčšiny druhov s priehľadným proteínom kryštalínom.

Medzera medzi vrstvami tkaniva prirodzene vytvorila biokonvexný tvar, optimálne ideálnu štruktúru pre normálny index lomu. Nezávisle od šošovky sa dopredu oddeľujú priehľadná a nepriehľadná vrstva: rohovka a dúhovka. Oddelením prednej vrstvy sa opäť vytvorí humus, vodný humus. Tým sa zvyšuje lomivosť a opäť sa zmierňujú problémy s cirkuláciou. Vytvorenie netransparentného prstenca umožňuje viac ciev, väčšiu cirkuláciu a väčšie rozmery oka.

Anatómia oka cicavcov

Schéma ľudského oka.

Štruktúra cicavčieho oka je úplne prispôsobená úlohe zaostrovať svetlo na sietnicu. Všetky jednotlivé zložky, ktorými svetlo v oku prechádza, kým sa dostane na sietnicu, sú priehľadné, čím sa minimalizuje stlmenie svetla. Rohovka a šošovka pomáhajú zbližovať svetelné lúče a zaostrovať ich na sietnicu. Toto svetlo spôsobuje chemické zmeny vo svetlocitlivých bunkách sietnice, ktorých produkty vyvolávajú nervové impulzy, ktoré putujú do mozgu.

Svetlo vstupuje do oka z vonkajšieho prostredia, ako je vzduch alebo voda, prechádza cez rohovku a dostáva sa do prvého z dvoch mokov, vodného moku. Väčšina lomu svetla nastáva na rohovke, ktorá má pevné zakrivenie. Prvý humor je číra hmota, ktorá spája rohovku s očnou šošovkou, pomáha udržiavať konvexný tvar rohovky (potrebný na konvergenciu svetla v šošovke) a poskytuje endotelu rohovky živiny. Dúhovka medzi šošovkou a prvým humorom je farebný prstenec svalových vlákien. Svetlo musí najprv prejsť stredom dúhovky, zrenicou. Veľkosť zreničky aktívne upravujú cirkulárne a radiálne svaly, aby sa udržala relatívne stála úroveň svetla vstupujúceho do oka. Príliš veľa svetla môže poškodiť sietnicu, príliš málo svetla sťažuje videnie. Šošovka za dúhovkou je vypuklý, pružný disk, ktorý sústreďuje svetlo cez druhý humor na sietnicu.

Schéma ľudského oka. Všimnite si, že nie všetky oči majú rovnakú anatómiu ako ľudské oko.

Aby ste jasne videli vzdialený objekt, kruhovo usporiadané ciliárne svaly ťahajú šošovku a sploštia ju. Bez ťahu svalov sa šošovka vráti do hrubšieho, vypuklejšieho tvaru.
Ľudia vekom postupne strácajú túto pružnosť, čo má za následok neschopnosť zaostriť na blízke predmety, ktorá sa nazýva presbyopia. Existujú aj ďalšie chyby refrakcie vyplývajúce z tvaru rohovky a šošovky a z dĺžky očnej gule. Patrí medzi ne krátkozrakosť, ďalekozrakosť a astigmatizmus.

Svetlo z jedného bodu vzdialeného objektu a svetlo z jedného bodu blízkeho objektu, ktoré sa dostáva do ohniska.

Štruktúru oka cicavcov možno rozdeliť na tri hlavné vrstvy alebo tuniky, ktorých názvy odrážajú ich základné funkcie: vláknitá tunika, cievna tunika a nervová tunika.

Sietnica je relatívne hladká (ale zakrivená) vrstva, ktorá umožňuje čo najlepšie videnie a absorpciu svetla. Má dva body, v ktorých sa líši: fovea a disk zrakového nervu. Fovea je priehlbina v sietnici priamo oproti šošovke, ktorá je husto osadená čapíkovými bunkami. Je do veľkej miery zodpovedná za farebné videnie u ľudí a umožňuje vysokú ostrosť, ktorá je potrebná napríklad pri čítaní. Zrakový disk, niekedy označovaný ako anatomická slepá škvrna, je miesto na sietnici, kde zrakový nerv prechádza sietnicou a spája sa s nervovými bunkami na jej vnútornej strane. V tomto mieste sa nenachádzajú žiadne svetlocitlivé bunky, je teda „slepé“.

U niektorých živočíchov obsahuje sietnica reflexnú vrstvu (tapetum lucidum), ktorá zvyšuje množstvo svetla vnímaného každou svetlocitlivou bunkou, čo umožňuje živočíchovi lepšie vidieť pri slabom osvetlení.

Predné a zadné segmenty

Schéma ľudského oka; všimnite si, že nie všetky oči majú rovnakú anatómiu ako ľudské oko.

Oko cicavcov možno tiež rozdeliť na dva hlavné segmenty: predný segment a zadný segment.

Nad sklérou a vnútornou stranou očných viečok sa nachádza priehľadná membrána nazývaná spojovka. Pomáha lubrikovať oko produkciou hlienu a sĺz. Prispieva tiež k imunitnému dohľadu a pomáha zabraňovať vstupu mikróbov do oka.

U mnohých živočíchov vrátane ľudí viečka utierajú oko a zabraňujú dehydratácii. Na oči rozotierajú slzy, ktoré obsahujú látky, ktoré v rámci imunitného systému pomáhajú bojovať proti bakteriálnej infekcii.
Niektoré vodné živočíchy majú v každom oku druhé viečko, ktoré láme svetlo a pomáha im vidieť jasne nad vodou aj pod ňou. Väčšina živočíchov automaticky reaguje na ohrozenie očí (napríklad na predmet pohybujúci sa priamo na oko alebo na jasné svetlo) zakrytím očí a/alebo odvrátením očí od ohrozenia. Žmurkanie očami je, samozrejme, tiež reflex.

U mnohých živočíchov vrátane ľudí mihalnice zabraňujú vniknutiu jemných častíc do oka. Jemné častice môžu byť baktérie, ale aj obyčajný prach, ktorý môže spôsobiť podráždenie oka a viesť k slzeniu a následnému rozmazanému videniu.

U mnohých druhov sú oči vložené do časti lebky známej ako očnice alebo očnice. Toto umiestnenie očí ich chráni pred poranením.

U ľudí obočie presmeruje prúdiace látky (napríklad dažďovú vodu alebo pot) preč od oka.

Funkcia oka cicavcov

Štruktúra oka cicavcov je úplne prispôsobená úlohe zaostrovať svetlo na sietnicu. Toto svetlo spôsobuje chemické zmeny vo svetlocitlivých bunkách sietnice, ktorých produkty vyvolávajú nervové impulzy, ktoré putujú do mozgu.

Okrem svetlocitlivých gangliových buniek, ktoré sa podieľajú na cirkadiánnom nastavení, ale nie na videní, obsahuje sietnica dve formy svetlocitlivých buniek dôležitých pre videnie – tyčinky a čapíky. Aj keď sú si tyčinky a čapíky štrukturálne a metabolicky podobné, ich funkcie sú úplne odlišné. Tyčinkové bunky sú vysoko citlivé na svetlo, čo im umožňuje reagovať pri slabom svetle a v tme; nedokážu však rozpoznať farebné rozdiely. Práve tieto bunky umožňujú ľuďom a iným živočíchom vidieť pri mesačnom svetle alebo pri veľmi malom množstve dostupného svetla (ako v tmavej miestnosti). Kužeľové bunky, naopak, potrebujú na reakciu vysokú intenzitu svetla a majú vysokú zrakovú ostrosť. Rôzne čapíkové bunky reagujú na rôzne vlnové dĺžky svetla, čo umožňuje organizmu vidieť farby. Prechod od čapíkového videnia k tyčinkovému je dôvodom, prečo sa zdá, že čím sú podmienky tmavšie, tým menej farebných predmetov majú.

Rozdiely medzi tyčinkami a čapíkmi sú užitočné; okrem toho, že umožňujú vidieť za šera aj za svetla, majú aj ďalšie výhody. Fovea, ktorá sa nachádza priamo za šošovkou, pozostáva väčšinou z husto uložených čapíkových buniek. Fovea poskytuje ľuďom veľmi detailné centrálne videnie, ktoré umožňuje čítanie, pozorovanie vtákov alebo akúkoľvek inú úlohu, ktorá si primárne vyžaduje pozeranie na veci. Požiadavka na vysokú intenzitu svetla spôsobuje problémy astronómom, ktorí pomocou centrálneho videnia nemôžu vidieť slabé hviezdy alebo iné nebeské objekty, pretože svetlo z nich nie je dostatočné na stimuláciu čapíkových buniek. Pretože priamo vo fovei sú len čapíkové bunky, astronómovia sa musia pozerať na hviezdy cez „kútik oka“ (odvrátené videnie), kde sú aj tyčinky a kde je svetlo dostatočné na stimuláciu buniek, čo umožňuje jednotlivcovi pozorovať slabé objekty.

Tyčinky aj čapíky sú citlivé na svetlo, ale reagujú rozdielne na rôzne frekvencie svetla. Obsahujú rôzne pigmentové fotoreceptorové proteíny. Tyčinkové bunky obsahujú bielkovinu rodopsín a čapíkové bunky obsahujú rôzne bielkoviny pre každý farebný rozsah. Proces, ktorým tieto bielkoviny prechádzajú, je dosť podobný – po vystavení elektromagnetickému žiareniu určitej vlnovej dĺžky a intenzity sa bielkovina rozkladá na dva zložkové produkty. Rodopsín tyčiniek sa rozkladá na opsín a retinal; jodopsín čapíkov sa rozkladá na fotopsín a retinal. Rozpad má za následok aktiváciu transducínu a ten aktivuje cyklickú GMP fosfodiesterázu, ktorá znižuje počet otvorených cyklických nukleotidom riadených iónových kanálov na bunkovej membráne, čo vedie k hyperpolarizácii; táto hyperpolarizácia bunky vedie k zníženému uvoľňovaniu molekúl transmiterov v synapsii.

Rozdiely medzi rodopsínom a jodopsínom sú dôvodom, prečo čapíky a tyčinky umožňujú organizmom vidieť v tme a na svetle – každý z fotoreceptorových proteínov vyžaduje inú intenzitu svetla, aby sa rozložil na zložky. Synaptická konvergencia ďalej znamená, že niekoľko tyčinkových buniek je napojených na jednu bipolárnu bunku, ktorá sa potom napojí na jednu gangliovú bunku, ktorou sa informácie prenášajú do zrakovej kôry. Táto konvergencia je v priamom protiklade so situáciou pri čapíkoch, kde je každá čapíková bunka napojená na jednu bipolárnu bunku. Táto divergencia má za následok vysokú zrakovú ostrosť alebo vysokú schopnosť rozlišovať detaily čapíkových buniek v porovnaní s tyčinkami. Ak by svetelný lúč zasiahol len jednu tyčinkovú bunku, reakcia bunky by nemusela stačiť na hyperpolarizáciu pripojenej bipolárnej bunky. Ale keďže sa ich na bipolárnu bunku „zíde“ niekoľko, do synapsií bipolárnej bunky sa dostane dostatok molekúl vysielača na jej hyperpolarizáciu.

Okrem toho je farba rozlíšiteľná vďaka rôznym jodopsínom čapíkových buniek; v normálnom ľudskom zraku existujú tri rôzne druhy, preto potrebujeme tri rôzne základné farby na vytvorenie farebného priestoru.

Malé percento gangliových buniek v sietnici obsahuje melanopsín, a preto sú samy citlivé na svetlo. Svetelné informácie z týchto buniek sa nepodieľajú na videní a do mozgu sa nedostávajú cez zrakový nerv, ale cez retinohypotalamický trakt, RHT. Prostredníctvom týchto svetelných informácií sa telesné hodiny denne prispôsobujú približne 24-hodinovému cyklu svetla a tmy v prírode.

Svetlo z jedného bodu vzdialeného objektu a svetlo z jedného bodu blízkeho objektu, ktoré sa zaostrí na sietnici

Účelom optiky cicavčieho oka je priniesť na sietnicu jasný obraz vizuálneho sveta. Vzhľadom na obmedzenú hĺbku ostrosti cicavčieho oka sa môže stať, že zatiaľ čo objekt v určitej vzdialenosti od oka sa premietne do jasného obrazu, objekt bližšie alebo ďalej od oka sa do neho nepremietne. Aby bol obraz objektov v rôznych vzdialenostiach od oka jasný, je potrebné zmeniť jeho optickú mohutnosť. To sa dosahuje najmä zmenou zakrivenia šošovky. Pre vzdialené predmety musí byť šošovka plochejšia, pre blízke predmety musí byť šošovka hrubšia a zaoblenejšia.

Voda v oku môže zmeniť optické vlastnosti oka a rozostriť videnie. Môže tiež odplavovať slznú tekutinu – spolu s ochrannou lipidovou vrstvou – a môže meniť fyziológiu rohovky v dôsledku osmotických rozdielov medzi slznou tekutinou a sladkou vodou. Osmotické účinky sa prejavujú pri plávaní v sladkovodných bazénoch, pretože osmotický gradient vťahuje vodu z bazéna do tkaniva rohovky (voda v bazéne je hypotonická), čo spôsobuje edém a následne zanecháva plavcovi na krátky čas „zakalené“ alebo „hmlisté“ videnie. Edém sa dá zvrátiť zavlažovaním oka hypertonickým fyziologickým roztokom, ktorý osmoticky odčerpá prebytočnú vodu z oka.

Zraková ostrosť sa často meria v cykloch na stupeň (CPD), ktoré merajú uhlovú rozlišovaciu schopnosť alebo to, do akej miery dokáže oko rozlíšiť jeden objekt od druhého z hľadiska zorných uhlov. Rozlíšenie v CPD sa môže merať pomocou stĺpcových grafov s rôznym počtom cyklov bieleho a čierneho pruhu. Napríklad, ak je každý vzor široký 1,75 cm a je umiestnený vo vzdialenosti 1 m od oka, bude zvierať uhol 1 stupeň, takže počet dvojíc bielo-čiernych pruhov na vzore bude mierou cyklov na stupeň tohto vzoru. Najvyšší počet, ktorý oko dokáže rozlíšiť ako pruhy alebo odlíšiť od sivého bloku, je potom mierou zrakovej ostrosti oka.

Pre ľudské oko s vynikajúcou ostrosťou by bolo maximálne teoretické rozlíšenie 50 CPD (1,2 oblúkovej minúty na pár čiar alebo 0,35 mm pár čiar na 1 m). Oko však dokáže rozlíšiť iba kontrast 5 %. Ak to vezmeme do úvahy, oko dokáže rozlíšiť maximálne rozlíšenie 37 CPD alebo 1,6 oblúkovej minúty na pár riadkov (0,47 mm pár riadkov, na 1 m).
Potkan dokáže rozlíšiť len približne 1 až 2 CPD. Kôň má vyššiu ostrosť vo väčšine zorného poľa svojich očí ako človek, ale nedosahuje vysokú ostrosť centrálnej oblasti fovey ľudského oka.

Maximálna rozlišovacia schopnosť ľudského oka pri dobrom osvetlení 1,6 oblúkovej minúty na pár riadkov zodpovedá 1,25 riadku na oblúkovú minútu. Za predpokladu dvoch pixelov na pár riadkov (jeden pixel na riadok) a štvorcového poľa 120 stupňov by to zodpovedalo približne 120 × 60 × 1,25 = 9000 pixelov v každom z rozmerov X a Y, teda približne 81 megapixelov [Ako odkazovať a odkazovať na zhrnutie alebo text].

Samotné ľudské oko má však len malý bod ostrého videnia v strede sietnice, fovea centralis, pričom zvyšok zorného poľa má so vzdialenosťou od fovey stále menšie rozlíšenie. Uhol ostrého videnia v strede zorného poľa je len niekoľko stupňov, ostrá oblasť teda sotva dosahuje rozlíšenie jedného megapixela. Skúsenosť širokého ostrého ľudského videnia je v skutočnosti založená na otáčaní očí smerom k aktuálnemu bodu záujmu v zornom poli, mozog tak vníma pozorovanie širokého ostrého zorného poľa.

Úzky lúč ostrého videnia sa dá ľahko otestovať priložením končeka prsta na noviny a pokusom prečítať text pri pohľade na konček prsta – je veľmi ťažké prečítať text, ktorý je od končeka prsta vzdialený len niekoľko centimetrov.

Ľudské oči reagujú na svetlo s vlnovou dĺžkou v rozsahu približne 400 až 700 nm. Iné živočíchy majú iné rozsahy, pričom mnohé z nich, napríklad vtáky, majú výraznú ultrafialovú odozvu (kratšiu ako 400 nm).

Sietnica má statický kontrastný pomer približne 100:1 (približne 6,5 stupňa). Hneď ako sa oko pohne (sakády), znovu upraví svoju expozíciu chemicky aj úpravou dúhovky. Počiatočná adaptácia na tmu sa uskutoční približne za štyri sekundy [Ako odkazovať a odkazovať na zhrnutie alebo text] hlbokej, neprerušovanej tmy; úplná adaptácia prostredníctvom úprav v chemickom zložení sietnice (Purkyňov efekt) sa väčšinou dokončí za tridsať minút [Ako odkazovať a odkazovať na zhrnutie alebo text]. Preto je možné dosiahnuť dynamický kontrastný pomer približne 1 000 000:1 (približne 20 stupňov). Tento proces je nelineárny a mnohostranný, takže prerušenie svetlom takmer spustí proces adaptácie odznova. Úplná adaptácia závisí od dobrého prietoku krvi; adaptácii v tme teda môže brániť zlý krvný obeh a vazokonstrikčné látky, ako je alkohol alebo tabak.

Vizuálny systém v mozgu je príliš pomalý na spracovanie informácií, ak sa obrazy posúvajú po sietnici rýchlosťou väčšou ako niekoľko stupňov za sekundu. Preto, aby ľudia dokázali vidieť počas pohybu, musí mozog kompenzovať pohyb hlavy otáčaním očí. Ďalšou komplikáciou pre videnie u čelnookých zvierat je vývoj malej oblasti sietnice s veľmi vysokou ostrosťou videnia. Táto oblasť sa nazýva fovea a u ľudí pokrýva približne 2 stupne zorného uhla. Aby mozog získal jasný pohľad na svet, musí oči otočiť tak, aby obraz sledovaného objektu dopadol na foveu. Pohyby očí sú teda veľmi dôležité pre zrakové vnímanie a akákoľvek ich nesprávna realizácia môže viesť k vážnym zrakovým poruchám.

Mať dve oči je ďalšia komplikácia, pretože mozog musí obe oči nasmerovať dostatočne presne, aby objekt pozorovania dopadol na zodpovedajúce body oboch sietníc, inak by došlo k dvojitému videniu. Pohyby rôznych častí tela sú ovládané pruhovanými svalmi pôsobiacimi okolo kĺbov. Pohyby oka nie sú výnimkou, ale majú osobitné výhody, ktoré nemajú kostrové svaly a kĺby, a preto sa výrazne líšia.

Každé oko má šesť svalov, ktoré ovládajú jeho pohyby: laterálny rektus, mediálny rektus, dolný rektus, horný rektus, dolný šikmý a horný šikmý sval. Keď svaly vyvíjajú rôzne napätie, na guľu pôsobí krútiaci moment, ktorý spôsobuje jej otáčanie, takmer čistú rotáciu, len s približne milimetrovým posunom. Oko sa teda môže považovať za oko, ktoré sa otáča okolo jedného bodu v strede oka. Keď ľudské oko utrpí poškodenie zrakového nervu, impulzy sa nedostanú do mozgu. Transplantácia oka sa môže uskutočniť, ale osoba, ktorá transplantát dostane, nebude schopná vidieť. Pokiaľ ide o zrakový nerv, po jeho poškodení sa nedá napraviť.

Rýchly pohyb očí, skrátene REM, sa zvyčajne vzťahuje na fázu spánku, počas ktorej sa vyskytujú najživšie sny. Počas tejto fázy sa oči rýchlo pohybujú. Sama o sebe nie je jedinečnou formou pohybu očí.

Sakády sú rýchle, simultánne pohyby oboch očí rovnakým smerom, ktoré sú riadené čelným lalokom mozgu.

Dokonca aj keď sa sústredene pozeráte na jedno miesto, oči sa pohybujú okolo. To zabezpečuje, že jednotlivé svetlocitlivé bunky sú neustále stimulované v rôznej miere. Bez zmeny vstupov by inak tieto bunky prestali generovať výstup. Mikrosakády posúvajú oko u dospelých ľudí maximálne o 0,2°.

Vestibulo-okulárny reflex je reflexný pohyb oka, ktorý stabilizuje obraz na sietnici počas pohybu hlavy tým, že vyvolá pohyb oka v smere opačnom k pohybu hlavy, čím sa zachová obraz v strede zorného poľa. Napríklad pri pohybe hlavy doprava sa oči pohybujú doľava a naopak.

Oči môžu sledovať aj pohybujúci sa objekt. Toto sledovanie je menej presné ako vestibulo-okulárny reflex, pretože vyžaduje, aby mozog spracoval prichádzajúce vizuálne informácie a poskytol spätnú väzbu. Sledovanie objektu pohybujúceho sa konštantnou rýchlosťou je relatívne jednoduché, hoci oči často vykonávajú sakadické zášklby, aby udržali krok. Plynulý sledovací pohyb môže u dospelých ľudí pohybovať okom rýchlosťou až 100°/s.

Vizuálne odhadnúť rýchlosť je ťažšie pri slabom osvetlení alebo počas pohybu, ak nie je k dispozícii iný referenčný bod na určenie rýchlosti.

Optokinetický reflex je kombináciou sakády a hladkého prenasledovania. Napríklad pri pohľade z okna v idúcom vlaku sa oči môžu na krátky okamih sústrediť na „pohybujúci sa“ vlak (prostredníctvom hladkého prenasledovania), kým sa vlak nepohne zo zorného poľa. Vtedy sa spustí optokinetický reflex a oko sa vráti do bodu, kde vlak prvýkrát uvidelo (prostredníctvom sakády).

Obe oči sa zbiehajú a ukazujú na ten istý objekt.

Keď sa tvor s binokulárnym videním pozerá na objekt, oči sa musia otáčať okolo vertikálnej osi tak, aby sa projekcia obrazu nachádzala v strede sietnice oboch očí. Pri pohľade na bližší objekt sa oči otáčajú „k sebe“ (konvergencia), zatiaľ čo pri pohľade na vzdialenejší objekt sa otáčajú „od seba“ (divergencia). Prehnaná konvergencia sa nazýva krížové pozorovanie (napríklad zaostrovanie na nos) . Pri pohľade do diaľky alebo pri „pozeraní do prázdna“ sa oči ani nezbiehajú, ani nerozbiehajú.

Vergenčné pohyby úzko súvisia s akomodáciou oka. Za normálnych podmienok zmena zaostrenia očí pri pohľade na objekt v inej vzdialenosti automaticky spôsobí vergenciu a akomodáciu.

Choroby, poruchy a zmeny súvisiace s vekom

Stye je bežný dráždivý zápal očného viečka.

Existuje mnoho ochorení, porúch a zmien súvisiacich s vekom, ktoré môžu postihnúť oči a okolité štruktúry.

V priebehu starnutia oka dochádza k určitým zmenám, ktoré možno pripísať výlučne procesu starnutia. Väčšina týchto anatomických a fyziologických procesov sa postupne znižuje. So starnutím sa zhoršuje kvalita videnia z dôvodov nezávislých od starnutia očných chorôb. Aj keď v oku, ktoré nie je choré, je mnoho významných zmien, zdá sa, že funkčne najdôležitejšími zmenami sú zmenšenie veľkosti zrenice a strata akomodácie alebo schopnosti zaostrovania (presbyopia). Plocha zreničky určuje množstvo svetla, ktoré sa môže dostať na sietnicu. Rozsah, v akom sa zrenica rozširuje, sa s vekom tiež znižuje. Kvôli menšej veľkosti zreničky sa na sietnicu starších očí dostane oveľa menej svetla. V porovnaní s mladšími ľuďmi je to, akoby starší ľudia nosili pri jasnom svetle slnečné okuliare so strednou hustotou a pri slabom svetle extrémne tmavé okuliare. Preto pri akýchkoľvek podrobných zrakovo riadených úlohách, pri ktorých sa výkonnosť mení v závislosti od osvetlenia, potrebujú staršie osoby dodatočné osvetlenie. Niektoré očné ochorenia môžu pochádzať zo sexuálne prenosných chorôb, ako sú herpes a genitálne bradavice. Ak dôjde ku kontaktu medzi okom a miestom infekcie, pohlavne prenosná choroba sa prenesie na oko.

Starnutím sa na periférii rohovky vytvára výrazný biely prstenec – tzv. arcus senilis. Starnutie spôsobuje ochabnutie a posunutie tkanív viečka smerom nadol a atrofiu orbitálneho tuku. Tieto zmeny prispievajú k etiológii viacerých porúch očných viečok, ako sú ektropium, entropium, dermatochaláza a ptóza. Sklovcový gél sa skvapalňuje (zadné odlúčenie sklovca alebo PVD) a jeho opacity – viditeľné ako plaváky – sa postupne zväčšujú.

Na liečbe a manažmente očných a zrakových porúch sa podieľajú rôzni odborníci vrátane oftalmológov, optometristov a optikov. Snellenova tabuľka je jedným z typov očných tabuliek používaných na meranie zrakovej ostrosti. Na záver očného vyšetrenia môže očný lekár pacientovi predpísať korekčné šošovky. Niektoré poruchy zraku sú krátkozrakosť (krátkozrakosť), ktorá postihuje tretinu populácie, ďalekozrakosť, ktorá postihuje štvrtinu populácie , a kombinácia oboch porúch spôsobená starnutím.

Nehody s bežnými výrobkami pre domácnosť spôsobia v USA každoročne 125 000 poranení očí.
Viac ako 40 000 ľudí ročne utrpí poranenia očí pri športe. K úrazom očí súvisiacim so športom dochádza najčastejšie pri bejzbale, basketbale a raketových športoch.

Každý deň si približne 2000 amerických pracovníkov privodí úraz oka súvisiaci s prácou, ktorý si vyžaduje lekárske ošetrenie.
Približne jedna tretina úrazov je ošetrená na pohotovostných oddeleniach nemocníc a viac ako 100 z týchto úrazov má za následok jeden alebo viac dní straty práce. Väčšina týchto poranení vzniká v dôsledku zasiahnutia alebo odretia oka malými časticami alebo predmetmi. Príkladom sú kovové úlomky, drevené triesky, prach a cementové triesky, ktoré sú vymrštené nástrojmi, odfúknuté vetrom alebo padajú zhora na pracovníka. Niektoré z týchto predmetov, ako napríklad klince, sponky alebo úlomky dreva či kovu, preniknú do očnej gule a spôsobia trvalú stratu zraku. Veľké predmety môžu tiež zasiahnuť oko/obličaj a spôsobiť tupé poranenie očnej gule alebo očnice. Časté sú chemické popáleniny jedného alebo oboch očí spôsobené postriekaním priemyselnými chemikáliami alebo čistiacimi prostriedkami. Vyskytujú sa aj tepelné popáleniny oka. U zváračov, ich asistentov a pracovníkov v okolí bežne dochádza k popáleninám UV žiarením (zváračský záblesk), ktoré poškodzujú oči a okolité tkanivá.

Okrem bežných poranení očí môžu byť zdravotnícki pracovníci, laboratórny personál, upratovači, pracovníci manipulujúci so zvieratami a ďalší pracovníci vystavení riziku získania infekčných ochorení prostredníctvom expozície očí.

Ďalšie články týkajúce sa anatómie oka

Vodný mok, predná komora, ciliárne telo, ciliárny sval, rohovka, spojovka, cievovka, fovea, dúhovka, šošovka, makula, nikotujúca membrána, disk zrakového nervu, zrakový nerv, ora serrata, zadná komora, zrenica, sietnica, Schlemmov kanál, skléra, suspenzný väz, tapetum lucidum, trabekulárna sieťka, sklovec, Zonula Zinn.

Horný priamy sval – Horný priamy sval – Dolný priamy sval – Bočný priamy sval – Mediálny priamy sval – Horný šikmý sval – Dolný šikmý sval

viečka: zápal (stye, chalazion, blefaritis) – entropium – ektropium – lagoftalmus – blefarochaláza – ptóza – blefarofimóza – xanteláza – trichiáza – madaroza

slzný systém: Dakryoadenitída – Epifora – Dakryocystitída

orbitu: Exoftalmus – Enoftalmus

Konjunktivitída (Alergická konjunktivitída) – Pterygium – Pinguecula – Subkonjunktiválne krvácanie

skléra: skleritída rohovky: Keratitída – Vred rohovky – Snežná slepota – Thygesonova povrchová bodkovaná keratopatia – Fuchsova dystrofia – Keratokonus – Keratoconjunctivitis sicca – Arc eye – Keratokonjunktivitída – Neovaskularizácia rohovky – Kayser-Fleischerov prstenec – Arcus senilis – Pásková keratopatia

Iritída – Uveitída – Iridocyklitída – Hyfema – Perzistujúca zreničková membrána – Iridodialýza – Synechia

Katarakta – afakia – Ectopia lentis

Choroiderémia – Choroiditída (Chorioretinitída)

Retinitída (chorioretinitída) – Odlúčenie sietnice – Retinoschíza – Retinopatia (Biettiho kryštalická dystrofia, Coatsova choroba, diabetická retinopatia, hypertenzná retinopatia, Retinopatia predčasne narodených) – Makulárna degenerácia – Retinitis pigmentosa – Krvácanie do sietnice – Centrálna serózna retinopatia – Makulárny edém – Epiretinálna membrána – Makulárny puk – Vitelliformná makulárna dystrofia – Leberova kongenitálna amauróza – Birdshot chorioretinopatia

Zápal zrakového nervu – Papilém – Atrofia zrakového nervu – Leberova hereditárna neuropatia zrakového nervu – Dominantná atrofia zrakového nervu – Drúzy zrakového disku – Glaukóm – Toxická a nutričná neuropatia zrakového nervu – Predná ischemická neuropatia zrakového nervu

Paralytický strabizmus: Oftalmoparéza – progresívna vonkajšia oftalmoplégia – obrna (III, IV, VI) – Kearns-Sayrov syndróm
Iný strabizmus: Esotropia/Exotropia – Hypertropia – Heteroforia (Esophoria, Exophoria) – Brownov syndróm – Duaneov syndróm
Iné binokulárne ochorenia: Konjugovaná obrna zraku – Konvergenčná insuficiencia – Internukleárna oftalmoplégia – Syndróm jeden a pol
Refrakčná chyba: Anizometropia/Aniseikónia – Presbyopia – Hyperopia/Myopia – Astigmatizmus

Amblyopia – Leberova kongenitálna amauróza – Subjektívna (astenopia, hemeralopia, fotofóbia, scintilačný skotóm) – Diplopia – Scotóm – Anopsia (binazálna hemianopsia, bitemporálna hemianopsia, homonymná hemianopsia, kvadrantanopsia) – Farebná slepota (achromatopsia, dichromacia, monochromacia) – Nyktalopia (Oguchiho choroba) – Slepota/nízke videnie

Anizokória – Argyll Robertsonova zrenica – Marcus Gunnova zrenica/Marcus Gunnov fenomén – Adieho syndróm – Mióza – Mydriáza – Cykloplégia

Trachóm – Onchocerkóza

Nystagmus – Glaukóm/očná hypertenzia – Floater – Leberova hereditárna optická neuropatia – Červené oko – Keratomykóza – Xeroftalmia – Phthisis bulbi

Kategórie
Psychologický slovník

Štruktúra nadobličiek

U cicavcov sú nadobličky (známe aj ako suprarenálne žľazy alebo hovorovo ako obličkové klobúky) endokrinné žľazy trojuholníkového tvaru, ktoré sa nachádzajú na vrchole obličiek; ich názov označuje túto polohu (ad, „blízko“ alebo „pri“ + renes, „obličky“). Sú zodpovedné najmä za reguláciu stresovej reakcie prostredníctvom syntézy kortikosteroidov a katecholamínov vrátane kortizolu a adrenalínu.

Nad každou ľudskou obličkou sa nachádza jedna z dvoch nadobličiek.

Vrstvy kôry nadobličiek

Anatomicky sa nadobličky nachádzajú v brušnej dutine na prednej strane obličiek. U človeka sa nadobličky nachádzajú na úrovni 12. hrudného stavca a sú prekrvené z nadobličkových tepien.

Rozdeľuje sa na dve odlišné štruktúry, dreň nadobličiek a kôru nadobličiek, ktoré dostávajú regulačné vstupy z nervového systému. Ako napovedá jej názov, driek nadobličiek sa nachádza v strede nadobličky, ktorú obklopuje kôra nadobličiek.

Drenica nadobličiek, ktorá sa skladá najmä z chromafinných buniek produkujúcich hormóny, je hlavným miestom premeny aminokyseliny tyrozínu na katecholamíny adrenalín a noradrenalín (nazývané aj adrenalín a noradrenalín). Medulárne bunky sú odvodené z embryonálneho neurálneho hrebeňa a ako také sú jednoducho modifikovanými neurónmi. Sú to najmä modifikované postgangliové bunky sympatikového nervového systému, ktoré stratili svoje axóny a dendrity a dostávajú inerváciu z príslušných pregangliových vlákien. Okrem toho, keďže synapsie medzi pregangliovými a postgangliovými vláknami sa nazývajú gangliá, dreň nadobličiek je vlastne gangliom sympatikového nervového systému.

V reakcii na stresory, ako je cvičenie alebo hroziace nebezpečenstvo, uvoľňujú medulárne bunky do krvi katecholamíny v pomere 70:30, teda adrenalín a noradrenalín. Medzi významné účinky epinefrínu a noradrenalínu patrí zvýšená srdcová frekvencia, zúženie ciev, rozšírenie priedušiek a zvýšený metabolizmus, ktoré sú charakteristické pre reakciu bojuj alebo uteč.

Kôra nadobličiek, ktorá sa nachádza po obvode nadobličiek, sprostredkúva reakciu na stres prostredníctvom produkcie mineralokortikoidov a glukokortikoidov vrátane aldosterónu a kortizolu. Je tiež sekundárnym miestom syntézy androgénov.

Kôru možno rozdeliť na tri rôzne vrstvy tkaniva na základe ich usporiadania. Najpovrchnejšou vrstvou kôry je zona glomerulosa, ktorá produkuje mineralokortikoidy (napr. aldosterón). Pod glomerulózou sa nachádzajú zonae fasciculata a reticularis, ktoré produkujú glukokortikoidy (napr. kortizol) a slabé androgény (napr. dehydroepiandrosterón).

Všetky hormóny kôry nadobličiek sa syntetizujú z cholesterolu. Cholesterol je transportovaný do vnútornej mitochondriálnej membrány steroidogénnym akútnym regulačným proteínom (StAR), kde sa enzýmom CYP11A premieňa na pregnenolón. Preto je produkcia hormónov vo všetkých troch vrstvách kôry nadobličiek obmedzená transportom cholesterolu do mitochondrií a jeho premenou na pregnenolón. Pregnenolón môže byť buď dehydrogenovaný na progesterón, alebo hydroxylovaný na 17-alfa-hydroxypregnenolón. Kroky až po tento bod sa vyskytujú v mnohých tkanivách produkujúcich steroidy. Následné kroky však prebiehajú len v kôre nadobličiek.

Zona glomerulosa je najvrchnejšia vrstva kôry nadobličiek, ktorá leží priamo pod puzdrom nadobličky. Jej bunky sú usporiadané do guľovitých zhlukov (glomus je latinsky „guľa“).

V reakcii na zvýšenú hladinu draslíka alebo znížený prietok krvi obličkami vylučujú bunky zona glomerulosa do krvi mineralokortikoid aldosterón ako súčasť systému renín-angiotenzín. Aldosterón reguluje koncentráciu elektrolytov v tele, predovšetkým sodíka a draslíka, tým, že pôsobí na distálne stočené kanáliky nefrónov obličiek, aby:

Bunky zona fasciculata sa nachádzajú priamo pod zona glomerulosa a sú usporiadané do zväzkov (alebo zväzkov). Zóna produkuje najmä glukokortikoidy (napr. kortizol) a malé množstvo slabých androgénov (napr. dehydroepiandrosterón).

Kortikálne bunky zodpovedné za produkciu glukokortikoidov sú primárnymi efektormi adrenokortikotropného hormónu (ACTH). Hypotalamus vylučuje hormón uvoľňujúci kortikotropín, ktorý stimuluje prednú hypofýzu k uvoľňovaniu ACTH; ďalší hypotalamický hormón, arginín vazopresín, zvyšuje sekréciu ACTH, pričom oba spolu stimulujú väčšie uvoľňovanie ako ACTH samostatne. ACTH pôsobí na kôru nadobličiek a stimuluje uvoľňovanie glukokortikoidov. Tento trojorgánový endokrinný systém sa bežne nazýva os hypotalamus-hypofýza-nadobličky.

Hlavným glukokortikoidom uvoľňovaným nadobličkami je kortizol. Kortizol po naviazaní na svoj cieľ zlepšuje metabolizmus viacerými spôsobmi:

Aj keď sa vyskytujú rôzne varianty krvného zásobovania nadobličiek (a vlastne aj samotných obličiek), zvyčajne sú to tri tepny, ktoré zásobujú každú nadobličku: horná, stredná a dolná suprarenálna (alebo nadobličková) tepna.

Každá (ľavá a pravá) horná suprarenálna tepna je vetvou frenickej tepny na tejto strane tela. Ľavá a pravá frenická artéria zásobujú bránicu a vychádzajú z aorty.

Stredná suprarenálna artéria je vetva priamo z aorty, zatiaľ čo dolná suprarenálna artéria sa vetví z aorty alebo z renálnej artérie.

Medula: Chromafínové bunky Kôra: zona glomerulosa – zona fasciculata – zona reticularis

Štítna žľaza (Parafolikulárna bunka, Epitelová bunka štítnej žľazy, Štítny priechod, Laloky štítnej žľazy, Pyramída štítnej žľazy) Prištítne telieska (Oxyfilná bunka, Hlavná bunka)

zona glomerulosa – zona fasciculata – zona reticularis

Zuckerkandlov orgán – Aortálne telo – Karotické telo

Semenníky – Vaječníky – Žlté teliesko

Pars nervosa – Median eminence – Infundibular stalk – Pituicyte – Herring bodies

Pars intermedia – Pars tuberalis – Pars distalis – Acidofily (somatotrópy, laktotrópy) – Bazofily (kortikotrópy, gonadotrópy, tyrotrópy)

Pinealocyty – Corpora arenacea

Alfa bunka – Beta bunka – Delta bunka – PP bunka – Epsilon bunka

Kategórie
Psychologický slovník

Inteligencia a dojčenie

Štúdie často zistili vyššie IQ u detí a dospelých, ktorí boli dojčení. Navrhuje sa tiež, že omega-3 mastné kyseliny, ktoré sa nachádzajú vo vysokých dávkach v materskom mlieku a o ktorých je známe, že sú základnými zložkami mozgových tkanív, by mohli aspoň čiastočne prispieť k zvýšeniu IQ.

Kategórie
Psychologický slovník

Metastázy

Metastáza alebo metastatické ochorenie je šírenie rakoviny z jedného orgánu alebo časti do iného orgánu alebo časti, ktoré nie sú v susedstve. Takto vzniknuté nové výskyty ochorenia sa označujú ako metastázy (niekedy skrátene mets) Doteraz sa predpokladalo, že metastázovať môžu len zhubné nádorové bunky a infekcie, čo sa však vďaka novým výskumom prehodnocuje. Pôvodom je metastáza grécke slovo, ktoré znamená „premiestnenie“, z μετά, meta, „ďalší“, a στάσις, stasis, „umiestnenie“. Množné číslo je metastázy.

Rakovina vzniká po postupnom genetickom poškodení jednej bunky v tkanive, ktoré vedie k nekontrolovanej proliferácii buniek. Táto nekontrolovaná proliferácia, mitóza, vytvára primárny nádor. Bunky, ktoré tvoria nádor, nakoniec podliehajú metaplázii, po ktorej nasleduje dysplázia a potom anaplázia, čo vedie k malígnemu fenotypu. Tento malígny fenotyp umožňuje intravazáciu do cirkulácie, po ktorej nasleduje extravazácia na druhé miesto pre vznik nádoru.

Niektoré rakovinové bunky získajú schopnosť preniknúť cez steny lymfatických a/alebo krvných ciev, po ktorých sú schopné cirkulovať krvným obehom (cirkulujúce nádorové bunky) do iných miest a tkanív v tele. Tento proces je známy (v uvedenom poradí) ako lymfatické alebo hematogénne šírenie.

Keď sa nádorové bunky usadia na inom mieste, znovu preniknú do cievy alebo stien a pokračujú v množení, pričom nakoniec vytvoria ďalší klinicky zistiteľný nádor. Tento nový nádor sa nazýva metastatický (alebo sekundárny) nádor. Metastázy sú jedným z troch charakteristických znakov malignity (na rozdiel od benígnych nádorov). Väčšina nádorov môže metastázovať, hoci v rôznej miere (napr. bazocelulárny karcinóm metastázuje zriedkavo).

Keď nádorové bunky metastázujú, nový nádor sa nazýva sekundárny alebo metastatický nádor a jeho bunky sú podobné bunkám pôvodného nádoru. To znamená, že ak napríklad rakovina prsníka metastázuje do pľúc, sekundárny nádor je tvorený abnormálnymi bunkami prsníka, nie abnormálnymi bunkami pľúc. Nádor v pľúcach sa potom nazýva metastatický karcinóm prsníka, nie karcinóm pľúc.

Rezeň povrchu pečene, na ktorom sú viditeľné viaceré bledšie metastatické uzlíky pochádzajúce z rakoviny pankreasu

Spočiatku sú skoro zasiahnuté blízke lymfatické uzliny. Pľúca, pečeň, mozog a kosti sú najčastejšími miestami metastáz solídnych nádorov.

Hoci pokročilá rakovina môže spôsobovať bolesť, často nie je prvým príznakom.

U niektorých pacientov sa však neprejavujú žiadne príznaky.
Keď orgán dostane metastatické ochorenie, začne sa zmenšovať, až kým jeho lymfatické uzliny neprasknú alebo nepodľahnú lýze.

Metastatické nádory sú veľmi časté v neskorých štádiách rakoviny. K šíreniu metastáz môže dôjsť krvou alebo lymfatickou cestou alebo oboma cestami. Najčastejšími miestami výskytu metastáz sú pľúca, pečeň, mozog a kosti.

Metastázovanie je zložitý súbor krokov, pri ktorých rakovinové bunky opúšťajú pôvodné nádorové miesto a migrujú do iných častí tela prostredníctvom krvného riečiska, lymfatického systému alebo priamym rozšírením. Na tento účel sa malígne bunky oddeľujú od primárneho nádoru a pripájajú sa k proteínom, ktoré tvoria okolitú extracelulárnu matrix (ECM), ktorá oddeľuje nádor od priľahlých tkanív, a rozkladajú ich. Degradáciou týchto proteínov sú rakovinové bunky schopné prelomiť ECM a uniknúť. Umiestnenie metastáz nie je vždy náhodné, pričom rôzne typy rakoviny majú tendenciu šíriť sa do konkrétnych orgánov a tkanív vo väčšej miere, ako sa očakáva len na základe štatistickej náhody. Napríklad rakovina prsníka má tendenciu metastázovať do kostí a pľúc. Zdá sa, že táto špecifickosť je sprostredkovaná rozpustnými signálnymi molekulami, ako sú chemokíny a transformujúci rastový faktor beta. Telo sa bráni metastázam rôznymi mechanizmami prostredníctvom pôsobenia skupiny proteínov známych ako supresory metastáz, ktorých je známych asi tucet.

Ľudské bunky vykazujú 3 druhy pohybu: kolektívny pohyb, mezenchýmový pohyb a améboidný pohyb. Rakovinové bunky často oportunisticky prepínajú medzi rôznymi druhmi pohybu. Niektorí výskumníci rakoviny dúfajú, že sa im podarí nájsť liečbu, ktorá by dokázala zastaviť alebo aspoň spomaliť šírenie rakoviny tým, že nejakým spôsobom zablokuje niektorý nevyhnutný krok v jednom alebo druhom, prípadne v oboch druhoch pohybu.

Vedci zaoberajúci sa výskumom rakoviny, ktorí skúmajú podmienky potrebné na metastázovanie rakoviny, zistili, že jednou z rozhodujúcich udalostí je rast novej siete krvných ciev, ktorá sa nazýva nádorová angiogenéza. Zistilo sa, že inhibítory angiogenézy by preto zabránili rastu metastáz.

Existuje niekoľko rôznych typov buniek, ktoré sú rozhodujúce pre rast nádorov. Najmä endotelové progenitorové bunky sú veľmi dôležitou populáciou buniek pri raste nádorových ciev. Toto zistenie bolo publikované v časopisoch Science (2008) a Genes and Development (2007) spolu s faktom, že endotelové progenitorové bunky sú kritické pre metastázovanie a angiogenézu. Význam endotelových progenitorových buniek pri raste nádorov, angiogenéze a metastázovaní potvrdila aj nedávna publikácia v časopise Cancer Research (august 2010). Táto zásadná práca preukázala, že endotelové progenitorové bunky možno označiť pomocou inhibítora väzby DNA 1 (ID1). Tento nový poznatok znamenal, že výskumníci boli schopní sledovať endotelové progenitorové bunky od kostnej drene cez krv až po nádorové fórum a dokonca ich začlenenie do nádorovej vaskulatúry. Toto zistenie endotelových progenitorových buniek začlenených do nádorovej vaskulatúry dokazuje dôležitosť tohto typu buniek pri vývoji krvných ciev v nádorovom prostredí a pri metastázovaní. Okrem toho ablácia endotelových progenitorových buniek v kostnej dreni viedla k výraznému zníženiu rastu nádoru a vývoja ciev. Preto sú endotelové progenitorové bunky veľmi dôležité v biológii nádorov a predstavujú nové terapeutické ciele.

Transkripčné faktory NFAT sa podieľajú na vzniku rakoviny prsníka, konkrétne na procese bunkovej motility, ktorá je základom tvorby metastáz. NFAT1 (NFATC2) a NFAT5 sú totiž proinvazívne a promigračné v karcinóme prsníka a NFAT3 (NFATc4) je inhibítorom bunkovej motility.
NFAT1 reguluje expresiu TWEAKR a jeho ligandu TWEAK s lipokalínom 2, čím zvyšuje inváziu buniek karcinómu prsníka, a NFAT3 inhibuje expresiu lipokalínu 2, čím otupuje inváziu buniek.

Hlavné miesta metastáz niektorých bežných typov rakoviny. Primárne rakovinové ochorenia sú označené „…cancer“ a ich hlavné miesta metastáz sú označené „…metastases“.

K rozšíreniu malignity do telesných dutín môže dôjsť prostredníctvom výsevu na povrch peritoneálneho, pleurálneho, perikardiálneho alebo subarachnoidálneho priestoru. Napríklad nádory vaječníkov sa môžu šíriť transperitoneálne na povrch pečene. Mezotelióm a primárne pľúcne nádory sa môžu šíriť cez pleurálnu dutinu a často spôsobujú malígny pleurálny výpotok.

Invázia do lymfatického systému umožňuje prenos nádorových buniek do regionálnych a vzdialených lymfatických uzlín a nakoniec do iných častí tela. Toto je najčastejšia cesta metastázovania karcinómov. Naproti tomu je zriedkavé, aby sarkóm metastázoval touto cestou. Treba poznamenať, že lymfatický systém sa nakoniec cez azygovú žilu dostáva do systémového žilového systému, a preto sa tieto metastatické bunky môžu nakoniec šíriť hematogénnou cestou.

Lymfatická uzlina s takmer úplnou náhradou metastatickým melanómom. Hnedý pigment je ložiskové ukladanie melanínu

Je to typická cesta metastázovania sarkómov, ale je to aj obľúbená cesta niektorých typov karcinómov, napríklad karcinómov pochádzajúcich z obličiek (karcinóm z obličkových buniek). Žily sú pre svoje tenšie steny napadnuté častejšie ako tepny a metastázy majú tendenciu sledovať vzorec žilového toku. Modely spojené s touto cestou šírenia

4. Transplantácia alebo implantácia

Mechanické prenášanie fragmentov nádorových buniek chirurgickými nástrojmi počas operácie alebo používanie ihiel počas diagnostických postupov.

Rakovinové bunky sa môžu rozšíriť do lymfatických uzlín (regionálnych lymfatických uzlín) v blízkosti primárneho nádoru. Toto sa nazýva uzlinové postihnutie, pozitívne uzliny alebo regionálne ochorenie. („Pozitívne uzliny“ je termín, ktorý by lekárski odborníci použili na opis stavu pacienta, čo znamená, že lymfatické uzliny pacienta v blízkosti primárneho nádoru boli pozitívne testované na malignitu. Je bežnou lekárskou praxou, že pri chirurgickom zákroku na vyšetrenie alebo odstránenie nádoru sa biopsiou vyšetria aspoň dve lymfatické uzliny v blízkosti miesta nádoru). Lokalizované rozšírenie do regionálnych lymfatických uzlín v blízkosti primárneho nádoru sa zvyčajne nepovažuje za metastázu, hoci je znakom horšej prognózy. Transport cez lymfatiku je najčastejšou cestou počiatočného šírenia karcinómov.

Niektoré nádory majú sklon k výsevu v určitých orgánoch. Prvýkrát o tom hovoril Stephen Paget pred viac ako sto rokmi v roku 1889 ako o teórii „semienka a pôdy“. Náchylnosť metastatickej bunky šíriť sa do určitého orgánu sa označuje ako „organotropizmus“. Napríklad rakovina prostaty zvyčajne metastázuje do kostí. Podobne má rakovina hrubého čreva tendenciu metastázovať do pečene. Rakovina žalúdka často metastázuje do vaječníka u žien, vtedy sa nazýva Krukenbergov nádor.

Podľa teórie „semienka a pôdy“ je pre rakovinové bunky ťažké prežiť mimo oblasti svojho pôvodu, takže aby mohli metastázovať, musia nájsť miesto s podobnými vlastnosťami. Napríklad nádorové bunky prsníka, ktoré získavajú vápenaté ióny z materského mlieka, metastázujú do kostného tkaniva, kde môžu získavať vápenaté ióny z kostí. Malígny melanóm sa šíri do mozgu, pravdepodobne preto, že nervové tkanivo a melanocyty vznikajú z rovnakej bunkovej línie v embryu.

V roku 1928 James Ewing spochybnil teóriu „semienka a pôdy“ a navrhol, že metastázy vznikajú výlučne anatomickou a mechanickou cestou. Táto hypotéza bola nedávno využitá na navrhnutie niekoľkých hypotéz o životnom cykle cirkulujúcich nádorových buniek (CTC) a na postulát, že vzorce šírenia by sa dali lepšie pochopiť prostredníctvom perspektívy „filtra a toku“.

Metastázy a primárna rakovina

Použitie imunohistochémie umožnilo patológom určiť identitu mnohých z týchto metastáz. Zobrazenie uvedenej oblasti však len občas odhalí primárne ložisko. V zriedkavých prípadoch (napr. melanómu) sa dokonca ani pri pitve nenájde žiadny primárny nádor. Preto sa predpokladá, že niektoré primárne nádory môžu úplne regredovať, ale zanechávajú po sebe metastázy.

Tento článok je označený od septembra 2007.

Bunky metastatického nádoru sa podobajú bunkám primárneho nádoru. Po vyšetrení rakovinového tkaniva pod mikroskopom na určenie typu buniek môže lekár zvyčajne povedať, či sa tento typ buniek bežne vyskytuje v časti tela, z ktorej bola odobratá vzorka tkaniva.

Napríklad bunky rakoviny prsníka vyzerajú rovnako bez ohľadu na to, či sa nachádzajú v prsníku alebo sa rozšírili do inej časti tela. Ak teda vzorka tkaniva odobratá z nádoru v pľúcach obsahuje bunky, ktoré vyzerajú ako bunky prsníka, lekár určí, že nádor pľúc je sekundárny nádor. Napriek tomu môže byť určenie primárneho nádoru často veľmi ťažké a patológ môže byť nútený použiť niekoľko pomocných techník, ako je imunohistochémia, FISH (fluorescenčná in situ hybridizácia) a iné. Napriek použitiu techník zostáva v niektorých prípadoch primárny nádor neidentifikovaný.

Metastatický karcinóm sa môže objaviť v rovnakom čase ako primárny nádor alebo o niekoľko mesiacov či rokov neskôr. Ak sa u pacienta, ktorý sa v minulosti liečil na rakovinu, nájde druhý nádor, častejšie ide o metastázu ako o iný primárny nádor.

Predtým sa predpokladalo, že väčšina rakovinových buniek má nízky metastatický potenciál a že existujú zriedkavé bunky, ktoré si vyvinú schopnosť metastázovať prostredníctvom somatických mutácií. Podľa tejto teórie je diagnostika metastázujúcich nádorových ochorení možná až po vzniku metastáz. Tradičné spôsoby diagnostiky rakoviny (napr. biopsia) by vyšetrili len subpopuláciu rakovinových buniek a veľmi pravdepodobne by nebrali vzorky zo subpopulácie s metastatickým potenciálom.

Expresia tejto metastatickej signatúry súvisí so zlou prognózou a bola preukázaná ako konzistentná u viacerých typov rakoviny. Ukázalo sa, že prognóza je horšia u osôb, ktorých primárne nádory exprimovali metastatický podpis. Okrem toho sa ukázalo, že expresia týchto génov súvisiacich s metastázami sa okrem adenokarcinómu vzťahuje aj na iné typy rakoviny. Metastázy karcinómu prsníka, meduloblastómu a karcinómu prostaty mali podobné vzorce expresie týchto génov spojených s metastázami.

Identifikácia tohto podpisu spojeného s metastázami je prísľubom na identifikáciu buniek s metastatickým potenciálom v primárnom nádore a nádejou na zlepšenie prognózy týchto rakovinových ochorení spojených s metastázami. Okrem toho identifikácia génov, ktorých expresia sa mení pri metastázach, ponúka potenciálne ciele na inhibíciu metastáz.

Liečba a prežitie sú do veľkej miery závislé od toho, či rakovina zostane lokalizovaná alebo sa rozšíri na iné miesta v tele. Ak rakovina metastázuje do iných tkanív alebo orgánov, zvyčajne to výrazne znižuje pravdepodobnosť prežitia pacienta (t. j. „prognózu“). Existujú však niektoré druhy rakoviny – napríklad niektoré formy leukémie, rakovina krvi alebo zhubné nádory v mozgu – ktoré môžu zabíjať bez toho, aby sa vôbec rozšírili.

Keď už rakovina metastázuje, môže sa ešte liečiť rádiochirurgiou, chemoterapiou, rádioterapiou, biologickou liečbou, hormonálnou liečbou, chirurgickým zákrokom alebo kombináciou týchto zákrokov („multimodálna liečba“). Výber liečby závisí od veľkého množstva faktorov, okrem iného od typu primárneho karcinómu, veľkosti a lokalizácie metastáz, veku a celkového zdravotného stavu pacienta a od typov predtým použitej liečby. U pacientov s diagnózou CUP je často možné liečiť ochorenie aj vtedy, keď sa primárny nádor nedá lokalizovať.

Možnosti liečby, ktoré sú v súčasnosti k dispozícii, len zriedka dokážu vyliečiť metastázujúcu rakovinu, hoci niektoré nádory, ako napríklad rakovina semenníkov a rakovina štítnej žľazy, sú zvyčajne stále vyliečiteľné.

Vyhľadajte túto stránku na Wikislovníku:
Metastázy

Lekárske informácie o metastatickej rakovine

Charitatívne a podporné skupiny zaoberajúce sa metastatickou rakovinou

Hyperplázia – Cysta – Pseudocysta – Hamartóm – Benígny nádor

Dysplázia – Karcinóm in situ – Invazívny karcinóm – Metastázy

Konečník – Močový mechúr – Krv – Žlčový vývod – Kosti – Mozog – Prsia – Krčok – Dvojité črevo/rektum – Endometrium – Pažerák – Oko – Žlčník – Hlava/krk – Pečeň – Obličky – Hrtan – Pľúca – Mediastinum (hrudník) – Ústa – Vaječníky – Pankreas – Penis – Prostata – Koža – Tenké črevo – Žalúdok – Chvostová kosť – Semenníky – Šťavnatka

Tumor supresorové gény/onkogény – Staging/grade – Karcinogenéza – Karcinogén – Výskum – Paraneoplastický syndróm – Zoznam onkologických termínov

Kategórie
Psychologický slovník

Parasympatický nervový systém

Inervácia autonómneho nervového systému, znázorňujúca sympatikus a parasympatikus (kraniosakrálny systém), červenou a modrou farbou

Vzťah k sympatickému nervovému systému

Sympatikus a parasympatikus zvyčajne fungujú vo vzájomnej opozícii. Túto opozíciu je však lepšie chápať ako komplementárnu, a nie antagonistickú. Analogicky si môžeme predstaviť sympatikus ako plynový pedál a parasympatikus ako brzdu. Sympatikus zvyčajne funguje pri činnostiach, ktoré si vyžadujú rýchle reakcie. Parasympatikus funguje pri činnostiach, ktoré si nevyžadujú okamžitú reakciu. Hlavné činnosti parasympatického nervového systému sú zhrnuté do slovného spojenia „odpočívaj a oddychuj“ alebo „odpočívaj a tráv“ (na rozdiel od „bojuj alebo utekaj“ sympatického nervového systému). Zriedkavo používaná (ale užitočná) skratka, ktorá sa používa na zhrnutie funkcií parasympatického nervového systému, je SLUDD (salivácia, slzenie, močenie, trávenie a vyprázdňovanie).

Podobne ako SN, aj PSN má dvojneurónový eferentný systém (motorické signály opúšťajú CNS), ktorý má pregangliové aj postgangliové neuróny. V lebke pregangliové PSN (CN III, CN VII a CN IX) vychádzajú zo špecifických jadier v CNS a synaptujú v jednom zo štyroch parasympatických ganglií: ciliárnom, pterygopalatinálnom, otickom alebo submandibulárnom. Z týchto štyroch ganglií PSN dokončia svoju cestu do cieľových tkanív prostredníctvom vetiev CN V (trigeminálny nerv) (oftalmický nerv CN V1, maxilárny nerv CN V2, mandibulárny nerv CN V3). Vagový nerv sa nezúčastňuje na týchto kraniálnych gangliách, pretože väčšina jeho vlákien PSN je určená pre širokú škálu ganglií na orgánoch alebo v ich blízkosti vrátane hrudných vnútorností (pažerák, priedušnica, srdce, pľúca) a brušných vnútorností (žalúdok, pankreas, pečeň, obličky), ktoré putujú až po spojenie stredného a zadného čreva tesne pred ohybom sleziny priečneho hrubého čreva. Telá panvových splanchnických pregangliových nervových buniek vznikajú v bočnom rohu miechy a pokračujú ďalej od CNS, aby sa synapticky spojili v autonómnom gangliu. Ganglion PSN, v ktorom dochádza k synapsii pregangliových neurónov, sa nachádza v blízkosti inervačného orgánu (na rozdiel od SN, kde je ganglion zvyčajne ďalej od cieľového orgánu). Systém dvoch neurónov je určený len pre eferentnú inerváciu. Aferentné, nevedomé vnemy vysielané z vnútorných orgánov do CNS sa uskutočňujú v dráhe jedného neurónu.

Aferentné parasympatikové vnemy sú väčšinou nevedomé viscerálne motorické reflexné vnemy z dutých orgánov a žliaz, ktoré sa prenášajú do CNS. Podobne ako bežné somatické senzorické neuróny, aj aferentné bunkové telá parasympatika sa nachádzajú v gangliách dorzálnych koreňov. Hoci nevedomé reflexné oblúky sú za normálnych okolností nezistiteľné, v určitých prípadoch môžu vysielať do CNS pocity bolesti maskované ako prenesená bolesť. Ak sa zapáli brušná dutina alebo ak sa náhle roztiahne črevo, vaše telo bude interpretovať aferentný bolestivý podnet ako somatického pôvodu. Táto bolesť je zvyčajne nelokalizovaná. Bolesť sa zvyčajne prenáša aj do dermatómov, ktoré sú na rovnakej úrovni miechového nervu ako viscerálna aferentná synapsa.

Parasympatikové dráhy a ovládanie lebečných nervov

Okulomotorický nerv je zodpovedný za viaceré parasympatické funkcie súvisiace s okom. Okulomotorické vlákna PSN vychádzajú z Edingerovho-Westphalovho jadra v CNS a prechádzajú cez hornú orbitálnu štrbinu, aby sa dostali do ciliárneho ganglia, ktoré sa nachádza hneď za očnicou (okom). Z ciliárneho ganglia odchádzajú postgangliové vlákna PSN prostredníctvom krátkych vlákien ciliárneho nervu, ktorý je pokračovaním nazociliárneho nervu (vetva oftalmickej divízie trojklanného nervu, CN V1). Krátke ciliárne nervy inervujú očnicu a ovládajú ciliárny sval (zodpovedný za akomodáciu) a zvierač zreničiek, ktorý je zodpovedný za miózu alebo zúženie zreničky (ako odpoveď na svetlo alebo akomodáciu).

Parasympatikus tvárového nervu riadi sekréciu podjazykových a podčeľustných slinných žliaz, slznej žľazy a žliaz spojených s nosovou dutinou. Pregangliové vlákna vznikajú v CNS v hornom salvatoriálnom jadre a odchádzajú ako intermediárny nerv (ktorý niektorí považujú za úplne samostatný lebečný nerv), aby sa spojili s tvárovým nervom tesne distálne (ďalej) od jeho vyústenia do CNS. Hneď za genikulárnym gangliom tvárového nervu (všeobecným senzorickým gangliom) v spánkovej kosti vystupujú z tvárového nervu dva samostatné parasympatické nervy. Prvým je veľký petrózny nerv a druhým je chorda tympani. Veľký petrózny nerv prechádza stredným uchom a nakoniec sa spája s hlbokým petróznym nervom (sympatické vlákna) a vytvára nerv pterygoidného kanála. Vlákna PSN nervu pterygoidného kanála sa synaptizujú v pterygopalatinálnom gangliu, ktoré je úzko spojené s maxilárnym oddelením trojklanného nervu (CN V2). Postganglionálne vlákna PSN opúšťajú pterygopalatínové gangliá niekoľkými smermi. Jedno oddelenie odchádza na zygomatickom oddelení CN V2 a putuje na komunikačnej vetve, aby sa spojilo so slzným nervom (vetva oftalmického nervu CN V1) pred synapsiou v slznej žľaze. Tieto PSN do slznej žľazy riadia produkciu sĺz.

Samostatnou skupinou PSN vychádzajúcich z pterygopalatinálneho ganglia sú zostupné palatínové nervy (vetva CN V2), ktoré zahŕňajú veľký a malý palatinový nerv. Väčšie palatínové PSN synaptujú na tvrdom podnebí a regulujú tam umiestnené hlienové žľazy. Menší palatinálny nerv synaptizuje na mäkkom podnebí a ovláda riedke chuťové receptory a hlienové žľazy. Ďalším súborom oddielov z pterygopalatinového ganglia sú zadné, horné a dolné bočné nosové nervy; a nazopalatínové nervy (všetky vetvy CN V2, maxilárna divízia trojklanného nervu), ktoré privádzajú PSN k žľazám nosovej sliznice. Druhou vetvou PSN, ktorá opúšťa tvárový nerv, je chorda tympani. Tento nerv privádza sekretomotorické vlákna k podčeľustným a podjazykovým žľazám. Chorda tympani prechádza stredným uchom a pripája sa k jazykovému nervu (mandibulárna divízia trigeminu, CN V3). Po spojení s jazykovým nervom pregangliové vlákna synaptizujú v submandibulárnom gangliu a posielajú postgangliové vlákna do sublingválnych a submandibulárnych slinných žliaz.

Glosofaryngeálny nerv CNIX má parasympatické vlákna, ktoré inervujú príušnú slinnú žľazu. Pregangliové vlákna odchádzajú z CNIX ako bubienkový nerv a pokračujú do stredného ucha, kde tvoria bubienkový plexus na predkolení bubienka. Nervové pletence bubienka sa opäť spájajú a vytvárajú menší petrózny nerv a vystupujú cez foramen ovale, aby sa synapticky spojili v otickom gangliu. Z otického ganglia sa postgangliové parasympatické vlákna dostávajú spolu s aurikulotemporálnym nervom (mandibulárna vetva trigeminu, CN V3) do príušnej slinnej žľazy.

Nervus vagus, ktorého názov pochádza z latinského slova vagus, čo doslova znamená „blúdiaci“, pretože nerv ovláda takú širokú škálu cieľových tkanív, má PSN, ktoré vychádzajú zo zadného jadra nervus vagus v CNS. Vagový nerv je nezvyčajný kraniálny PSN v tom, že sa nespája s trojklanným nervom, aby sa dostal k svojim cieľovým tkanivám. Ďalšou zvláštnosťou je, že s nervom vagus je spojené autonómne ganglion približne na úrovni stavca C1. Vagus nedáva žiadny PSN do lebky. Nervus vagus je ťažké definitívne sledovať vzhľadom na jeho všadeprítomnosť v hrudníku a bruchu, preto sa bude diskutovať o hlavných príspevkoch. Z blúdivého nervu pri jeho vstupe do hrudníka vychádza niekoľko nervov PSN. Jedným z nervov je rekurentný laryngeálny nerv, ktorý sa stáva dolným laryngeálnym nervom. Z ľavého blúdivého nervu sa rekurentný hrtanový nerv zavesí okolo aorty, aby sa vrátil späť do hrtana a proximálneho pažeráka, zatiaľ čo z pravého blúdivého nervu sa rekurentný hrtanový nerv zavesí okolo pravej podklíčkovej tepny, aby sa vrátil na rovnaké miesto ako jeho náprotivok. Tieto rozdielne cesty sú priamym dôsledkom embryonálneho vývoja obehového systému. Každý rekurentný laryngeálny nerv zásobuje priedušnicu a pažerák parasympatickou sekretomotorickou inerváciou žliaz, ktoré sú s nimi spojené (a inými vláknami, ktoré nie sú PSN).

Ďalším nervom, ktorý vychádza z nervov pošvy približne na úrovni vstupu do hrudníka, sú srdcové nervy. Tieto srdcové nervy ďalej vytvárajú srdcové a pľúcne pletence okolo srdca a pľúc. Keď hlavné blúdivé nervy pokračujú do hrudníka, úzko sa spájajú s pažerákom a sympatickými nervami zo sympatických kmeňov a vytvárajú pažerákový plexus. To je veľmi účinné, pretože hlavnou funkciou blúdivého nervu bude od tejto chvíle ovládanie hladkého svalstva a žliaz čriev. Keď pažerákový plexus vstúpi do brucha cez pažerákový hiát, vytvoria sa predný a zadný vagový kmeň. Vagové kmene sa potom spoja s preaortálnym sympatickým gangliom okolo aorty a rozptýlia sa spolu s cievami a sympatickými nervami po celom bruchu. Rozsah PSN v brušnej dutine zahŕňa pankreas, obličky, pečeň, žlčník, žalúdok a črevnú rúru. Vagový príspevok PSN pokračuje po črevnej trubici až do konca stredného čreva. Stredné črevo končí v 2/3 cesty cez priečne hrubé črevo v blízkosti slezinnej flexúry.

Ďalšou úlohou, ktorú PSN zohrávajú v panve, je sexuálna aktivita. U mužov kavernózne nervy z prostatického plexu stimulujú hladké svalstvo vo vláknitých trabekulách vinutých helikoptérových artérií, aby sa uvoľnilo a umožnilo krvi naplniť corpora cavernosum a corpus spongiosum penisu, čím sa penis stáva tuhým a pripravuje sa na sexuálnu aktivitu. Pri vypustení ejakulátu sa zapojí sympatikus a spôsobí peristaltiku chámovodu a uzavretie vnútorného zvierača uretry, aby sa zabránilo vniknutiu semena do močového mechúra. Súčasne parasympatikus spôsobuje peristaltiku svaloviny uretry a pudendálny nerv spôsobuje kontrakciu bulbospongiosus (kostrové svalstvo nie je prostredníctvom PSN), aby došlo k násilnej emisii semena. Počas remisie sa penis opäť stáva ochabnutým. U ženy je erektilné tkanivo analogické mužskému, avšak menej podstatné, ktoré hrá veľkú úlohu pri sexuálnej stimulácii. PSN spôsobujú u ženy uvoľňovanie sekrétov, ktoré znižujú trenie. Aj u ženy parasympatiká inervujú vajíčkovody, čo pomáha peristaltickým kontrakciám a pohybu vajíčka do maternice na implantáciu. Sekréty zo ženského pohlavného ústrojenstva napomáhajú migrácii semena. PSN (a v menšej miere aj SN) zohrávajú obrovskú úlohu pri reprodukcii.

Parasympatický nervový systém podporuje trávenie, syntetizuje glykogén a umožňuje normálne fungovanie a správanie.

Typy muskarínových receptorov

Tri hlavné typy muskarínových receptorov, ktoré sú dobre charakterizované, sú:

Mozog –
Miecha –
Centrálny nervový systém –
Periférny nervový systém –
Somatický nervový systém –
Autonómny nervový systém –
Sympatický nervový systém –
Parasympatický nervový systém

anat(h/r/t/c/b/l/s/a)/phys(r)/devp/prot/nttr/nttm/ntrp

noco/auto/cong/tumr, sysi/epon, injr

Kategórie
Psychologický slovník

Amyloidóza

V medicíne sa amyloidóza vzťahuje na rôzne stavy, pri ktorých sa amyloidné proteíny abnormálne ukladajú v orgánoch a/alebo tkanivách a spôsobujú ochorenie. Bielkovina je amyloidná, ak v dôsledku zmeny svojej sekundárnej štruktúry nadobúda určitú nerozpustnú formu, ktorá sa nazýva beta-vrstva.

Je známych približne 25 rôznych proteínov, ktoré môžu u ľudí tvoriť amyloid, pričom väčšina z nich je súčasťou plazmy.

Rôzne amyloidózy môžu byť systémové (postihujúce mnoho rôznych orgánových systémov) alebo orgánovo špecifické. Niektoré sú dedičné, spôsobené mutáciami v prekurzorovom proteíne. Iné, sekundárne formy sú spôsobené rôznymi ochoreniami spôsobujúcimi nadmernú alebo abnormálnu produkciu proteínov – napríklad pri nadmernej produkcii ľahkých reťazcov imunoglobulínov pri mnohopočetnom myelóme (označovanom ako AL amyloid) alebo pri kontinuálnej nadprodukcii proteínov akútnej fázy pri chronickom zápale (čo môže viesť k AA amyloidu).

Amyloid možno diagnostikovať na základe histologického vyšetrenia postihnutého tkaniva. Amyloidové ložiská sa dajú histologicky identifikovať farbením konžskou červenou a pozorovaním v polarizovanom svetle, kde amyloidové ložiská vytvárajú charakteristický „jablkovo zelený dvojlom“. Na presnejšiu identifikáciu amyloidového proteínu sú k dispozícii ďalšie špecifické testy. Biopsia sa odoberá z postihnutých orgánov (napríklad z obličiek) alebo často v prípade systémového amyloidu z konečníka alebo predného brušného tukového tkaniva.
Okrem toho všetky amyloidové ložiská obsahujú sérovú zložku amyloidu P (SAP), cirkulujúci proteín z rodiny pentraxínov. Bolo vyvinuté rádionuklidové skenovanie SAP, ktoré dokáže anatomicky lokalizovať amyloidové ložiská u pacientov.

Primárna/hereditárna amyloidóza

Tieto zriedkavé dedičné poruchy sú zvyčajne spôsobené bodovými mutáciami v prekurzorových proteínoch a zvyčajne sa prenášajú autozomálne dominantne.Prekurzorové proteíny sú;

Tie sú oveľa častejšie ako primárne amyloidózy.

Orgánovo špecifická amyloidóza

Takmer pri všetkých orgánovo špecifických patologických stavoch sa vedú diskusie o tom, či sú amyloidné plaky príčinou ochorenia, alebo sú skôr následkom spoločného idiopatického agens. Súvisiace proteíny sú uvedené v zátvorkách.

Medzi slávnych ľudí, ktorí trpeli touto chorobou, patrí James Oliver Rigney mladší, známejší ako Robert Jordan, ktorému bola diagnostikovaná primárna amyloidóza s kardiomyopatiou (srdcová amyloidóza). Neskôr zomrel pred dokončením 12. a poslednej knihy zo série kníh Koleso času.