Kategórie
Psychologický slovník

Riadenie značky

Disciplína riadenia značky vznikla v spoločnosti Procter & Gamble PLC na základe slávneho memoranda Neila H. McElroya.

Manažment značky je aplikácia marketingových techník na konkrétny produkt, produktovú líniu alebo značku. Jeho cieľom je zvýšiť hodnotu výrobku vnímanú zákazníkom, a tým zvýšiť franšízu značky a jej vlastný kapitál. Marketéri vnímajú značku ako implicitný prísľub, že úroveň kvality, ktorú ľudia od značky očakávajú, bude pokračovať pri súčasných a budúcich nákupoch toho istého výrobku. To môže zvýšiť predaj tým, že porovnanie s konkurenčnými výrobkami bude priaznivejšie. Môže to tiež umožniť výrobcovi účtovať za výrobok viac. Hodnota značky je určená výškou zisku, ktorý prináša výrobcovi. Ten je výsledkom kombinácie zvýšeného predaja a zvýšenej ceny.

Každoročný zoznam najhodnotnejších značiek na svete, ktorý zverejňujú spoločnosti Interbrand a Business Week, ukazuje, že trhová hodnota spoločností často pozostáva najmä z vlastného imania značky. Výskum globálnej poradenskej spoločnosti McKinsey & Company v roku 2000 naznačil, že silné, dobre využívané značky prinášajú akcionárom vyššie výnosy ako slabšie, užšie značky. V súhrne to znamená, že značky majú vážny vplyv na hodnotu pre akcionárov, čo v konečnom dôsledku spôsobuje, že za budovanie značky je zodpovedný generálny riaditeľ.

Dobrá značka by mala:

Prémiová značka zvyčajne stojí viac ako ostatné výrobky v danej kategórii. Ekonomická značka“ je značka určená pre trhový segment s vysokou cenovou elasticitou. Bojová značka je značka vytvorená špeciálne s cieľom čeliť konkurenčnej hrozbe. Keď sa názov spoločnosti používa ako značka výrobku, označuje sa to ako firemný branding. Keď sa jedna značka používa pre niekoľko súvisiacich výrobkov, označuje sa to ako rodinný branding. Keď všetky výrobky spoločnosti majú rôzne názvy značiek, označuje sa to ako individuálny branding. Keď spoločnosť využíva vlastný kapitál značky spojený s existujúcim názvom značky na zavedenie nového výrobku alebo produktovej línie, označuje sa to ako brand leveraging. Keď veľkí maloobchodníci nakupujú výrobky vo veľkom od výrobcov a označujú ich vlastnou značkou, nazýva sa to private branding, store brand alebo private label. Privátne značky možno odlíšiť od značiek výrobcov (označovaných aj ako národné značky). Keď dve alebo viac značiek spolupracuje pri predaji svojich výrobkov, označuje sa to ako co-branding. Keď spoločnosť predá práva na používanie názvu značky inej spoločnosti na použitie na nekonkurenčnom výrobku alebo v inej geografickej oblasti, označuje sa to ako licencovanie značky.

Racionalizácia značiek znamená zníženie počtu značiek, ktoré spoločnosť predáva. Niektoré spoločnosti majú tendenciu vytvárať viac značiek a variantov výrobkov v rámci jednej značky, než by zodpovedalo úsporám z rozsahu. Niekedy vytvoria špecifickú značku služby alebo výrobku pre každý trh, na ktorý sa zameriavajú. V prípade značky výrobku to môžu robiť s cieľom získať miesto na maloobchodných regáloch (a znížiť množstvo miesta na regáloch prideleného konkurenčným značkám). Spoločnosť sa môže z času na čas rozhodnúť racionalizovať svoje portfólio značiek, aby získala efektívnosť výroby a marketingu. Môže sa tiež rozhodnúť racionalizovať portfólio značiek v rámci reštrukturalizácie spoločnosti.

Častou výzvou pre manažérov značky je vybudovať konzistentnú značku a zároveň udržať jej posolstvo svieže a relevantné. Staršia identita značky môže byť nesprávne zosúladená s novo definovaným cieľovým trhom, prepracovanou firemnou víziou, revidovaným poslaním alebo hodnotami spoločnosti. Identity značky môžu tiež stratiť súzvuk s cieľovým trhom v dôsledku demografického vývoja. Zmena pozície značky (niekedy nazývaná rebranding) môže stáť časť minulého kapitálu značky a môže zmiasť cieľový trh, ale v ideálnom prípade možno značku zmeniť a zároveň zachovať existujúci kapitál značky, aby sa mohol využiť.

Manažéri značky musia pri propagácii svojich výrobkov riadiť aj marketingový mix. Meranie marketingovej účinnosti jednotlivých marketingových prvkov je rozhodujúcou činnosťou pri pochopení toho, ako optimalizovať svoju značku.

So stanovením cieľov pre značku alebo kategóriu výrobkov je spojených niekoľko problémov.

Kategórie
Psychologický slovník

Vtáky

Moderné vtáky sa vyznačujú perím, zobákom bez zubov, znášaním vajec s tvrdou škrupinou, vysokou rýchlosťou metabolizmu, štvorkomorovým srdcom a ľahkou, ale pevnou kostrou. Všetky vtáky majú krídla, ktoré sa vyvinuli z predných končatín, a väčšina z nich dokáže lietať, až na niektoré výnimky, medzi ktoré patria bežce, tučniaky a množstvo rozmanitých endemických ostrovných druhov. Vtáky majú tiež jedinečný tráviaci a dýchací systém, ktorý je vysoko prispôsobený letu. Niektoré druhy vtákov, najmä vtákovité a papagáje, patria medzi najinteligentnejšie živočíšne druhy; u mnohých druhov vtákov sa pozorovala výroba a používanie nástrojov a u mnohých spoločenských druhov sa prejavuje kultúrny prenos vedomostí medzi generáciami.

Mnohé druhy sa každoročne sťahujú na dlhé vzdialenosti a mnohé ďalšie sa sťahujú nepravidelne na kratšie vzdialenosti. Vtáky sú spoločenské; komunikujú pomocou vizuálnych signálov, volania a spevu a zúčastňujú sa na spoločenskom správaní vrátane kooperatívneho rozmnožovania a lovu, kŕdľov a prenasledovania predátorov. Prevažná väčšina vtáčích druhov je spoločensky monogamná, zvyčajne na jedno hniezdne obdobie, niekedy na roky, ale zriedkavo na celý život. Iné druhy majú rozmnožovacie systémy polygynné („veľa samíc“) alebo zriedkavo polyandrické („veľa samcov“). Vajíčka sa zvyčajne znášajú do hniezda a inkubujú ich rodičia. Väčšina vtákov má po vyliahnutí dlhšie obdobie rodičovskej starostlivosti.

Klasifikácia vtákov je sporná otázka. Fylogenéza a klasifikácia vtákov od Sibleyho a Ahlquista (1990) je prelomovým dielom v oblasti klasifikácie vtákov, hoci sa o nej často diskutuje a neustále sa reviduje. Zdá sa, že väčšina dôkazov naznačuje, že zaradenie radov je presné, ale vedci sa nezhodujú v otázke vzťahov medzi samotnými radmi; do problému boli zapojené dôkazy z anatómie moderných vtákov, fosílií a DNA, ale nedošlo k žiadnemu pevnému konsenzu. V poslednom čase nové fosílne a molekulárne dôkazy poskytujú čoraz jasnejší obraz o vývoji moderných vtáčích radov.

Moderné vtáčie poriadky: Klasifikácia

Mnohé druhy vtákov vytvorili hniezdne populácie v oblastiach, do ktorých ich zaviedol človek. Niektoré z týchto introdukcií boli zámerné; napríklad bažant krúžkovaný bol introdukovaný po celom svete ako lovný vták. Iné boli náhodné, ako napríklad usídlenie voľne žijúcich papagájov mníchov v niekoľkých severoamerických mestách po ich úteku zo zajatia. Niektoré druhy, vrátane volavky popolavej, karakary žltohlavej a gala, sa prirodzene rozšírili ďaleko za hranice svojich pôvodných areálov, pretože poľnohospodárske postupy vytvorili vhodné nové biotopy.

Vonkajšia anatómia vtáka: 1 zobák, 2 hlava, 3 dúhovka, 4 zrenica, 5 plášť, 6 menšie krovky, 7 lopatky, 8 stredné krovky, 9 tretinové krovky, 10 zadok, 11 primárne krovky, 12 prieduch, 13 stehno, 14 tarzálny kĺb, 15 tarzus, 16 chodidlo, 17 tibia, 18 brucho, 19 boky, 20 hruď, 21 hrdlo, 22 krk

V porovnaní s ostatnými stavovcami majú vtáky telesný plán, ktorý vykazuje mnoho nezvyčajných prispôsobení, väčšinou na uľahčenie letu.

Kostra sa skladá z veľmi ľahkých kostí. Majú veľké dutiny naplnené vzduchom (tzv. pneumatické dutiny), ktoré sú spojené s dýchacím systémom. Kosti lebky sú zrastené a nevykazujú lebečné švy. Očnice sú veľké a oddelené kostenou priehradkou. Chrbtica má krčnú, hrudnú, bedrovú a chvostovú oblasť, pričom počet krčných (šijových) stavcov je veľmi variabilný a najmä ohybný, ale pohyb je obmedzený v predných hrudných stavcoch a chýba v neskorších stavcoch. Niekoľko posledných stavcov je zrastených s panvou a tvoria synsacrum. Rebrá sú sploštené a hrudná kosť je kýlovitá pre uchytenie letových svalov s výnimkou nelietavých vtákov. Predné končatiny sú upravené na krídla.

Podobne ako plazy, aj vtáky sú primárne urikotické, to znamená, že ich obličky odvádzajú dusíkaté odpadové látky z krvného obehu a vylučujú ich vo forme kyseliny močovej namiesto močoviny alebo amoniaku cez močovody do čreva. Vtáky nemajú močový mechúr ani vonkajší otvor močovej trubice a kyselina močová sa vylučuje spolu s výkalmi ako polotuhý odpad. Vtáky, ako napríklad kolibríky, však môžu byť fakultatívne amoniakálne a väčšinu dusíkatých odpadov vylučujú ako amoniak. Vylučujú aj kreatín, a nie kreatinín ako cicavce. Tento materiál, ako aj výstup z čriev, vychádza z kloaky vtákov. Kloaka je viacúčelový otvor: vylučujú sa cez ňu odpady, vtáky sa cez ňu pária a samice z nej znášajú vajíčka. Okrem toho mnohé druhy vtákov vyvrhujú pelety. Tráviaca sústava vtákov je jedinečná, s obilím na uskladnenie a žalúdkom, ktorý obsahuje prehltnuté kamene na mletie potravy, aby sa nahradil nedostatok zubov. Väčšina vtákov je vysoko prispôsobená na rýchle trávenie, ktoré im pomáha pri lete. Niektoré sťahovavé vtáky sa prispôsobili tak, že počas migrácie využívajú bielkoviny z mnohých častí tela vrátane bielkovín z čriev ako dodatočnú energiu.

Vtáky majú jeden z najzložitejších dýchacích systémov zo všetkých skupín živočíchov. Pri vdychovaní 75 % čerstvého vzduchu obchádza pľúca a prúdi priamo do zadného vzdušného vaku, ktorý vychádza z pľúc, spája sa so vzdušnými priestormi v kostiach a napĺňa ich vzduchom. Zvyšných 25 % vzduchu sa dostáva priamo do pľúc. Keď vták vydychuje, použitý vzduch odchádza z pľúc a uložený čerstvý vzduch zo zadného vzduchového vaku sa súčasne vtláča do pľúc. Pľúca vtáka tak dostávajú stály prísun čerstvého vzduchu počas vdychu aj výdychu. Zvuk sa vydáva pomocou syrinxu, svalovej komory s viacerými bubienkami, ktorá sa oddeľuje od dolného konca priedušnice. Srdce vtákov má štyri komory a pravý oblúk aorty je zdrojom systémového obehu (na rozdiel od cicavcov, u ktorých je to ľavý oblúk). Do postkavy sa dostáva krv z končatín cez portálny systém obličiek. Na rozdiel od cicavcov majú červené krvinky vtákov jadro.

Nervová sústava je vzhľadom na veľkosť vtáka veľká. Najvyvinutejšia časť mozgu riadi funkcie súvisiace s letom, mozoček koordinuje pohyb a mozgovňa riadi vzorce správania, navigáciu, párenie a stavbu hniezda. Väčšina vtákov má slabý čuch až na významné výnimky, medzi ktoré patria kivi, supy Nového sveta a tuberózy. Vtáčí zrakový systém je zvyčajne vysoko vyvinutý. Vodné vtáky majú špeciálne ohybné šošovky, ktoré umožňujú videnie vo vzduchu a vo vode. Niektoré druhy majú aj dvojitú foveu. Vtáky sú tetrachromatické, majú v oku čapíkové bunky citlivé na ultrafialové (UV) žiarenie, ako aj zelené, červené a modré bunky. To im umožňuje vnímať ultrafialové svetlo, ktoré sa podieľa na dvorení. Mnohé vtáky vykazujú v ultrafialovom svetle vzory na perí, ktoré sú pre ľudské oko neviditeľné; niektoré vtáky, ktorých pohlavia sa voľným okom javia ako podobné, sa odlišujú prítomnosťou ultrafialových reflexných škvŕn na perí. Samce sýkoriek modrých majú ultrafialovú reflexnú škvrnu na temene, ktorá sa prejavuje pri dvorení postojom a zdvíhaním peria na zátylku. Ultrafialové svetlo sa využíva aj pri hľadaní potravy – ukázalo sa, že poštolky hľadajú korisť pomocou UV reflexných stôp moču, ktoré zanechávajú hlodavce na zemi. Očné viečka vtákov sa pri žmurkaní nepoužívajú. Namiesto toho sa oko maže nikotínovou membránou, tretím viečkom, ktoré sa pohybuje horizontálne. Nikitujúca membrána tiež pokrýva oko a u mnohých vodných vtákov funguje ako kontaktná šošovka. Vtáčia sietnica má vejárovitý systém zásobovania krvou, ktorý sa nazýva pecten. Väčšina vtákov nemôže hýbať očami, hoci existujú výnimky, ako napríklad kormorán veľký. Vtáky s očami po stranách hlavy majú široké zorné pole, zatiaľ čo vtáky s očami na prednej strane hlavy, ako napríklad sovy, majú binokulárne videnie a dokážu odhadnúť hĺbku ostrosti. Vtáčie ucho nemá vonkajšie ušnice, ale je pokryté perím, hoci u niektorých vtákov, ako sú sovy Asio, Bubo a Otus, tieto perá tvoria chumáče, ktoré pripomínajú uši. Vnútorné ucho má kochleu, ale nie je špirálovité ako u cicavcov.

Niekoľko druhov je schopných používať chemickú obranu proti predátorom; niektoré druhy rodu Procellariiformes dokážu proti agresorovi vypúšťať nepríjemný olej a niektoré druhy pitohuis z Novej Guiney majú v koži a perí silný neurotoxín.

U takmer všetkých druhov vtákov sa pohlavie jedinca určuje pri oplodnení. Jedna z nedávnych štúdií však preukázala určenie pohlavia v závislosti od teploty u austrálskych korytnačiek krovinných, u ktorých vyššie teploty počas inkubácie viedli k vyššiemu pomeru pohlavia samíc a samcov.

Perie, operenie a šupiny

Opeřenie africkej sovy umožňuje jej splynutie s okolím.

Perie je charakteristickým znakom vtákov (hoci sa vyskytuje aj u niektorých dinosaurov, ktoré sa v súčasnosti nepovažujú za pravé vtáky). Uľahčujú let, poskytujú izoláciu, ktorá pomáha pri termoregulácii, a používajú sa na predvádzanie, maskovanie a signalizáciu. Existuje niekoľko druhov peria, pričom každé slúži na iné účely. Perie je epidermálny výrastok pripojený ku koži a vzniká len v špecifických dráhach kože nazývaných pteryly. Vzor rozmiestnenia týchto perových dráh (pterylóza) sa používa v taxonómii a systematike. Usporiadanie a vzhľad peria na tele, nazývané operenie, sa môže v rámci druhu líšiť podľa veku, sociálneho postavenia a pohlavia.

Opeřenie sa pravidelne mení; štandardné opeření vtáka, ktorý sa po hniezdení vyliahol, sa nazýva „nehniezdne“ opeření alebo – v Humphrey-Parkesovej terminológii – „základné“ opeření; hniezdne opeření alebo variácie základného opeření sa v Humphrey-Parkesovom systéme nazývajú „alternatívne“ opeření. Preperovanie je u väčšiny druhov každoročné, hoci niektoré môžu mať dve preperovania ročne a veľké dravce môžu preperovať len raz za niekoľko rokov. Vzory preperovania sa u jednotlivých druhov líšia. U vrabcovitých vtákov sa letové perá vymieňajú postupne, pričom ako prvé sa vymieňa najvnútornejšie primárne perie. Po výmene piateho alebo šiesteho primárneho peria sa začnú vymieňať krajné terciárne perá. Po výmene najvnútornejších terciárnych perí sa začnú vymieňať sekundárne perá počnúc najvnútornejšími a pokračuje sa k vonkajším perám (odstredivé vymieňanie). Väčšie primárne perá sa lúpajú synchrónne s primárnymi, ktoré sa prekrývajú. Malý počet druhov, ako sú kačice a husi, stráca všetky letové perá naraz a dočasne sa stáva nelietavým. Všeobecne platí, že chvostové perá sa vypelichávajú a nahrádzajú počnúc najvnútornejším párom. U čeľade Phasianidae sa však vyskytuje centripetálna zmena chvostového peria. Centrifugálna výmena chvostových pier je modifikovaná u ďatľov a stromových vtákov v tom zmysle, že sa začína druhým najvnútornejším párom pier a končí sa stredným párom pier, takže vták si zachováva funkčný stúpajúci chvost. Všeobecný vzor pozorovaný u vtákopyskov je taký, že primárne perá sa nahrádzajú smerom von, druhé perá smerom dovnútra a chvost od stredu smerom von. Pred hniezdením získavajú samice väčšiny druhov vtákov holú liahnu stratou peria v blízkosti brucha. Koža je tam dobre zásobená krvnými cievami a pomáha vtákovi pri inkubácii.

Perie si vyžaduje údržbu a vtáky si ho denne upravujú, pričom tomu venujú v priemere približne 9 % svojho denného času. Zobák slúži na čistenie peria od cudzích častíc a na nanášanie voskových výlučkov z uropygiálnej žľazy; tieto výlučkové látky chránia pružnosť peria a pôsobia ako antimikrobiálne činidlo, ktoré bráni rastu baktérií rozkladajúcich perie. Na odstraňovanie parazitov z peria sa môžu používať aj mravčie sekréty, ktoré vtáky prijímajú prostredníctvom správania známeho ako mravčenie.

Šupiny vtákov sa skladajú z rovnakého keratínu ako zobáky, pazúry a ostrohy. Nachádzajú sa najmä na prstoch na nohách a metatarzoch, ale u niektorých vtákov sa môžu nachádzať aj ďalej na členku. Väčšina vtáčích šupín sa výrazne neprekrýva, s výnimkou prípadov rybárikov a ďatľov.
Predpokladá sa, že šupiny vtákov sú homologické so šupinami plazov a cicavcov.

Nepokojný muchárik počas letu s mávaním

Väčšina vtákov je denných, ale niektoré druhy vtákov, ako napríklad mnohé druhy sov a nočných vtákov, sú nočné alebo krepuskulárne (aktívne počas súmraku) a mnohé pobrežné bahniaky sa kŕmia počas prílivu a odlivu, vo dne alebo v noci.

Prispôsobenie zobákov na kŕmenie

Potrava vtákov je pestrá a často zahŕňa nektár, ovocie, rastliny, semená, zdochliny a rôzne drobné živočíchy vrátane iných vtákov. Keďže vtáky nemajú zuby, ich tráviaci systém je prispôsobený na spracovanie nerozhryzených potravín, ktoré sa prehĺtajú celé.

Vtáky, ktoré využívajú mnoho stratégií na získavanie potravy alebo sa živia rôznymi potravnými položkami, sa nazývajú generalisti, zatiaľ čo iné, ktoré sústreďujú čas a úsilie na konkrétne potravné položky alebo majú jedinú stratégiu na získavanie potravy, sa považujú za špecialistov. Stratégie vtákov pri získavaní potravy sa líšia podľa druhu. Mnohé vtáky zbierajú hmyz, bezstavovce, ovocie alebo semená. Niektoré lovia hmyz náhlym útokom z vetvy. Nektárom sa živia okrem iného kolibríky, slniečkovité vtáky, loriovia a loríkovia, ktorí majú špeciálne prispôsobené štetinové jazyky a v mnohých prípadoch aj zobáky navrhnuté tak, aby sa hodili na spolupôsobiace kvety. Kivi a pobrežníky s dlhým zobákom sledujú bezstavovce; rôznorodá dĺžka zobáka a spôsoby kŕmenia pobrežníkov vedú k oddeleniu ekologických ník. Loky, potápavé kačice, tučniaky a alky prenasledujú svoju korisť pod vodou, pričom na pohon používajú krídla alebo nohy, zatiaľ čo vzdušné dravce, ako sú lastovičky, rybáriky a rybáriky, sa za svojou korisťou ponárajú. Plameniaky, tri druhy prion a niektoré kačice sa živia filtrami. Husi a kačice potápavé sú predovšetkým pastiermi.

Niektoré druhy vrátane fregát, čajok a chochlačiek sa venujú kleptoparazitizmu, teda kradnutiu potravy iným vtákom. Predpokladá sa, že kleptoparazitizmus je skôr doplnkom potravy získanej lovom, než významnou súčasťou potravy niektorého druhu; v štúdii o fregatách veľkých kradnúcich maskám sa odhaduje, že fregaty kradli najviac 40 % potravy a v priemere ukradli len 5 %. Ostatné vtáky sú mrchožrúti; niektoré z nich, ako napríklad supy, sú špecializovaní požierači zdochlín, zatiaľ čo iné, ako napríklad čajky, krkavcovité vtáky alebo iné dravé vtáky, sú oportunisti.

Vodu potrebujú mnohé vtáky, hoci spôsob vylučovania a nedostatok potných žliaz znižuje ich fyziologické nároky. Niektoré púštne vtáky môžu svoju potrebu vody získať výlučne z vlhkosti v potrave. Môžu mať aj iné adaptácie, ako napríklad umožnenie zvýšenia telesnej teploty, čím sa šetrí strata vlhkosti pri evaporačnom ochladzovaní alebo dýchaní. Morské vtáky môžu piť morskú vodu a vo vnútri hlavy majú soľné žľazy, ktoré odstraňujú prebytočnú soľ z nozdier.

Niektoré druhy vtákov podnikajú kratšie migrácie a cestujú len tak ďaleko, aby sa vyhli zlému počasiu alebo získali potravu. Takouto skupinou sú napríklad boreálne pinky, ktoré sa v jednom roku bežne vyskytujú na určitom mieste a v ďalšom roku sa tam nenachádzajú. Tento typ migrácie je zvyčajne spojený s dostupnosťou potravy. Druhy môžu cestovať aj na kratšie vzdialenosti v časti svojho areálu, pričom jedince z vyšších zemepisných šírok cestujú do existujúceho areálu konspecifických druhov; iné druhy podnikajú čiastočné migrácie, keď migruje len časť populácie, zvyčajne samice a subdominantné samce. Čiastočná migrácia môže v niektorých regiónoch tvoriť veľké percento migračného správania vtákov; v Austrálii sa prieskumami zistilo, že 44 % vtákov, ktoré nie sú vtáky sťahovavé, a 32 % vtákov sťahovavých je čiastočne migračných. Výšková migrácia je forma migrácie na krátke vzdialenosti, pri ktorej vtáky trávia hniezdnu sezónu vo vyšších nadmorských výškach a počas suboptimálnych podmienok sa presúvajú do nižších. Najčastejšie je vyvolaná zmenami teplôt a zvyčajne k nej dochádza vtedy, keď sa aj bežné teritóriá stanú nehostinnými v dôsledku nedostatku potravy. 80 Niektoré druhy môžu byť aj nomádske, nedržia žiadne pevné teritórium a presúvajú sa podľa počasia a dostupnosti potravy. Papagáje ako čeľaď nie sú v drvivej väčšine ani sťahovavé, ani usadlé, ale považujú sa buď za disperzné, irruptívne, nomádske, alebo podnikajú malé a nepravidelné migrácie[81].

Prekvapujúce prejavy slnečnice napodobňujú veľkého dravca.

Vtáky sa dorozumievajú predovšetkým vizuálnymi a zvukovými signálmi. Signály môžu byť medzidruhové (medzi druhmi) a vnútrodruhové (v rámci druhu).

Vtáky niekedy používajú operenie na hodnotenie a potvrdenie sociálnej dominancie,[85] na preukázanie stavu v rozmnožovaní u pohlavne vybraných druhov alebo na výhražné prejavy, ako je to v prípade slnečnice, ktorá napodobňuje veľkého dravca, aby odohnala jastraba a ochránila mladé mláďatá.[86] Rozdiely v operení umožňujú aj identifikáciu vtákov, najmä medzi jednotlivými druhmi. Vizuálna komunikácia medzi vtákmi môže zahŕňať aj ritualizované prejavy, ktoré sa vyvinuli z nesignalizovaných činností, ako je napríklad preliezanie, úprava polohy peria, ďobanie alebo iné správanie. Tieto prejavy môžu signalizovať agresiu alebo podriadenosť alebo môžu prispievať k vytváraniu párových väzieb. Najprepracovanejšie prejavy sa vyskytujú počas pytačiek, kde sa „tance“ často tvoria zo zložitých kombinácií mnohých možných pohybov;[87] od kvality takýchto prejavov môže závisieť reprodukčný úspech samcov[88].

Volanie spevavca domového, bežného severoamerického spevavca

Vtáčie volania a spevy, ktoré sa vytvárajú v syrinxe, sú hlavným prostriedkom, ktorým vtáky komunikujú pomocou zvuku. Táto komunikácia môže byť veľmi zložitá; niektoré druhy môžu používať obe strany syrinxu nezávisle, čo umožňuje súčasné vydávanie dvoch rôznych piesní.
Volania sa používajú na rôzne účely, vrátane priťahovania partnerov, hodnotenia potenciálnych partnerov,[89] vytvárania väzieb, nárokovania si a udržiavania teritórií, identifikácie iných jedincov (napríklad keď rodičia hľadajú mláďatá v kolóniách alebo keď sa pár spája na začiatku hniezdneho obdobia)[90] a varovania iných vtákov pred potenciálnymi predátormi, niekedy s konkrétnymi informáciami o povahe hrozby[91]. niektoré vtáky používajú na zvukovú komunikáciu aj mechanické zvuky. Novozélandské bekasíny Coenocorypha poháňajú vzduch cez perie,[92] ďatle bubnujú teritoriálne a kakadu palmový používa na bubnovanie nástroje[93].

Flocking a iné združenia

Najpočetnejší druh vtákov, kvíčaly červenokrídle,[94] tvoria obrovské kŕdle – niekedy až desaťtisícové.

Vtáky niekedy vytvárajú združenia aj s nepôvodnými druhmi. Morské vtáky, ktoré sa potápajú, sa spájajú s delfínmi a tuniakmi, ktoré vytláčajú na hladinu vyplavené ryby.[97] Roháče majú mutualistický vzťah s mongolmi trpasličími, v ktorom sa spoločne živia a navzájom sa varujú pred blízkymi dravcami a inými predátormi.[98]

Mnohé vtáky, ako napríklad tento plameniak americký, si počas spánku schovávajú hlavu na chrbát.

Vysokú rýchlosť metabolizmu vtákov počas aktívnej časti dňa dopĺňa odpočinok v ostatných obdobiach. Spiace vtáky často využívajú typ spánku známy ako bdelý spánok, pri ktorom sa obdobia odpočinku striedajú s rýchlymi „pohľadmi“ s otvorenými očami, čo im umožňuje citlivo reagovať na vyrušovanie a umožňuje rýchly únik pred hrozbami [99].[100] Predpokladá sa, že môžu existovať určité druhy spánku, ktoré sú možné aj počas letu.“[101] Niektoré vtáky tiež preukázali schopnosť upadnúť do spánku s pomalými vlnami jednej mozgovej hemisféry naraz. Vtáky majú tendenciu uplatňovať túto schopnosť v závislosti od svojej polohy vzhľadom na vonkajšiu časť kŕdľa. To môže umožniť oku oproti spiacej hemisfére zostať ostražité voči predátorom tým, že sleduje vonkajšie okraje kŕdľa. Táto adaptácia je známa aj u morských cicavcov. 102] Spoločné hniezdenie je bežné, pretože znižuje straty telesného tepla a znižuje riziká spojené s predátormi. 103] Miesta hniezdenia sa často vyberajú s ohľadom na termoreguláciu a bezpečnosť. 104

Mnohé spiace vtáky skláňajú hlavu nad chrbát a zastrkujú zobák do chrbtového peria, iné si ho však dávajú medzi prsné perá. Mnohé vtáky odpočívajú na jednej nohe, zatiaľ čo niektoré si môžu nohy stiahnuť do peria, najmä v chladnom počasí. Ostriežovité vtáky majú šľachový blokovací mechanizmus, ktorý im pomáha udržať sa na bidle, keď spia. Mnohé pozemné vtáky, napríklad prepelice a bažanty, hniezdia na stromoch. Niekoľko papagájov rodu Loriculus hniezdi zavesených dolu hlavou. 105 Niektoré kolibríky prechádzajú do nočného stavu torporu sprevádzaného znížením rýchlosti metabolizmu. 106 Táto fyziologická adaptácia sa prejavuje u takmer stovky ďalších druhov, vrátane sovy nočnej, nočných vtákov a lelkov. Jeden druh, chochláč obyčajný, dokonca prechádza do stavu hibernácie.[107] Vtáky nemajú potné žľazy, ale môžu sa ochladzovať presunom do tieňa, státím vo vode, dýchaním, zväčšovaním povrchu tela, chvením hrdla alebo špeciálnym správaním, ako je urohidróza, aby sa ochladili.

Podobne ako ostatné druhy z tejto čeľade má samec rajského vtáka Raggiana prepracované hniezdne operanie, ktorým chce zapôsobiť na samičky.[108]

Deväťdesiatpäť percent vtáčích druhov je spoločensky monogamných. Tieto druhy tvoria páry minimálne počas celej hniezdnej sezóny alebo – v niektorých prípadoch – počas niekoľkých rokov alebo až do smrti jedného z partnerov.[109] Monogamia umožňuje dvojpárovú starostlivosť, ktorá je dôležitá najmä pre druhy, u ktorých samice potrebujú pomoc samcov pri úspešnej výchove mláďat.[110] Medzi mnohými spoločensky monogamnými druhmi je bežná mimopárová kopulácia (nevera).[111] Takéto správanie sa zvyčajne vyskytuje medzi dominantnými samcami a samicami spárovanými s podriadenými samcami, ale môže byť aj výsledkom vynútenej kopulácie u kačíc a iných anatidov. 112] Pre samice je možným prínosom mimopárovej kopulácie získanie lepších génov pre jej potomstvo a poistenie sa proti možnosti neplodnosti u jej partnera. 113] Samce druhov, ktoré sa zapájajú do mimopárových kopulácií, si starostlivo strážia svoje partnerky, aby zabezpečili rodičovstvo potomstva, ktoré vychovávajú. 114

Vyskytujú sa aj iné systémy párenia vrátane polygýnie, polyandrie, polygamie, polygynandrie a promiskuity. Polygamné systémy rozmnožovania vznikajú vtedy, keď sú samice schopné vychovávať potomstvo bez pomoci samcov. Niektoré druhy môžu v závislosti od okolností používať viac ako jeden systém.

Hniezdenie zvyčajne zahŕňa určitú formu dvorenia, ktorú zvyčajne predvádza samec.Väčšina prejavov je pomerne jednoduchá a zahŕňa určitý druh spevu. Niektoré prejavy sú však pomerne komplikované. V závislosti od druhu môžu zahŕňať bubnovanie krídlami alebo chvostom, tancovanie, vzdušné lety alebo spoločný lekking. Samice sú vo všeobecnosti tými, ktoré riadia výber partnera,[116] hoci u polyandrických falárov je to opačne: jednoduchšie samce si vyberajú pestro sfarbené samice.[117] Námluvy, kŕmenie, účtovanie a alopreening sa bežne vykonávajú medzi partnermi, spravidla po tom, ako sa vtáky spárujú a spárujú.

Teritóriá, hniezdenie a inkubácia

Samce tkáčov zlatohrdlých si stavajú zložité závesné hniezda z trávy.

Všetky vtáky znášajú amniotické vajcia s tvrdou škrupinou, ktorá sa skladá prevažne z uhličitanu vápenatého. Druhy hniezdiace v dierach a norách znášajú zvyčajne biele alebo svetlé vajcia, zatiaľ čo druhy hniezdiace v otvorených hniezdach znášajú maskované vajcia. Z tohto vzorca však existuje mnoho výnimiek; noční vtáci hniezdiaci na zemi majú bledé vajcia a kamufláž im namiesto toho zabezpečuje operenie. Druhy, ktoré sú obeťami parazitov na mláďatách, majú rôzne farby vajec, aby sa zvýšila šanca spozorovať vajce parazita, čo núti samičky parazitov prispôsobiť svoje vajcia vajciam hostiteľa[119].

Vtáčie vajcia sa zvyčajne znášajú do hniezda. Väčšina druhov si vytvára trochu komplikované hniezda, ktoré môžu mať podobu šálok, kupolí, dosiek, škrabancov, kopcov alebo nôr.Niektoré vtáčie hniezda sú však veľmi primitívne, napríklad hniezda albatrosov sú len škrabance na zemi. Väčšina vtákov si stavia hniezda na chránených, skrytých miestach, aby sa vyhli predátorom, ale veľké alebo koloniálne vtáky – ktoré sú schopnejšie obrany – si môžu stavať otvorenejšie hniezda. Pri stavbe hniezda niektoré druhy vyhľadávajú rastlinnú hmotu z rastlín s toxínmi znižujúcimi výskyt parazitov, aby zlepšili prežitie mláďat,[121] a na izoláciu hniezda sa často používa perie. 120 Niektoré druhy vtákov nemajú hniezda; lastovička obyčajná hniezdiaca na útesoch kladie vajcia na holú skalu a samce tučniaka cisárskeho držia vajcia medzi telom a nohami. Absencia hniezd je obzvlášť častá u druhov hniezdiacich na zemi, kde sú čerstvo vyliahnuté mláďatá predkociálne.

Hniezdo penice východnej, na ktorom parazitoval vták hnedohlavý

Rodičovská starostlivosť a vyletenie

Mláďatá sa v čase vyliahnutia vyvíjajú od bezmocných až po samostatné, v závislosti od druhu. Bezmocné mláďatá sa označujú ako altriciálne a rodia sa malé, slepé, nepohyblivé a nahé; mláďatá, ktoré sú po vyliahnutí pohyblivé a operené, sa označujú ako prekociálne. Altriciálne mláďatá potrebujú pomoc pri termoregulácii a musia byť chované dlhšie ako prekociálne mláďatá. Mláďatá, ktoré sa nenachádzajú ani v jednom z týchto extrémov, môžu byť poloprekociálne alebo poloaltríciálne.

Samička kolibríka Calliope kŕmi dospelé mláďatá

Dĺžka a charakter rodičovskej starostlivosti sa v jednotlivých radoch a druhoch veľmi líši. Na jednej strane sa rodičovská starostlivosť končí vyliahnutím mláďaťa; čerstvo vyliahnuté mláďa sa samo vyhrabáva z hniezdnej kopy bez pomoci rodičov a dokáže sa o seba okamžite postarať[124]. Na druhej strane majú mnohé morské vtáky dlhšie obdobie rodičovskej starostlivosti, najdlhšie u fregatky veľkej, ktorej mláďatá sa liahnu až šesť mesiacov a rodičia ich kŕmia až ďalších 14 mesiacov[125].

U niektorých druhov sa o mláďatá a mláďatá starajú obaja rodičia, u iných je táto starostlivosť len na jednom pohlaví. U niektorých druhov pomáhajú s výchovou mláďat aj iní príslušníci toho istého druhu – zvyčajne blízki príbuzní hniezdiaceho páru, napríklad potomkovia z predchádzajúcich znášok.[126] Takéto aloparentálne rodičovstvo je bežné najmä u čeľade Corvida, do ktorej patria také vtáky ako pravé vrany, austrálske straky a víly,[127] ale bolo pozorované aj u tak odlišných druhov, ako sú strelec a kane červené. Medzi väčšinou skupín zvierat je rodičovská starostlivosť samcov zriedkavá. U vtákov je však celkom bežná – viac ako u ktorejkoľvek inej triedy stavovcov. Hoci obrana teritória a hniezdiska, inkubácia a kŕmenie mláďat sú často spoločné úlohy, niekedy dochádza k deľbe práce, pri ktorej jeden z partnerov preberá všetky alebo väčšinu konkrétnych povinností[128].

Moment vyletenia mláďat sa výrazne líši. Mláďatá murárikov synthliboramphus, podobne ako murárik starobylý, opúšťajú hniezdo v noci po vyliahnutí a nasledujú svojich rodičov do mora, kde sú vychovávané mimo dosahu suchozemských predátorov.[129] Niektoré iné druhy, ako napríklad kačice, presúvajú svoje mláďatá z hniezda v ranom veku. U väčšiny druhov mláďatá opúšťajú hniezdo tesne pred tým, ako sú schopné lietať, alebo krátko po tom, ako sú schopné lietať. Mláďatá albatrosov opúšťajú hniezdo samé a nedostávajú žiadnu ďalšiu pomoc, zatiaľ čo iné druhy pokračujú v určitom prikrmovaní aj po vyletení[130]. Mláďatá môžu nasledovať svojich rodičov aj počas ich prvej migrácie[131].

Trsteniarik pestujúci kukučku obyčajnú, parazita na mláďatách.

Parazitizmus na mláďatách, pri ktorom znáška zanecháva svoje vajíčka v mláďatách iného jedinca, je medzi vtákmi bežnejší ako u iných druhov organizmov.[132] Po tom, čo parazitujúci vták znesie vajíčka do hniezda iného vtáka, hostiteľ ich často prijme a vychová na úkor vlastných mláďat. Vývržky môžu byť buď obligátne vývržky, ktoré musia klásť vajíčka do hniezd iných druhov, pretože nie sú schopné vychovať vlastné mláďatá, alebo neobligátne vývržky, ktoré niekedy kladú vajíčka do hniezd konspecifických druhov, aby zvýšili svoju reprodukčnú produkciu, hoci by mohli vychovať vlastné mláďatá.[133] Obligátnymi parazitmi je sto druhov vtákov vrátane medozvestiek, ikterov, estrildidných pěnkav a kačíc, hoci najznámejšie sú kukučky. niektoré brojlerové parazity sú prispôsobené na to, aby sa vyliahli skôr ako mláďatá hostiteľa, čo im umožňuje zničiť hostiteľove vajcia ich vytlačením z hniezda alebo zabiť hostiteľove mláďatá; tým sa zabezpečí, že všetka potrava prinesená do hniezda sa dostane k parazitickým mláďatám[134].

Skua južná (vľavo) je univerzálny dravec, ktorý loví vajcia iných vtákov, ryby, zdochliny a iné zvieratá. Táto skua sa pokúša vytlačiť tučniaka adelského (vpravo) z jeho hniezda

Vtáky zaujímajú širokú škálu ekologických pozícií.Niektoré vtáky sú generalisti, iné sú vysoko špecializované z hľadiska svojich životných podmienok alebo potravných nárokov. Dokonca aj v rámci jedného biotopu, ako je les, sa niky obsadené rôznymi druhmi vtákov líšia, pričom niektoré druhy sa živia v korunách lesov, iné pod korunami a ďalšie na lesnej pôde. Lesné vtáky môžu byť hmyzožravce, frugožravce a nektarivožravce. Vodné vtáky sa spravidla živia rybolovom, konzumáciou rastlín a pirátstvom alebo kleptoparazitizmom. Dravé vtáky sa špecializujú na lov cicavcov alebo iných vtákov, zatiaľ čo supy sú špecializovaní mrchožrúti. Avivory sú živočíchy, ktoré sa špecializujú na lovenie vtákov.

Niektoré vtáky, ktoré sa živia nektárom, sú dôležitými opeľovačmi a mnohé frugivory zohrávajú kľúčovú úlohu pri šírení semien.Rastliny a opeľujúce vtáky sa často vyvíjajú spoločne[136] a v niektorých prípadoch je primárny opeľovač kvetu jediným druhom, ktorý je schopný dosiahnuť jeho nektár[137].

Vtáky sú často dôležité pre ostrovnú ekológiu. Vtáky sa často dostali na ostrovy, kam sa cicavce nedostali, a na týchto ostrovoch môžu plniť ekologické úlohy, ktoré zvyčajne plnia väčšie zvieratá. Napríklad na Novom Zélande boli moa dôležitými prehliadačmi, rovnako ako dnes Kereru a Kokako[135]. Dnes si rastliny Nového Zélandu zachovali obranné adaptácie, ktoré sa vyvinuli na ich ochranu pred vyhynutými moa[136]. hniezdiace morské vtáky môžu tiež ovplyvniť ekológiu ostrovov a okolitých morí, najmä prostredníctvom koncentrácie veľkého množstva guána, ktoré môže obohatiť miestnu pôdu[137] a okolité moria[138].

Na výskum ekológie vtákov sa používa široká škála terénnych metód vrátane sčítania, monitorovania hniezd, odchytu a označovania.

Priemyselný chov kurčiat

Keďže vtáky sú dobre viditeľné a bežné živočíchy, ľudia s nimi majú vzťahy od úsvitu ľudstva.Niekedy sú tieto vzťahy mutualistické, ako napríklad spoločné zbieranie medu medzi medovníkmi a africkými národmi, napríklad Boranmi.Niekedy môžu byť komenzálne, ako keď druhy, ako napríklad vrabec domový[143], profitujú z ľudských aktivít. Niektoré druhy vtákov sa stali komerčne významnými poľnohospodárskymi škodcami[144] a niektoré predstavujú nebezpečenstvo pre letectvo[145].

Náboženstvo, folklór a kultúra

„Vtáčia trojka“ od Majstra hracích kariet, 15. storočie, Nemecko

Vtáky hrajú významnú a rôznorodú úlohu vo folklóre, náboženstve a ľudovej kultúre. V náboženstve môžu vtáky slúžiť buď ako poslovia, alebo ako kňazi a vodcovia božstva, ako napríklad v kulte Makemake, v ktorom Tangata manu z Veľkonočného ostrova slúžili ako náčelníci,[146] alebo ako sprievodcovia, ako v prípade Hugina a Munina, dvoch havranov, ktorí šepkali správy do uší severského boha Odina.[147] Kňazi sa zaoberali veštením alebo výkladom slov vtákov, zatiaľ čo „auspex“ (od ktorého je odvodené slovo „priaznivý“) sledoval ich činnosť, aby predpovedal udalosti.[148] Mohli slúžiť aj ako náboženské symboly, ako keď Jonáš (hebr. יוֹנָה, holubica) stelesňoval strach, pasivitu, smútok a krásu, ktoré sa tradične spájajú s holubicami.[149] Samotné vtáky boli zbožštené, ako v prípade páva obyčajného, ktorého indickí Drávidi vnímajú ako Matku Zem.[150] Niektoré vtáky boli vnímané aj ako príšery, vrátane mytologického Roca a maorského legendárneho Pouākai, obrovského vtáka schopného chytiť človeka.[151]

Vtáky sa v kultúre a umení objavovali už od praveku, keď boli zobrazené na prvých jaskynných maľbách.Neskôr sa vtáky používali v náboženskom alebo symbolickom umení a dizajne, ako napríklad veľkolepý páví trón mughalských a perzských cisárov.S príchodom vedeckého záujmu o vtáky sa mnohé obrazy vtákov objednávali pre knihy. Medzi najznámejších umelcov vtákov patril John James Audubon, ktorého maľby severoamerických vtákov mali v Európe veľký komerčný úspech a ktorý neskôr prepožičal svoje meno Národnej Audubonovej spoločnosti.154 Vtáky sú tiež dôležitými postavami v poézii; napríklad Homér zakomponoval slávika do svojej Odysey a Catullus použil vrabca ako erotický symbol v diele Catullus 2.[155] Vzťah medzi albatrosom a námorníkom je ústredným motívom diela Samuela Taylora Coleridgea The Rime of the Ancient Mariner, čo viedlo k použitiu tohto termínu ako metafory pre „bremeno“[156]. Ďalšie anglické metafory pochádzajú z vtákov; napríklad fondy vulture funds a vulture investors majú svoj názov od mrchožravého supa[157].

Vnímanie rôznych druhov vtákov sa v rôznych kultúrach často líši. Sovy sa v niektorých častiach Afriky spájajú so smolou, čarodejníctvom a smrťou,[158] ale vo veľkej časti Európy sa považujú za múdre[159]. Dudky sa v starovekom Egypte považovali za posvätné a v Perzii za symboly cnosti, ale vo veľkej časti Európy sa považovali za zlodejov a v Škandinávii za predzvesť vojny[160].

Kategórie
Psychologický slovník

Putamen

Putamen je okrúhla štruktúra nachádzajúca sa na báze predného mozgu (telencefala). Putamen a kaudátové jadro spolu tvoria dorzálne striatum. Je tiež jednou zo štruktúr bazálnych ganglií. Prostredníctvom rôznych dráh je prepojené najmä so substantia nigra a globus pallidus. Hlavnou funkciou putamen je regulácia pohybov a ovplyvňovanie rôznych typov učenia. Na plnenie svojich funkcií využíva dopamínové mechanizmy. Putamen zohráva úlohu aj pri degeneratívnych neurologických poruchách, ako je Parkinsonova choroba.

Slovo „putamen“ pochádza z latinčiny a označuje to, čo odpadáva pri prerezávaní, od „puto“, prerezávať. Vyslovuje sa pyu-ta´men.

V minulosti sa uskutočnilo len veľmi málo štúdií, ktoré sa zameriavali konkrétne na putamen. Bolo však vykonaných mnoho štúdií o bazálnych gangliách a o tom, ako na seba navzájom pôsobia mozgové štruktúry, ktoré ich tvoria. V 70. rokoch minulého storočia sa uskutočnili prvé záznamy jednotlivých jednotiek na opiciach, ktoré sledovali aktivitu pallidálnych neurónov súvisiacu s pohybom.

Putamen je štruktúra v prednom mozgu a spolu s kaudátovým jadrom tvorí dorzálne striatum. Kaudát a putamen obsahujú rovnaké typy neurónov a okruhov – mnohí neuroanatómovia považujú dorzálne striatum za jednu štruktúru, rozdelenú na dve časti veľkým vláknovým traktom, vnútornou kapsulou, ktorá prechádza stredom. Spolu s globus pallidus tvorí šošovkovité jadro. Putamen je tiež najvzdialenejšou časťou bazálnych ganglií. Ide o skupinu jadier v mozgu, ktoré sú prepojené s mozgovou kôrou, talamom a mozgovým kmeňom. Medzi ďalšie časti bazálnych ganglií patrí dorzálne striatum, substantia nigra, nucleus accumbens a subtalamické jadro. Bazálne gangliá u cicavcov súvisia s motorickou kontrolou, poznávaním, emóciami a učením. Bazálne gangliá sa nachádzajú na ľavej a pravej strane mozgu a majú rostrálne a kaudálne delenie. Putmen sa nachádza v rostrálnom delení ako súčasť striata. Bazálne gangliá dostávajú vstupy z mozgovej kôry prostredníctvom striata.

Kaudát spolupracuje s putamen a prijíma vstupné informácie z mozgovej kôry. Možno ich považovať za „vstup“ do bazálnych ganglií. Nucleus accumbens a mediálny kaudát prijímajú vstupy z frontálnej kôry a limbických oblastí. Putamen a caudate sú spoločne prepojené so substantia nigra, ale väčšina ich výstupu smeruje do globus pallidus.

Substantia nigra obsahuje dve časti: substantia nigra pars compacta (SNpc) a substantia nigra pars reticulata (SNpr). SNpc získava vstupné informácie z putamen a kaudátu a posiela ich späť. SNpr tiež získava vstupné informácie z putamen a caudate. Vstupné údaje však posiela mimo bazálnych ganglií na riadenie pohybov hlavy a očí. SNpc produkuje dopamín, ktorý je kľúčový pre pohyby. SNpc je časť, ktorá degeneruje počas Parkinsonovej choroby1.

Globus pallidus obsahuje dve časti: globus pallidus externa (GPe) a globus pallidus interna (GPi). Obe oblasti získavajú vstupné informácie z putamenu a kaudátu a komunikujú so subtalamickým jadrom. Väčšinou však GPi vysiela inhibičný výstup z bazálnych ganglií do talamu. GPi vysiela aj niekoľko projekcií do častí stredného mozgu, o ktorých sa predpokladá, že ovplyvňujú kontrolu postoja1.

Aby putamen mohol riadiť pohyby, musí spolupracovať s ostatnými štruktúrami, ktoré spolu s ním tvoria bazálne gangliá. Medzi ne patrí kaudátové jadro a globus pallidus. Tieto dve štruktúry a putamen na seba vzájomne pôsobia prostredníctvom série priamych a nepriamych inhibičných dráh. Priama dráha pozostáva z dvoch inhibičných dráh, ktoré vedú z putamen do substantia nigra a vnútorného globus pallidus. Táto dráha využíva neurotransmitery dopamín, GABA a substanciu P. Nepriama dráha pozostáva z troch inhibičných dráh, ktoré idú z putamen a caudate nucleus do vonkajšej oblasti globus pallidus. Táto dráha využíva dopamín, GABA a enkefalín. Keď dôjde k vzájomnému ovplyvňovaniu a prepletaniu týchto dvoch typov dráh, dochádza k mimovoľným pohybom.

Jedným z hlavných neurotransmiterov, ktoré putamen reguluje, je dopamín. Keď bunkové telo vystrelí akčný potenciál, z presynaptických terminálov putamenu a kaudátového jadra sa uvoľní dopamín. Keďže projekcie z putamen a kaudátového jadra modulujú dendrity substantia nigra, dopamín ovplyvňuje substantia nigra, čo má vplyv na motorické plánovanie. Rovnaký mechanizmus sa podieľa na vzniku závislosti. S cieľom kontrolovať množstvo dopamínu v synaptickej medzere a množstvo dopamínu viažuceho sa na postsynaptické terminály dopaminergné terminály vychytávajú prebytočný dopamín.

Putamen zohráva úlohu aj pri regulácii iných neurotransmiterov. Uvoľňuje GABA, enkefalín, substanciu P, acetylcholín a prijíma serotonín a glutamát. Väčšina týchto neurotransmiterov zohráva úlohu pri kontrole motoriky2.

Hoci putamen má mnoho funkcií, dospelo sa k záveru, že nemá žiadnu špecifickú špecializáciu. Keďže je však putamen prepojený s mnohými ďalšími štruktúrami, funguje v spojení s nimi pri riadení mnohých typov motorických zručností. Patrí medzi ne kontrola motorického učenia, motorického výkonu a úloh3 , motorickej prípravy4 , špecifikácia amplitúd pohybu5 a pohybových sekvencií6. Niektorí neurológovia predpokladajú, že putamen zohráva úlohu aj pri výbere pohybu (ako pri Tourettovom syndróme) a automatickom vykonávaní predtým naučených pohybov (ako pri Parkinsonovej chorobe)7.

V jednej štúdii sa zistilo, že putamen riadi pohyb končatín. Cieľom tejto štúdie bolo zistiť, či konkrétna aktivita buniek v putamene primátov súvisí so smerom pohybu končatín alebo so základným vzorom svalovej aktivity. Dve opice boli trénované na vykonávanie úloh, ktoré zahŕňali pohyb bremien. Úlohy boli vytvorené tak, aby bolo možné odlíšiť pohyb od svalovej aktivity. Neuróny v putamene boli vybrané na monitorovanie len vtedy, ak súviseli s úlohou aj s pohybmi ruky mimo úlohy. Ukázalo sa, že 50 % monitorovaných neurónov súviselo so smerom pohybu nezávisle od záťaže8.

Ďalšia štúdia bola zameraná na skúmanie rozsahu a rýchlosti pohybu pomocou PET mapovania regionálneho mozgového prietoku krvi u 13 ľudí. Pohybové úlohy sa vykonávali pomocou kurzora ovládaného joystickom. Vykonali sa štatistické testy na výpočet rozsahu pohybov a toho, s akými oblasťami mozgu korešpondujú. Zistilo sa, že „zvyšujúci sa rozsah pohybu bol spojený s paralelným zvýšením rCBF v bilaterálnych bazálnych gangliách (BG; putamen a globus pallidus) a ipsilaterálnom mozočku“. To dokazuje nielen to, že putamen ovplyvňuje pohyb, ale aj to, že sa integruje s inými štruktúrami s cieľom vykonávať úlohy9.

Jedna štúdia bola vykonaná s cieľom konkrétne preskúmať, ako bazálne gangliá ovplyvňujú učenie sekvenčných pohybov. Dve opice boli naučené stláčať sériu tlačidiel v sekvencii. Použité metódy boli navrhnuté tak, aby bolo možné sledovať dobre naučené úlohy a nové úlohy. Muscimol sa vstrekoval do rôznych častí bazálnych ganglií a zistilo sa, že „učenie nových sekvencií sa stalo nedostatočným po injekciách do predného kaudátu a putamenu, ale nie do stredného zadného putamenu“. To ukazuje, že pri vykonávaní rôznych aspektov učenia sa sekvenčných pohybov sa využívajú rôzne oblasti striata10.

V mnohých štúdiách sa ukázalo, že putamen zohráva úlohu v mnohých typoch učenia. Niektoré príklady sú uvedené nižšie:

Posilňovanie a implicitné učenie

Popri rôznych typoch pohybu putamen ovplyvňuje aj učenie posilňovaním a implicitné učenie11. Posilňovacie učenie je interakcia s prostredím a stravovacie činnosti s cieľom maximalizovať výsledok. Implicitné učenie je pasívny proces, pri ktorom sú ľudia vystavení informáciám a získavajú vedomosti prostredníctvom expozície. Hoci presné mechanizmy nie sú známe, je jasné, že kľúčovú úlohu tu zohráva dopamín a tonicky aktívne neuróny. Tonicky aktívne neuróny sú cholinergné interneuróny, ktoré horia počas celého trvania podnetu a horia rýchlosťou približne 0,5 – 3 impulzy za sekundu. Tonicky aktívne neuróny sú opakom a vystrelia akčný potenciál len vtedy, keď dôjde k pohybu12.

V experimente bolo použitých sedem účastníkov s léziou bazálnych ganglií a deväť kontrolných účastníkov. Je dôležité poznamenať, že kaudát nebol postihnutý. Účastníci boli testovaní na každý typ učenia počas samostatných sedení, aby sa informačné procesy navzájom nerušili. Počas každého sedenia účastníci sedeli pred počítačovou obrazovkou a zobrazovali sa rôzne riadky. Tieto riadky boli vytvorené pomocou techniky náhodného výberu, pri ktorej sa náhodné vzorky vyberali z jednej zo štyroch kategórií. Pri testovaní na základe pravidiel sa tieto vzorky použili na vytvorenie čiar rôznej dĺžky a orientácie, ktoré patrili do týchto štyroch samostatných kategórií. Po zobrazení podnetu boli pokusné osoby požiadané, aby stlačili 1 zo 4 tlačidiel a označili, do ktorej kategórie daná čiara patrí. Rovnaký postup sa zopakoval pri úlohách zameraných na integráciu informácií a použili sa rovnaké podnety, len hranice kategórií boli otočené o 45°. Toto otočenie spôsobilo, že subjekt musel integrovať kvantitatívne informácie o čiare predtým, ako určil, do ktorej kategórie patrí.

Zistilo sa, že subjekty v experimentálnej skupine boli oslabené pri vykonávaní úloh založených na pravidlách, ale nie na integrácii informácií. Po štatistickom testovaní sa tiež predpokladalo, že mozog začal používať informačno-integračné techniky na riešenie úloh založených na pravidlách. Keďže úlohy založené na pravidlách využívajú systém testovania hypotéz v mozgu, možno konštatovať, že systém testovania hypotéz v mozgu bol poškodený/oslabený. Je známe, že kaudát a pracovné pamäte sú súčasťou tohto systému. Preto sa potvrdilo, že putamen je zapojený do kategórie učenia, súťaže medzi systémami, spätného spracovania v úlohách založených na pravidlách a podieľa sa na spracovaní prefrontálnych oblastí (ktoré súvisia s pracovnou pamäťou a výkonnými funkciami). Teraz je známe, že nielen bazálne gangliá a kaudát ovplyvňujú učenie sa kategórií13.

Nedávne predbežné štúdie naznačujú, že putamen môže zohrávať úlohu v „okruhu nenávisti“ mozgu. Nedávnu štúdiu uskutočnila londýnska katedra bunkovej a vývojovej biológie na University College London. Na pacientoch sa robila fMRI, pričom si pozerali obrázok ľudí, ktorých nenávideli, a ľudí, ktorí boli „neutrálni“. Počas experimentu sa pri všetkých obrázkoch zaznamenávalo skóre nenávisti. Aktivita v podkôrových oblastiach mozgu naznačuje, že okruh nenávisti zahŕňa putamen a insula. Predpokladá sa, že „putamen zohráva úlohu pri vnímaní pohŕdania a znechutenia a môže byť súčasťou motorického systému, ktorý je mobilizovaný na konanie.“ Títo vedci tiež zistili, že množstvo aktivity v okruhu nenávisti koreluje s množstvom nenávisti, ktorú človek deklaruje, čo by mohlo mať právne dôsledky týkajúce sa zlomyseľných trestných činov14.

Po objavení funkcie putamen sa neurológovia presvedčili, že putamen a bazálne gangliá zohrávajú dôležitú úlohu pri Parkinsonovej chorobe a iných ochoreniach, ktoré zahŕňajú degeneráciu neurónov15. Parkinsonova choroba je pomalá a trvalá strata dopaminergných neurónov v substantia nigra pars compacta. Pri Parkinsonovej chorobe hrá putamen kľúčovú úlohu, pretože jeho vstupy a výstupy sú prepojené so substantia nigra a globus pallidus. Pri Parkinsonovej chorobe sa znižuje aktivita v priamych dráhach do vnútorného globus pallidus a zvyšuje sa aktivita v nepriamych dráhach do vonkajšieho globus pallidus. Tieto činnosti spoločne spôsobujú nadmernú inhibíciu talamu. To je dôvod, prečo majú pacienti s Parkinsonovou chorobou tras a problémy s vykonávaním mimovoľných pohybov. Tiež sa zistilo, že pacienti s Parkinsonovou chorobou majú problémy s motorickým plánovaním. Musia myslieť na všetko, čo robia, a nedokážu vykonávať inštinktívne úlohy bez toho, aby sa sústredili na to, čo robia.

Iné choroby a poruchy

Putamen u iných živočíchov

Putamen u ľudí má podobnú štruktúru a funkciu ako u iných zvierat. Preto bolo vykonaných mnoho štúdií týkajúcich sa putamen na zvieratách (opice, potkany atď.), ako aj na ľuďoch.

1Alexander GE, Crutcher MD. Funkčná architektúra obvodov bazálnych ganglií: nervové substráty paralelného spracovania. Trends Neurosci. 1990 Jul;13(7):266-71. Recenzia.

2Crutcher, Michael D.Telefonický rozhovor. 19. novembra 2008.

3DeLong MR, Alexander GE, Georgopoulos AP, Crutcher MD, Mitchell SJ, Richardson RT. Úloha bazálnych ganglií pri pohyboch končatín. Hum Neurobiol. 1984;2(4):235-44.

4Alexander GE, Crutcher MD. Príprava na pohyb: nervové reprezentácie zamýšľaného smeru v troch motorických oblastiach opice. J Neurophysiol. 1990 Jul;64(1):133-50.

5Delong MR, Georgopoulos AP, Crutcher MD, Mitchell SJ, Richardson RT, Alexander GE. Funkčná organizácia bazálnych ganglií: prínos štúdií záznamu jednej bunky. Ciba Found Symp. 1984;107:64-82.

6Marchand, William R. a c d; Lee, James N. a c d; Thatcher, John W. b c; Hsu, Edward W. a c d; Rashkin, Esther c; Suchy, Yana c d; Chelune, Gordon c d; Starr, Jennifer a c; Barbera, Sharon Steadman c. Putamen coactivation during motor task execution. Neuroreport. 19(9):957-960, 11. júna 2008.

7Griffiths P. D.; Perry R. H.; Crossman A. R. Podrobná anatomická analýza neurotransmiterových receptorov v putamene a kaudáte pri Parkinsonovej a Alzheimerovej chorobe. Neuroscience Letters [0304-3940] GRIFFITHS yr:1994 vol:169 iss:1-2 pg:68

8Crutcher MD, DeLong MR. Štúdie jednotlivých buniek putamen primátov. II. Vzťahy k smeru pohybu a vzorcom svalovej aktivity. Exp Brain Res. 1984;53(2):244-58.

9Turner RS, Desmurget M, Grethe J, Crutcher MD, Grafton ST. Motorické podokruhy sprostredkujúce kontrolu rozsahu a rýchlosti pohybu. J Neurophysiol. 2003 Dec;90(6):3958-66. Epub 2003 Sep 3.

10Shigehiro Miyachi, Okihide Hikosaka, Kae Miyashita, Zoltán Kárádi, Miya Kato Rand. Diferenciálne úlohy opičieho striata pri učení sa sekvenčného pohybu ruky. Exp Brain Res (1997) 115:1-5.

11Mark G. Packard a ¬ Barbara J. Knowlton. Učenie a pamäťové funkcie bazálnych ganglií. Annual Review of Neuroscience. Roč. 25: 563-593, marec 2002.

12Hiroshi Yamada, Naoyuki Matsumoto a Minoru Kimura. Tonicky aktívne neuróny v Caudate Nucleus a Putamen primátov diferencovane kódujú motivačné výsledky konania. Journal of Neuroscience, 7. apríla 2004, 24(14):3500-3510.

13Ell SW, Marchant NL, Ivry RB. 2006. Fokálne lézie putamenu zhoršujú učenie v úlohách kategorizácie založených na pravidlách, ale nie na integrácii informácií. Neuropsychologia 44:1737-51

14Zeki S, Romaya JP. Neural Correlates of Hate. PLoS ONE 3(10): e3556. 29. októbra 2008.

15DeLong MR, Wichmann T. Obvody a poruchy obvodov bazálnych ganglií. Arch Neurol. 2007 Jan;64(1):20-4. Recenzia.

16de Jong LW, van der Hiele K, Veer IM, Houwing JJ, Westendorp RG, Bollen EL, de Bruin PW, Middelkoop HA, van Buchem MA, van der Grond J. Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study (Silne znížené objemy putamen a talamu pri Alzheimerovej chorobe: štúdia MRI). Brain (20. novembra 2008), awn278.

striatum: Putamen – Caudate nucleus

lentiformné jadro: Putamen – Globus pallidus (GPe, GPi)

Nucleus accumbens – Čuchový tuberkulus – Ostrovy Calleja

Vnútorné puzdro (predná končatina – Genu – zadná končatina, optické žiarenie)

Corona radiata – Vonkajšie kapsule – Extrémne kapsule

Pallidotalamické dráhy: Subtalamický fascikulus (Ansa lentikulis, Lenticular fasciculus) – Subtalamický fascikulus

Predné čuchové jadro – Predná perforovaná substancia – Čuchový bulbus

Čuchový trakt (mediálny čuchový pruh, laterálny čuchový pruh) – čuchový trigon

Substantia innominata (Bazálne optické jadro Meynertovo) – Jadro diagonálneho pásu

Diagonálny pás Broca – Stria terminalis

Vlastný hipokampus: CA1 – CA2 -CA3 – CA4

Zubatý gyrus: Zubatý pás

Alveus – Fimbria – Perforačná dráha – Schafferova kolaterála

anat (n/s/m/p/4/e/b/d/c/a/f/l/g)/phys/devp

noco (m/d/e/h/v/s)/cong/tumr, sysi/epon, injr

percent, iné (N1A/2AB/C/3/4/7A/B/C/D)

Kategórie
Psychologický slovník

Technika emocionálnej slobody

Techniky emocionálnej slobody (EFT) sú psychoterapeutickým nástrojom alternatívnej medicíny založeným na teórii, že negatívne emócie sú spôsobené poruchami v energetickom poli tela a že poklepávanie na meridiány pri myslení na negatívne emócie mení energetické pole tela a obnovuje jeho „rovnováhu“. Existujú dve štúdie, ktoré zrejme poukazujú na pozitívne výsledky používania týchto techník, ale ďalšia štúdia naznačuje, že je nerozoznateľná od placebo efektu. Kritici označili teóriu EFT za pseudovedeckú a naznačili, že akákoľvek užitočnosť pramení skôr z jej tradičnejších kognitívnych zložiek, ako je odvrátenie pozornosti od negatívnych myšlienok, než z manipulácie s údajnými „energetickými meridiánmi“.

EFT vytvoril Gary Craig v polovici 90. rokov 20. storočia a má byť zjednodušením a zdokonalením techniky terapie myšlienkovým poľom (TFT) Rogera Callahana. Craig sa začiatkom 90. rokov 20. storočia školil u Callahana. V roku 1993 bol Craig prvou osobou, ktorú Callahan vyškolil v jeho najpokročilejšom postupe, patentovanom postupe známom ako hlasová technológia. Craig na základe svojich skúseností zistil, že na poradí ťukacích bodov nezáleží a že špeciálne patentované postupy sú preto zbytočné, takže v polovici 90. rokov Callahanove postupy zjednodušil.

Zástancovia EFT tvrdia, že zmierňuje mnohé psychické a fyzické stavy vrátane depresie, úzkosti, posttraumatickej stresovej poruchy, celkového stresu, závislostí a fóbií. Extrémnejšie tvrdenia sa týkajú sklerózy multiplex a dokonca „všetkého od bežného prechladnutia až po rakovinu“. Základná technika EFT spočíva v tom, že sa v mysli drží znepokojujúca spomienka alebo emócia a súčasne sa prstami ťuká na sériu 12 špecifických bodov na tele, ktoré zodpovedajú meridiánom používaným v čínskej medicíne. Ak sa započítajú aj body prezývané „bod karate“, „bod gamut“ a „boľavý bod“, ktoré sa používajú na zvýšenie účinnosti liečby, je ich 15. Teória EFT, založená na starobylej teórii akupunktúry, hovorí, že negatívne emócie sú spôsobené poruchami v energetickom poli tela a že poklepávanie na meridiány pri myslení na negatívnu emóciu alebo udalosť mení energetické pole tela a obnovuje jeho „rovnováhu“.

Hlavný rozdiel medzi EFT a TFT nie je v princípoch, ale v aplikácii. Pri TFT sa na riešenie konkrétneho problému používa špecifická postupnosť bodov poklepu (známa ako algoritmus). Táto postupnosť sa určuje pomocou svalového testovania, čo je postup, ktorý sa používa aj v aplikovanej kineziológii.

V EFT sa poradie bodov poklepu nepovažuje za dôležité, a preto sa pre rôzne problémy nevyžadujú individuálne algoritmy. Namiesto toho sa na všetky problémy používa komplexný algoritmus a nie je potrebná žiadna diagnostika ani svalové testy. Na konkrétny problém môže byť potrebných menej bodov ako všetky, ale keďže ich je tak málo, považuje sa za zbytočné zisťovať, ktoré sú potrebné.

EFT bola od roku 2007 predmetom troch recenzovaných publikácií.

Prvá štúdia, publikovaná v časopise Journal of Clinical Psychology v roku 2003 (indexovaná v databáze MEDLINE) a financovaná Asociáciou pre komplexnú energetickú psychológiu, zahŕňala 35 pacientov s fóbiou z malých zvierat, ktorí absolvovali jednu terapiu pomocou EFT. Autori dospeli k záveru, že ich zistenia „do značnej miery zodpovedajú“ hypotéze, že EFT môže znížiť fóbiu z malých zvierat počas jedného liečebného sedenia, ale metodologické obmedzenia štúdie bránia vyvodeniu akýchkoľvek pevných záverov.

Druhú štúdiu, publikovanú v časopise The Scientific Review of Mental Health Practice v roku 2003 (indexovanú v databáze PsycInfo), uskutočnili Waite a Holder na 119 študentoch univerzity, ktorí uvádzali špecifické strachy alebo fóbie.
Táto štúdia porovnávala štyri skupiny: Skupina, ktorá absolvovala jedno kolo bežnej EFT; druhá skupina, ktorá absolvovala rovnakú liečbu s tým rozdielom, že sa ťukalo na body na ruke, ktoré nie sú súčasťou štandardného protokolu EFT; tretia skupina, ktorá absolvovala rovnakú liečbu s tým rozdielom, že sa ťukalo na príslušné meridiánové body na neživom predmete (bábike) a štvrtá skupina, ktorá bola požiadaná, aby si vyrobila hračku. Účastníci boli požiadaní, aby na stupnici SUDS sami uviedli svoje obavy pred liečbou a po nej.

Prvé tri skupiny si štatisticky viedli lepšie ako štvrtá skupina, ale medzi tromi skupinami, ktoré sa venovali tappingu, neboli významné rozdiely. To znamená, že skupiny, ktoré ťukali na fiktívne body a na bábiku, si viedli rovnako dobre ako skupina EFT, ale všetky tri skupiny si viedli lepšie ako skupina bez liečby. Keďže skupina, ktorá používala bábiku, neťukala na meridiánové body, a napriek tomu mala rovnaký prospech, autori to navrhli ako falzifikáciu tvrdenia, že EFT je účinná vďaka energetickému meridiánovému systému.

Jeden zo zástancov sa predbežne domnieva, že účinnosť EFT v skupine „bábik“ odráža pôsobenie zrkadlových neurónov.

V tretej štúdii, publikovanej v časopise Counseling and Clinical Psychology v roku 2005 (nepravidelne publikovaný časopis, ktorý nie je zahrnutý v databázach PsycINFO ani MEDLINE), bola použitá podmnožina validovaného kontrolného zoznamu symptómov SCL-90-R na testovanie úrovne psychického stresu u 102 účastníkov zážitkového seminára Techník emocionálnej slobody (EFT) pred liečbou, po liečbe a pri šesťmesačnom sledovaní. Došlo k štatisticky významnému poklesu všetkých mier psychického stresu meraných pomocou SA-45 pred workshopom a po ňom, čo sa udržalo aj v 6-mesačnej následnej štúdii. Keďže v štúdii chýbala kontrolná skupina, nebolo možné vylúčiť placebo efekt alebo regresiu k priemeru, ktoré často spôsobujú zníženie patológie po akejkoľvek liečbe.

EFT bola v časopise Skeptical Inquirer označená za pseudovedu na základe toho, čo časopis opisuje ako nedostatočnú falzifikovateľnosť, spoliehanie sa na anekdotické dôkazy a agresívnu propagáciu prostredníctvom internetu. Gary Craig, vývojár EFT, tvrdí, že poklepaním kdekoľvek na tele sa manipuluje s „energetickými meridiánmi“. Existuje mnoho bodov, ktoré používajú akupunkturisti a ktoré nie sú zahrnuté v metodike EFT, a poklepanie na jeden z nich môže mať náhodný účinok, ktorý ešte nebol preskúmaný. Skeptici tvrdili, že takéto tvrdenie robí EFT netestovateľnou vedeckou metódou, a teda pseudovedou. Týmto argumentom sa zaoberá aj článok Waitea a Holdera, v ktorom účastníci ťukali na bábiku, a nie na seba. Waite a Holder naznačili, že úspechy EFT pravdepodobne pramenia skôr z „vlastností, ktoré má spoločné s tradičnejšími terapiami“, než z manipulácie s údajnými „energetickými meridiánmi“ prostredníctvom poklepávania. Štúdia z roku 2003 ukázala, že EFT, modelová liečba a placebo viedli k výraznému zníženiu úzkosti a strachu v porovnaní s kontrolnou skupinou. Nedávny článok v denníku Guardian, ktorý napísali novinári, naznačoval, že akt poklepávania na časti tela v komplikovanej sekvencii pôsobí ako rozptýlenie, a preto sa môže zdať, že zmierňuje základnú úzkosť. Terapeut počas celej terapie každých niekoľko sekúnd opakuje pripomínajúcu frázu, aby upriamil pozornosť klienta späť na problém [Ako odkazovať a odkazovať na zhrnutie alebo text].

Kategórie
Psychologický slovník

Hypercholesterolémia

Hypercholesterolémia (doslova: vysoká hladina cholesterolu v krvi) je metabolická porucha, prítomnosť vysokej hladiny cholesterolu v krvi. Nie je to choroba, ale metabolická porucha, ktorá môže byť sekundárnou súčasťou mnohých ochorení a môže prispievať k mnohým formám ochorení, predovšetkým kardiovaskulárnych ochorení. Úzko súvisí s pojmami „hyperlipidémia“ (zvýšená hladina lipidov) a „hyperlipoproteinémia“ (zvýšená hladina lipoproteínov).

Zvýšená hladina cholesterolu nevedie k špecifickým príznakom, pokiaľ nie je dlhodobá. Niektoré typy hypercholesterolémie vedú k špecifickým fyzikálnym nálezom: xantóm (zhrubnutie šliach v dôsledku hromadenia cholesterolu), xanthelasma palpabrum (žltkasté škvrny okolo viečok) a arcus senilis (biele sfarbenie periférnej rohovky).

Pri meraní cholesterolu je dôležité zmerať jeho subfrakcie a až potom vyvodiť záver o príčine problému. Subfrakcie sú LDL, HDL a VLDL. V minulosti sa hladiny LDL a VLDL zriedka merali priamo z dôvodu nákladov. Hladiny VLDL sa odrážajú v hladinách triglyceridov (vo všeobecnosti asi 45 % triglyceridov tvoria VLDL). LDL sa zvyčajne odhadoval ako vypočítaná hodnota z ostatných frakcií (celkový cholesterol mínus HDL a VLDL); táto metóda sa nazýva Friedewaldov výpočet; konkrétne LDL ~= celkový cholesterol – HDL – (0,2 x triglyceridy).

Menej nákladné (a menej presné) laboratórne metódy a Friedewaldov výpočet sa dlho používali kvôli zložitosti, prácnosti a nákladnosti elektroforetických metód vyvinutých v 70. rokoch 20. storočia na identifikáciu rôznych lipoproteínových častíc, ktoré transportujú cholesterol v krvi. Od roku 1980 stáli pôvodné metódy vyvinuté výskumnou prácou v polovici 70. rokov približne 5 tisíc amerických dolárov v roku 1980 na vzorku krvi/osobu.

Postupom času sa vyvinuli pokročilejšie laboratórne analýzy, ktoré merajú veľkosť a hladinu častíc LDL a VLDL, a to pri oveľa nižších nákladoch. Tieto boli čiastočne vyvinuté a stali sa populárnejšími v dôsledku pribúdajúcich dôkazov z klinických štúdií, že zámerná zmena vzorcov transportu cholesterolu, vrátane určitých abnormálnych hodnôt v porovnaní s väčšinou dospelých, má často dramatický účinok na zníženie, dokonca čiastočné zvrátenie aterosklerotického procesu. S pokračujúcim výskumom a pokrokom v laboratórnych metódach sa ceny za sofistikovanejšie analýzy výrazne znížili, v niektorých laboratóriách na menej ako 100 USD, USA 2004, a pri súčasnom zvýšení presnosti merania pri niektorých metódach.

Klasifikácia Fredrickson

Klasicky sa hypercholesterolémia klasifikovala pomocou elektroforézy lipoproteínov a Fredricksonovej klasifikácie. Novšie metódy, ako napríklad „analýza podtried lipoproteínov“, ponúkli významné zlepšenie v pochopení súvislosti s progresiou aterosklerózy a klinickými dôsledkami.

Ak je hypercholesterolémia dedičná (familiárna hypercholesterolémia), často sa v rodine vyskytuje predčasný, skorší nástup aterosklerózy, ako aj familiárny výskyt vyššie uvedených príznakov.

Vysoký cholesterol má viacero sekundárnych príčin:

Všetky tieto tri činnosti vykonávané spoločne môžu mať pozitívny vplyv na hladinu cholesterolu v krvi.

Hoci časť cirkulujúceho cholesterolu pochádza zo stravy a obmedzenie príjmu cholesterolu môže znížiť jeho hladinu v krvi, existujú aj iné súvislosti medzi stravovacím režimom a hladinou cholesterolu. Americká asociácia srdca zostavuje aj zoznam prijateľných/neprijateľných potravín pre tých, ktorí majú diagnostikovanú hypercholesterolémiu.

Hromadia sa dôkazy o tom, že konzumácia väčšieho množstva sacharidov – najmä jednoduchších a rafinovanejších sacharidov – zvyšuje hladinu triglyceridov v krvi, znižuje hladinu HDL a môže zmeniť rozloženie častíc LDL na nezdravé aterogénne vzorce. Nízkotučná diéta, ktorá často znamená vyšší príjem sacharidov, tak môže byť v skutočnosti nezdravou zmenou.

Čoraz viac výskumníkov naznačuje, že hlavným rizikovým faktorom kardiovaskulárnych ochorení sú transmastné kyseliny, a nie nasýtené tuky, ako sa predpokladalo vo Framinghamskej štúdii srdca, a FDA plánuje do roku 2007 revidovať označovanie potravín tak, aby obsahovalo údaje o množstve transmastných kyselín. Množstvo transmastných kyselín sa zatiaľ dá vypočítať z označenia potravín tak, že sa od celkového množstva tukov odpočítajú rôzne uvádzané tuky: transmastné kyseliny = ( celkové tuky – nasýtené tuky – mononenasýtené tuky – polynenasýtené tuky).

Liečba závisí od typu hypercholesterolémie. Fredricksonov typ IIa a IIb možno liečiť diétou, statínmi (najčastejšie rosuvastatín, atorvastatín, simvastatín alebo pravastatín), inhibítormi absorpcie cholesterolu (ezetimib), fibrátmi (gemfibrozil, bezafibrát, fenofibrát alebo ciprofibrát), vitamín B3 (kyselina nikotínová), sekvestranty žlčových kyselín (kolestipol, cholestyramín), LDL aferéza a v dedičných ťažkých prípadoch transplantácia pečene. Liečba je zložitejšia, ak sú v endotelovej krvi prítomné zvýšené hladiny asymetrického dimetylarginínu (ADMA), pretože ADMA znižuje produkciu endotelového oxidu dusnatého, a tým zhoršuje rozsah oxidácie LDL.

U pacientov bez iných rizikových faktorov sa stredne závažná hypercholesterolémia často nelieči. Podľa Framingham Heart Study ľudia vo veku nad 50 rokov nemajú zvýšenú celkovú úmrtnosť ani pri vysokých, ani pri nízkych hladinách cholesterolu v sére. Existuje však korelácia medzi poklesom hladiny cholesterolu počas prvých 14 rokov a úmrtnosťou počas nasledujúcich 18 rokov (11 % celkové a 14 % zvýšenie úmrtnosti na KVO na 1 mg/dl ročného poklesu hladiny cholesterolu). To však neznamená, že pokles sérovej hladiny je nebezpečný, keďže v štúdii ešte nebol zaznamenaný infarkt u osoby s celkovým cholesterolom pod 150 mg/dl.

Na druhej strane, aj keď menej dramaticky ako mnohé kardiovaskulárne postupy, niektorí ľudia, najmä vďaka novším a sofistikovanejším informáciám, menia svoje stravovacie návyky a najmä výživové doplnky, pričom mnohé z nich sú stále na lekársky predpis. Aj keď si vo všeobecnosti neuvedomujú vnútorné zmeny svojich vzorcov transportu cholesterolu, nedávne štúdie preukázali rastúci úspech niektorých z týchto stratégií; pozri časti LDL, HDL a IVUS.

Inými slovami, v klinických štúdiách, ktoré sa začali v 70. rokoch minulého storočia, sa opakovane a čoraz častejšie zisťovalo, že normálne hodnoty cholesterolu nemusia nevyhnutne odrážať zdravé hodnoty cholesterolu. To viedlo k čoraz novšiemu pojmu dyslipidémia, napriek normocholesterolémii. Preto sa čoraz viac uznáva význam „analýzy podtried lipoproteínov“ ako dôležitého prístupu na lepšie pochopenie a zmenu súvislosti medzi transportom cholesterolu a progresiou aterosklerózy.

Viaceré klinické štúdie, z ktorých každá podľa plánu skúma len jednu z viacerých relevantných otázok, čoraz častejšie skúmajú súvislosť medzi týmito otázkami a klinickými dôsledkami aterosklerózy. Medzi lepšie nedávne randomizované štúdie výsledkov na ľuďoch patria ASTEROID, ASCOT-LLA, REVERSAL, PROVE-IT, CARDS, Heart Protection Study, HOPE, PROGRESS, COPERNICUS a najmä novší výskumný prístup využívajúci synteticky vyrobený a intravenózne podávaný ľudský HDL, Apo A-I Milano Trial.

Prieskum, ktorý v máji 2004 zverejnilo Národné centrum pre komplementárnu a alternatívnu medicínu, sa zameral na to, kto, čo a prečo v roku 2002 v Spojených štátoch amerických používal doplnkovú a alternatívnu medicínu (CAM). Podľa tohto prieskumu využívalo CAM na liečbu cholesterolu 1,1 % dospelých Američanov, ktorí využívali CAM v roku 2002 ( tabuľka 3 na strane 9). V súlade s predchádzajúcimi štúdiami sa v tejto štúdii zistilo, že väčšina osôb (t. j. 54,9 %) používala CAM v kombinácii s konvenčnou medicínou (strana 6).

Kategórie
Psychologický slovník

Riaditelia škôl

Riaditeľ školy alebo riaditeľ školy (známy aj ako riaditeľ školy, riaditeľ školy, riaditeľka školy alebo riaditeľ) je najvyššie postavený učiteľ a vedúci pracovník školy.

V Škótsku sa takíto úradníci niekedy nazývajú „rektor“, najčastejšie v nezávislých školách. V Severnej Amerike a Írsku (vrátane Severného Írska) sa takíto úradníci zvyčajne nazývajú „riaditeľ školy“, ale v niektorých školách sa môže používať výraz „riaditeľ“ alebo „riaditeľ školy“.

Termíny „riaditeľ“ a „riaditeľka“ boli v minulosti štandardom v štátnom aj súkromnom sektore, pričom „riaditeľka“ sa zvyčajne používala len na ich spoločné označenie. V posledných rokoch sa však v štátnych školách začalo oficiálne používať rodovo neutrálne označenie. Napriek tomu sa rodovo špecifické termíny stále bežne používajú a na niektorých školách, najmä na zostávajúcich štátnych gymnáziách, sa môžu používať aj formálnejšie. Nezávislé školy zvyčajne stále oficiálne používajú rodovo špecifické termíny. Niektoré používajú aj iné termíny, napríklad „high master“.

Nezávislé školy často používajú iné tituly pre úradníkov pod vedením riaditeľa.

Oficiálny termín pre tretieho najstaršieho učiteľa v štátnych školách (ako aj v mnohých nezávislých školách) bol „druhý majster“ alebo „druhá pani“, ale tieto termíny sa v štátnom sektore vo všeobecnosti prestali používať.

Niektoré školy používajú termíny ako „riaditeľ vyššej školy“ alebo „riaditeľ strednej školy“ na označenie osôb, ktoré sú zodpovedné za oddelenie danej školy, ale pod vedením riaditeľa tejto školy.

„Riaditeľ“ alebo „riaditeľ školy“ sa používa ako titul hlavného správcu základnej, strednej alebo vysokej školy v niektorých anglicky hovoriacich krajinách vrátane Spojených štátov, Indie a Austrálie. Na verejných školách v Spojených štátoch sa vo všeobecnosti používa titul riaditeľ, zatiaľ čo na súkromných školách v Spojených štátoch sa niekedy používa titul vedúci školy [potrebná citácia] Z kníh a dokumentov týkajúcich sa počiatkov verejného školstva v Spojených štátoch vyplýva, že tento titul pôvodne znel Principal Teacher.

Hoci si niektorí riaditelia stále ponechávajú určitú zodpovednosť za vyučovanie, okrem veľmi malých škôl je väčšina ich povinností riadiacich a pastoračných.

V Austrálii je vedúci učiteľ zodpovedný za jedno (v prípade hlavného predmetu) alebo viacero (často v menších školách) špecifických oddelení, ako je angličtina, matematika, prírodné vedy atď., ale zachováva si všetky učiteľské povinnosti a status. Považuje sa za súčasť vedenia školy a často je pozícia vedúceho učiteľa odrazovým mostíkom do administratívy.

Väčšina škôl má zvyčajne aj 1 až 3 zástupcov riaditeľa (v Škótsku občas „depute-head“) a niekoľko asistentov riaditeľa, ktorí pôsobia ako asistenti alebo podriadení riaditeľa. Štátna škola má zvyčajne dvoch až šiestich zástupcov riaditeľa (AHT). Každý z nich má zvyčajne na starosti určitú oblasť školy, ako napríklad administratívu, hodnotenie zamestnancov, prvý ročník, šiestu triedu, disciplínu atď. Zvyčajne majú v škole len malú vyučovaciu úlohu [potrebná citácia]. Rozdiel medzi zástupcami a asistentmi riaditeľa je v tom, že tí prví môžu zo zákona riadiť školu (a zároveň sú 2. v poradí), zatiaľ čo asistenti riaditeľa nie.

Štátna základná škola má zvyčajne jedného zástupcu riaditeľa, hoci niekedy ho môžu nahradiť dvaja zástupcovia riaditeľa. V niektorých väčších základných školách (nad 500 žiakov) môžu byť dvaja zástupcovia riaditeľa alebo kombinácia zástupcov riaditeľa a asistentov riaditeľa. Na základných školách zástupcovia riaditeľa zvyčajne pracujú v triedach a v určitom nekontaktnom čase vykonávajú vedúce alebo riadiace funkcie, hoci na niektorých základných školách zástupca riaditeľa nemusí mať plný úväzok učiteľa, ale má celý rad povinností spojených s vedením celej školy [potrebná citácia].

V Škótsku funkciu hlavného učiteľa (PT) zastáva tretí najvyššie postavený učiteľ na základnej škole, ktorého úlohou je dohliadať na určitý aspekt organizácie školy, alebo najvyššie postavený učiteľ katedry/fakulty strednej školy, ktorého úlohou je viesť a riadiť konkrétnu katedru/fakultu.

V roku 1999 bolo v Spojených štátoch približne 129 000 „riaditeľov“.

V mnohých austrálskych školách je riaditeľ hlavným administrátorom školy, ktorý bol do svojej funkcie vymenovaný školskou radou, superintendantom alebo iným orgánom. Riaditeľ, často v spolupráci so školskou radou, prijíma výkonné rozhodnutia, ktorými sa riadi škola, a má tiež právomoc zamestnávať (a v niektorých prípadoch prepúšťať) učiteľov. Riaditeľ je často hlavným disciplinárnym orgánom pre žiakov. V mnohých školách v USA však za disciplínu žiakov zodpovedá zástupca riaditeľa a širšie rozhodnutia o škole sú povinnosťou riaditeľa.

Vo väčších školách riaditeľovi pomáha jeden alebo viacero „zástupcov riaditeľa“, asistentov riaditeľa alebo „zástupcov riaditeľa“. Ich postavenie je v súvislosti s riadením školy druhoradé voči riaditeľovi. Zástupcovia riaditeľa zvyčajne vykonávajú špecifické povinnosti, ako je napríklad starostlivosť o disciplínu žiakov alebo učebné osnovy, zatiaľ čo riaditeľ má konečnú zodpovednosť za školu ako celok.

Kategórie
Psychologický slovník

Hematoencefalická bariéra

Časť siete kapilár zásobujúcich mozgové bunky

Astrocyty typu 1 obklopujúce kapiláry v mozgu

Kortikálne mikrovesely farbené na prítomnosť proteínu ZO-1, ktorý tvorí hematoencefalickú bariéru

Hematoencefalická bariéra (BBB) je oddelenie cirkulujúcej krvi od extracelulárnej tekutiny v mozgu (BECF) v centrálnom nervovom systéme (CNS). Vyskytuje sa pozdĺž všetkých kapilár a pozostáva z tesných spojov okolo kapilár, ktoré v normálnom krvnom obehu neexistujú. Endotelové bunky obmedzujú difúziu mikroskopických objektov (napr. baktérií) a veľkých alebo hydrofilných molekúl do mozgovomiechového moku (CSF), pričom umožňujú difúziu malých hydrofóbnych molekúl (O2, CO2, hormóny). Bunky bariéry aktívne transportujú metabolické produkty, ako je glukóza, cez bariéru pomocou špecifických proteínov [potrebná citácia] Táto bariéra zahŕňa aj hrubú bazálnu membránu a astrocytárne koncové plôšky.

Paul Ehrlich bol bakteriológ, ktorý skúmal farbenie, postup, ktorý sa používa v mnohých mikroskopických štúdiách na zviditeľnenie jemných biologických štruktúr pomocou chemických farbív. Keď Ehrlich vstrekol niektoré z týchto farbív (najmä anilínové farbivá, ktoré sa vtedy bežne používali), farbivo zafarbilo všetky orgány niektorých druhov zvierat okrem ich mozgu. V tom čase Ehrlich pripisoval tento nedostatok farbenia tomu, že mozog jednoducho nezachytáva toľko farbiva [potrebná citácia].

V neskoršom experimente v roku 1913 však Edwin Goldmann (jeden z Ehrlichových študentov) vstrekol farbivo priamo do mozgovomiechových tekutín zvierat. Zistil, že v tomto prípade sa mozog skutočne zafarbil, ale zvyšok tela nie. To jasne dokázalo existenciu určitého rozdelenia medzi nimi. V tom čase sa predpokladalo, že za bariéru sú zodpovedné samotné cievy, pretože sa nenašla žiadna zjavná membrána. Koncept hematoencefalickej bariéry (vtedy nazývaný hematoencefalická bariéra) navrhol v roku 1900 berlínsky lekár Lewandowsky. Skutočnú membránu bolo možné pozorovať a dokázať jej existenciu až po zavedení skenovacieho elektrónového mikroskopu do medicínskeho výskumu v 60. rokoch 20. storočia.

Schematický náčrt zobrazujúci zloženie ciev v mozgu

Táto „bariéra“ je výsledkom selektivity tesných spojov medzi endotelovými bunkami v cievach CNS, ktoré obmedzujú prestup rozpustených látok [potrebná citácia] Na rozhraní medzi krvou a mozgom sú endotelové bunky zošité týmito tesnými spojmi, ktoré sa skladajú z menších podjednotiek, často biochemických dimérov, ktoré sú transmembránovými proteínmi, ako sú napríklad okludín, klaudíny, junkčná adhézna molekula (JAM) alebo ESAM.[potrebná citácia] Každý z týchto transmembránových proteínov je ukotvený v endotelových bunkách ďalším proteínovým komplexom, ktorý zahŕňa zo-1 a pridružené proteíny [potrebná citácia].

Hematoencefalická bariéra je zložená z buniek s vysokou hustotou, ktoré obmedzujú prestup látok z krvného obehu oveľa viac ako endotelové bunky v kapilárach inde v tele.[potrebná citácia] Výstupky buniek astrocytov nazývané astrocytové nožičky (známe aj ako „glia limitans“) obklopujú endotelové bunky BBB a poskytujú týmto bunkám biochemickú podporu.[Potrebná citácia] BBB sa líši od celkom podobnej bariéry krv – cerebrospinálna tekutina, ktorá je funkciou buniek cievnatky choroidálneho plexu, a od bariéry krv – sietnica, ktorú možno považovať za súčasť celej sféry takýchto bariér.

Pôvodne experimenty v 20. rokoch 20. storočia ukázali, že hematoencefalická bariéra (BBB) je u novorodencov ešte nezrelá. Dôvodom tohto omylu bola chyba v metodike (osmotický tlak bol príliš vysoký a jemné embryonálne kapilárne cievy boli čiastočne poškodené). Neskôr sa v experimentoch so zníženým objemom vstrekovaných tekutín ukázalo, že skúmané markery nemôžu prejsť cez BBB. Uviedlo sa, že tie prirodzené látky, ako je albumín, α-1-fetoproteín alebo transferín so zvýšenou koncentráciou v plazme novorodenca, sa nedajú zistiť mimo buniek v mozgu. Transportér P-glykoproteín existuje už v embryonálnom endoteli [potrebná citácia].

Meranie absorpcie acetamidu, antipyrínu, benzylalkoholu, butanolu, kofeínu, cytosínu, difenylhydantoínu, etanolu, etylénglykolu, heroínu, manitolu, metanolu, fenobarbitalu, propylénglykolu, tiomočoviny a močoviny v mozgu u novorodencov anestézovaných éterom vs. dospelých králikov ukazuje, že mozgové endotelie novorodencov a dospelých králikov sú funkčne podobné, pokiaľ ide o permeabilitu sprostredkovanú lipidmi [potrebná citácia] Tieto údaje potvrdili, že medzi kapilárami BBB novorodencov a dospelých králikov nemožno zistiť žiadne rozdiely v permeabilite. Medzi dospelými a novorodenými králikmi sa nepozoroval žiadny rozdiel v absorpcii glukózy, aminokyselín, organických kyselín, purínov, nukleozidov alebo cholínu v mozgu.“ [potrebná citácia] Tieto experimenty naznačujú, že novorodenecká BBB má podobné reštrikčné vlastnosti ako BBB dospelých. V protiklade k predpokladom o nezrelej bariére u mladých zvierat tieto štúdie naznačujú, že pri narodení funguje sofistikovaná, selektívna BBB.

Hematoencefalická bariéra veľmi účinne chráni mozog pred mnohými bežnými bakteriálnymi infekciami. Preto sú infekcie mozgu veľmi zriedkavé. Infekcie mozgu, ktoré sa vyskytnú, sú často veľmi závažné a ťažko liečiteľné. Protilátky sú príliš veľké na to, aby prešli cez hematoencefalickú bariéru, a len niektoré antibiotiká sú schopné prejsť. V niektorých prípadoch je potrebné podať farmaká priamo do mozgovomiechového moku [potrebná citácia] Lieky podané priamo do mozgovomiechového moku však účinne nepreniknú do samotného mozgového tkaniva, pravdepodobne kvôli torzovitosti intersticiálneho priestoru v mozgu. Hematoencefalická bariéra sa stáva priepustnejšou počas zápalu. To umožňuje niektorým antibiotikám a fagocytom prechádzať cez BBB. To však umožňuje aj prienik baktérií a vírusov do BBB. Výnimkou z vylúčenia baktérií sú ochorenia spôsobené spirochétami, ako sú borélie, ktoré spôsobujú boreliózu, a Treponema pallidum, ktorá spôsobuje syfilis. Zdá sa, že tieto škodlivé baktérie prekonávajú hematoencefalickú bariéru fyzickým tunelovaním cez steny ciev [potrebná citácia].

Existujú aj niektoré biochemické jedy, ktoré sa skladajú z veľkých molekúl, ktoré sú príliš veľké na to, aby prešli cez hematoencefalickú bariéru. To bolo dôležité najmä v primitívnych alebo stredovekých časoch, keď ľudia často jedli kontaminované potraviny. Neurotoxíny, ako napríklad botulín, v potravinách by mohli ovplyvniť periférne nervy, ale hematoencefalická bariéra často dokáže zabrániť tomu, aby sa takéto toxíny dostali do centrálneho nervového systému, kde by mohli spôsobiť vážne alebo smrteľné poškodenie.

Prekonanie ťažkostí s dodávaním terapeutických látok do špecifických oblastí mozgu predstavuje veľkú výzvu pri liečbe väčšiny mozgových porúch. Hematoencefalická bariéra, ktorá plní svoju neuroprotektívnu úlohu, bráni prísunu mnohých potenciálne dôležitých diagnostických a terapeutických látok do mozgu. Terapeutické molekuly a protilátky, ktoré by inak mohli byť účinné pri diagnostike a terapii, neprechádzajú cez BBB v primeranom množstve. Penetrácia do mozgovomiechového moku je podiel liečiva, ktoré prechádza cez hematoencefalickú bariéru a dostáva sa do mozgovomiechového moku

Mechanizmy cielenia liečiv v mozgu zahŕňajú prechod buď „cez“, alebo „za“ BBB. Spôsoby podávania liekov cez BBB zahŕňajú jej narušenie osmotickými prostriedkami, biochemicky pomocou vazoaktívnych látok, ako je bradykinín, alebo dokonca lokalizovaným pôsobením vysoko intenzívneho fokusovaného ultrazvuku (HIFU). Ďalšie metódy používané na prekonanie BBB môžu zahŕňať použitie endogénnych transportných systémov vrátane transportérov sprostredkovaných nosičmi, ako sú nosiče glukózy a aminokyselín; transcytózu sprostredkovanú receptormi pre inzulín alebo transferín; a blokovanie aktívnych efluxných transportérov, ako je p-glykoproteín. Metódy podávania liekov za BBB zahŕňajú intracerebrálnu implantáciu (napríklad pomocou ihiel) a konvekciou posilnenú distribúciu. Manitol sa môže použiť pri obchádzaní BBB.

Nanotechnológia môže pomôcť aj pri prenose liekov cez BBB. Nedávno sa výskumníci pokúšali vytvoriť lipozómy naplnené nanočasticami, aby získali prístup cez BBB. Je potrebný ďalší výskum, aby sa určilo, ktoré stratégie budú najúčinnejšie a ako ich možno zlepšiť pre pacientov s nádormi mozgu. Potenciál využitia otvorenia BBB na zacielenie špecifických látok na nádory mozgu sa práve začal skúmať.

Dodávanie liekov cez hematoencefalickú bariéru je jednou z najsľubnejších aplikácií nanotechnológií v klinickej neurovede. Nanočastice by potenciálne mohli vykonávať viacero úloh vo vopred stanovenom poradí, čo je veľmi dôležité pri dodávaní liečiv cez hematoencefalickú bariéru.

Významný objem výskumu v tejto oblasti sa venoval skúmaniu metód sprostredkovaného dodávania nanočastíc antineoplastických liečiv do nádorov v centrálnom nervovom systéme. Napríklad rádioaktívne značené polyetylénglykolom potiahnuté hexadecylcyanoakrylátové nanosféry sa zamerali na gliosarkóm potkana a akumulovali sa v ňom. Táto metóda však ešte nie je pripravená na klinické skúšky z dôvodu akumulácie nanosfér v okolitom zdravom tkanive.

Treba poznamenať, že cievne endotelové bunky a pridružené pericyty sú v nádoroch často abnormálne a že hematoencefalická bariéra nemusí byť v mozgových nádoroch vždy neporušená. Bazálna membrána je tiež niekedy neúplná. K rezistencii nádorov mozgu na liečbu môžu prispievať aj iné faktory, napríklad astrocyty.

Peptidy sú schopné prekonávať hematoencefalickú bariéru (BBB) rôznymi mechanizmami, čo otvára nové diagnostické a terapeutické možnosti. Údaje o ich transporte cez BBB sú však v literatúre roztrúsené v rôznych odboroch, pričom sa používajú rôzne metodiky uvádzajúce rôzne aspekty influxu alebo efluxu. Preto bola vytvorená komplexná databáza peptidov BBB (Brainpeps) s cieľom zhromaždiť údaje o BBB dostupné v literatúre. Brainpeps v súčasnosti obsahuje informácie o transporte cez BBB s pozitívnymi aj negatívnymi výsledkami. Databáza je užitočným nástrojom na stanovenie priorít pri výbere peptidov na hodnotenie rôznych reakcií BBB alebo na štúdium kvantitatívnych vzťahov medzi štruktúrou a vlastnosťami (správanie sa v BBB) peptidov. Keďže na hodnotenie správania sa zlúčenín v BBB sa používa množstvo metód, klasifikovali sme tieto metódy a ich odpovede. Okrem toho sme objasnili a vizualizovali vzťahy medzi rôznymi metódami transportu v BBB [potrebná citácia].

Casomorphin je heptapeptid a mohol by byť schopný prechádzať cez BBB.[potrebná citácia]

Choroby zahŕňajúce hematoencefalickú bariéru

Meningitída je zápal blán, ktoré obklopujú mozog a miechu (tieto blany sa nazývajú meningy). Meningitídu najčastejšie spôsobujú infekcie rôznymi patogénmi, ako sú napríklad Streptococcus pneumoniae a Haemophilus influenzae. Pri zápale mozgových blán môže dôjsť k narušeniu hematoencefalickej bariéry. Toto narušenie môže zvýšiť prenikanie rôznych látok (vrátane toxínov alebo antibiotík) do mozgu. Antibiotiká používané na liečbu meningitídy môžu zhoršiť zápalovú reakciu centrálneho nervového systému uvoľnením neurotoxínov z bunkových stien baktérií – ako je lipopolysacharid (LPS). V závislosti od pôvodcu ochorenia, či už ide o baktériu, hubu alebo prvoka, sa zvyčajne predpisuje liečba cefalosporínom tretej alebo štvrtej generácie alebo amfotericínom B.

Epilepsia je bežné neurologické ochorenie, ktoré sa vyznačuje opakujúcimi sa a niekedy neliečiteľnými záchvatmi. Viaceré klinické a experimentálne údaje poukazujú na zlyhanie funkcie hematoencefalickej bariéry pri vyvolávaní chronických alebo akútnych záchvatov. Niektoré štúdie poukazujú na interakcie medzi bežným krvným proteínom (albumínom) a astrocytmi. Tieto zistenia naznačujú, že akútne záchvaty sú predvídateľným dôsledkom narušenia BBB buď umelými, alebo zápalovými mechanizmami. Okrem toho expresia molekúl a transportérov rezistencie na lieky v BBB je významným mechanizmom rezistencie na bežne používané antiepileptické lieky.

Skleróza multiplex (SM) sa považuje za autoimunitné a neurodegeneratívne ochorenie, pri ktorom imunitný systém napáda myelín, ktorý chráni a elektricky izoluje neuróny centrálneho a periférneho nervového systému. Za normálnych okolností je nervový systém človeka neprístupný pre biele krvinky kvôli hematoencefalickej bariére. Magnetická rezonancia však ukázala, že keď človek prechádza „útokom“ SM, hematoencefalická bariéra sa v časti mozgu alebo miechy porušila, čo umožnilo bielym krvinkám nazývaným T-lymfocyty prejsť cez ňu a napadnúť myelín. Niekedy sa predpokladá, že SM nie je ochorenie imunitného systému, ale ochorenie hematoencefalickej bariéry. Nedávna štúdia naznačuje, že oslabenie hematoencefalickej bariéry je dôsledkom poruchy endotelových buniek na vnútornej strane cievy, kvôli ktorej nefunguje dobre produkcia proteínu P-glykoproteínu [potrebná citácia].

V súčasnosti sa aktívne skúma liečba narušenej hematoencefalickej bariéry. Predpokladá sa, že oxidačný stres zohráva dôležitú úlohu pri poruche bariéry. Antioxidanty, ako napríklad kyselina lipoová, môžu byť schopné stabilizovať oslabenú hematoencefalickú bariéru.

Neuromyelitis optica, známa aj ako Devicova choroba, je podobná a často sa zamieňa so sklerózou multiplex. Okrem iných odlišností od SM bol identifikovaný iný cieľ autoimunitnej odpovede. Pacienti s neuromyelitídou optica majú vysoké hladiny protilátok proti proteínu nazývanému aquaporín 4 (súčasť astrocytárnych procesov na nohách v hematoencefalickej bariére).

Neskoré štádium neurologickej trypanozomózy (spavej choroby)

Neskoré štádium neurologickej trypanozomózy alebo spavej choroby je stav, pri ktorom sa v mozgovom tkanive nachádzajú prvoky trypanozómy. Zatiaľ nie je známe, ako parazity infikujú mozog z krvi, ale predpokladá sa, že prechádzajú cez choroidálny plexus, obvodový orgán.

Progresívna multifokálna leukoencefalopatia (PML)

Progresívna multifokálna leukoencefalopatia (PML) je demyelinizačné ochorenie centrálneho nervového systému, ktoré je spôsobené reaktiváciou latentnej infekcie papovírusom (polyomavírus JC), ktorý môže prechádzať cez BBB. Postihuje pacientov so zníženou imunitou a zvyčajne sa vyskytuje u pacientov trpiacich AIDS.

Ochorenie de Vivo (známe aj ako syndróm nedostatku GLUT1) je zriedkavé ochorenie spôsobené nedostatočným prenosom cukru, glukózy, cez hematoencefalickú bariéru, čo vedie k oneskoreniu vývoja a iným neurologickým problémom. Zdá sa, že hlavnou príčinou ochorenia De Vivo sú genetické defekty transportéra glukózy typu 1 (GLUT1).

Niektoré nové dôkazy naznačujú, že narušenie hematoencefalickej bariéry u pacientov s Alzheimerovou chorobou umožňuje krvnej plazme obsahujúcej amyloid beta (Aβ) preniknúť do mozgu, kde sa Aβ prednostne prichytáva na povrch astrocytov. Tieto zistenia viedli k hypotézam, že (1) porušenie hematoencefalickej bariéry umožňuje prístup autoprotilátok viažucich sa na neuróny a rozpustného exogénneho Aβ42 k mozgovým neurónom a (2) väzba týchto autoprotilátok na neuróny spúšťa a/alebo uľahčuje internalizáciu a akumuláciu Aβ42 viazaného na povrch buniek v zraniteľných neurónoch prostredníctvom ich prirodzenej tendencie odstraňovať autoprotilátky viazané na povrch prostredníctvom endocytózy. Nakoniec je astrocyt preťažený, odumrie, praskne a rozpadne sa, pričom po sebe zanechá nerozpustný plak Aβ42. U niektorých pacientov teda môže byť Alzheimerova choroba spôsobená (alebo skôr zhoršená) poruchou hematoencefalickej bariéry.

Predpokladá sa, že latentný vírus HIV môže prekročiť hematoencefalickú bariéru vo vnútri cirkulujúcich monocytov v krvnom riečisku (teória „trójskeho koňa“) počas prvých 14 dní infekcie. Keď sa tieto monocyty dostanú dovnútra, aktivujú sa a premenia sa na makrofágy. Aktivované makrofágy uvoľňujú virióny do mozgového tkaniva v blízkosti mozgových mikrovaskulárnych ciev. Tieto vírusové častice pravdepodobne priťahujú pozornosť sentinelových mozgových mikroglií a perivaskulárnych makrofágov, ktoré iniciujú zápalovú kaskádu, ktorá môže spôsobiť sériu intracelulárnych signálov v endotelových bunkách mozgových mikrovaskulárnych ciev a poškodiť funkčnú a štrukturálnu integritu BBB. Tento zápal predstavuje HIV encefalitídu (HIVE). Prípady HIVE sa pravdepodobne vyskytujú počas celého priebehu AIDS a sú predzvesťou demencie súvisiacej s HIV (HAD). Hlavným modelom na štúdium HIV a HIVE je model opice.

Počas smrteľnej infekcie myší besnotou hematoencefalická bariéra (BBB) neumožňuje antivírusovým imunitným bunkám vstup do mozgu, primárneho miesta replikácie vírusu besnoty. Tento aspekt prispieva k patogenite vírusu a umelé zvýšenie priepustnosti BBB podporuje klírens vírusu. Otvorenie BBB počas infekcie besnoty sa navrhlo ako možný nový prístup k liečbe ochorenia, hoci sa zatiaľ neurobili žiadne pokusy o určenie, či by táto liečba mohla byť úspešná.

Kategórie
Psychologický slovník

Hypertext

V oblasti výpočtovej techniky je hypertext paradigma používateľského rozhrania na zobrazovanie dokumentov, ktoré sa podľa jednej z prvých definícií (Nelson 1970) „rozvetvujú alebo vykonávajú na požiadanie“. Najčastejšie diskutovaná forma hypertextového dokumentu obsahuje automatizované krížové odkazy na iné dokumenty nazývané hypertextové odkazy. Výber hypertextového odkazu spôsobí, že počítač vo veľmi krátkom čase zobrazí prepojený dokument.

Dokument môže byť statický (pripravený a uložený vopred) alebo dynamicky generovaný (ako reakcia na vstupy používateľa). Preto dobre zostavený hypertextový systém môže zahŕňať, začleňovať alebo nahrádzať mnohé iné paradigmy používateľského rozhrania, ako sú menu a príkazové riadky, a môže sa používať na prístup k statickým zbierkam vzájomne prepojených dokumentov aj k interaktívnym aplikáciám. Dokumenty a aplikácie môžu byť lokálne alebo môžu prichádzať odkiaľkoľvek pomocou počítačovej siete, napríklad internetu. Najznámejšou implementáciou hypertextu je World Wide Web.

Predsunutý hypertext bol jednoduchou technikou používanou v rôznych referenčných dielach (slovníkoch, encyklopédiách atď.), ktorá spočívala v uvedení termínu malými veľkými písmenami ako náznak, že pre tento termín existuje záznam alebo článok (v rámci toho istého referenčného diela). Okrem takýchto ručných krížových odkazov sa experimentovalo s rôznymi metódami usporiadania vrstiev poznámok okolo dokumentu.

Zmyslom hypertextu je riešiť problém informačného preťaženia.

Na začiatku 20. storočia dvaja vizionári zaútočili na problém krížového odkazovania prostredníctvom návrhov založených na
prácnych metódach hrubej sily. Paul Otlet navrhol koncepciu proto-hypertextu založenú na jeho monografickom princípe, v ktorom by sa všetky dokumenty rozložili na jedinečné frázy uložené na indexových kartách. V 30. rokoch 20. storočia H. G. Wells navrhol vytvorenie Svetového mozgu. Z dôvodu nákladov sa ani jeden z týchto návrhov nedostal ďaleko.

Preto sa všetky hlavné dejiny hypertextu začínajú v roku 1945, keď Vannevar Bush napísal do časopisu The Atlantic Monthly článok s názvom „As We May Think“ (Ako si môžeme myslieť) o futuristickom zariadení, ktoré nazval Memex. Zariadenie opísal ako mechanický stôl prepojený s rozsiahlym archívom mikrofilmov a schopný zobraziť knihy, texty alebo akýkoľvek dokument z knižnice a ďalej schopný automaticky sledovať odkazy z ktorejkoľvek stránky na konkrétnu stránku, na ktorú sa odkazuje.

Väčšina odborníkov nepovažuje Memex za skutočný hypertextový systém. Príbeh sa však začína Memexom, pretože „Ako si môžeme myslieť“ priamo ovplyvnil a inšpiroval dvoch amerických mužov, ktorým sa všeobecne pripisuje vynález hypertextu, Teda Nelsona a Douglasa Engelbarta.

Nelson vymyslel slovo „hypertext“ v roku 1965 a v roku 1968 pomohol Andriesovi van Damovi vyvinúť na Brownovej univerzite systém na editovanie hypertextu; Engelbart začal pracovať na svojom systéme NLS v roku 1962 v Stanfordskom výskumnom inštitúte, hoci oneskorenia pri získavaní finančných prostriedkov, personálu a vybavenia spôsobili, že jeho kľúčové funkcie boli dokončené až v roku 1968. V tom istom roku Engelbart prvýkrát verejne predviedol hypertextové rozhranie, ktoré sa stalo známym ako „Matka všetkých demonštrácií“.

Po tom, ako sa v roku 1974 financovanie NLS spomalilo, sa výskum hypertextu takmer zastavil. V tomto období sa začal projekt ZOG v Carnegie Mellon ako výskumný projekt umelej inteligencie pod dohľadom Allena Newella. Až oveľa neskôr si jeho účastníci uvedomili, že ich systém je hypertextový systém. ZOG bol v roku 1980 nasadený na americkej lodi Carl Vinson a neskôr komercionalizovaný ako Knowledge Management System.

Začiatkom 80. rokov 20. storočia vzniklo niekoľko experimentálnych hypertextových a hypermediálnych programov, ktorých mnohé funkcie a terminológia boli neskôr integrované do webu. Žiadny z týchto systémov však nedosiahol široký úspech ani uznanie u spotrebiteľov.

Guide bol prvým hypertextovým systémom pre osobné počítače, ale nebol veľmi úspešný. Guide bol pomerne drahý a ťažko sa používal, pretože bol pôvodne vyvinutý pre pracovné stanice UNIX a následne bol prenesený na DOS. Okamžite ho zatienil HyperCard.

V auguste 1987 spoločnosť Apple Computer na konferencii MacWorld v Bostone predstavila aplikáciu HyperCard pre svoj rad počítačov Macintosh. Aplikácia HyperCard sa okamžite stala hitom a pomohla spopularizovať koncept hypertextu medzi širokou verejnosťou.

Nelson medzitým už viac ako dve desaťročia pracoval na svojom systéme Xanadu a propagoval ho a komerčný úspech HyperCard podnietil spoločnosť Autodesk, aby investovala do jeho revolučných myšlienok. Projekt pokračoval štyri roky bez vydania kompletného produktu, kým ho spoločnosť Autodesk uprostred recesie v rokoch 1991 – 1992 zastavila.

V roku 1980 Tim Berners-Lee vytvoril ENQUIRE, prvý hypertextový databázový systém, ktorý sa trochu podobal na wiki. Koncom roku 1990 Berners-Lee, vtedy vedec v CERN-e, vymyslel World Wide Web, aby uspokojil dopyt po automatickom zdieľaní informácií medzi vedcami pracujúcimi na rôznych univerzitách a inštitútoch po celom svete. Začiatkom roka 1993 vydalo Národné centrum pre superpočítačové aplikácie (NCSA) na univerzite v Illinois prvú verziu svojho prehliadača Mosaic, ktorý mal nahradiť dva chýbajúce existujúce webové prehliadače: jeden, ktorý bežal len na počítači NeXTSTEPa druhý, ktorý bol minimálne používateľsky prívetivý. Mosaic bežal v prostredí X Window System, populárnom vo výskumnej komunite, a ponúkal použiteľnú interakciu založenú na oknách. Po vydaní verzií prehliadačov pre prostredie PC aj Macintosh vzrástla návštevnosť webu z 500 známych webových serverov v roku 1993 na viac ako 10 000 v roku 1994.

Okrem už spomínaného HyperCard a World Wide Webu existujú aj ďalšie pozoruhodné implementácie hypertextu s rôznymi súbormi funkcií:

Jednou z najvýznamnejších vedeckých konferencií zameraných na nový výskum v oblasti hypertextu je každoročne organizovaná konferencia ACM o hypertexte a hypermédiách (HT 2006)

Hoci sa konferencie World Wide Web, ktoré organizuje IW3C2, netýkajú výlučne hypertextu, obsahujú mnoho zaujímavých príspevkov. K dispozícii je zoznam s odkazmi na všetky konferencie z tejto série.

Kategórie
Psychologický slovník

Úmrtnosť

Miera úmrtnosti je miera počtu úmrtí (všeobecne alebo v dôsledku konkrétnej príčiny) v populácii v závislosti od veľkosti populácie za jednotku času. Miera úmrtnosti sa zvyčajne vyjadruje v jednotkách úmrtí na 1000 osôb za rok; miera úmrtnosti 9,5 (z 1000) v populácii 100 000 osôb by teda znamenala 950 úmrtí ročne v celej tejto populácii, alebo 0,95 % z celkového počtu. Odlišuje sa od miery chorobnosti, ktorá sa vzťahuje na počet osôb so zlým zdravotným stavom počas daného časového obdobia (miera prevalencie) alebo na počet novo sa objavujúcich prípadov ochorenia za jednotku času (miera výskytu). Termín „úmrtnosť“ sa niekedy nevhodne používa aj na označenie počtu úmrtí v súbore diagnostikovaných nemocničných prípadov na chorobu alebo úraz, a nie na označenie celkovej populácie krajiny alebo etnickej skupiny. Táto štatistika úmrtnosti na choroby sa presnejšie označuje ako „miera úmrtnosti na prípady“ (case fatality rate – CFR).

V súvislosti s úspechom alebo neúspechom liečby alebo lekárskych postupov by sme tiež mali rozlišovať:

Všimnite si, že hrubá miera úmrtnosti, ako je definovaná vyššie a aplikovaná na celú populáciu, môže vytvárať zavádzajúci dojem. Hrubá miera úmrtnosti závisí od vekovo (a rodovo) špecifických mier úmrtnosti a od vekového (a rodového) rozloženia populácie. Počet úmrtí na 1 000 osôb môže byť vo vyspelých krajinách vyšší ako v menej rozvinutých krajinách napriek tomu, že priemerná dĺžka života je vo vyspelých krajinách vyššia v dôsledku lepšej zdravotnej úrovne. Stáva sa to preto, lebo vyspelé krajiny majú zvyčajne úplne iné vekové rozloženie obyvateľstva s oveľa vyšším podielom starších ľudí, a to v dôsledku nižšej nedávnej pôrodnosti aj nižšej úmrtnosti. Úplnejší obraz o úmrtnosti poskytuje tabuľka dožitia, v ktorej sa uvádza miera úmrtnosti osobitne pre každý vek. Tabuľka dožitia je potrebná na dobrý odhad strednej dĺžky života.

Desať krajín s najvyššou dojčenskou úmrtnosťou je:

Podľa CDC bolo v roku 2002 v Spojených štátoch 10 hlavných príčin úmrtí:

(z celkového počtu 283 974 000 obyvateľov USA vo veku najmenej 1 rok)

Predbežné pokyny – Pitva – Asistovaná samovražda – Mozgová smrť – Príčiny smrti podľa miery – Klinická smrť – Úzkosť zo smrti – Inštinkt smrti – Eutanázia – Paliatívna starostlivosť – Perzistentný vegetatívny stav – Samovražda – Terminálne ochorenie – Odklad liečby

Koncept smrti a prispôsobenie sa – Postoje k smrti – Postoje k smrti v detstve – Výchova k smrti – Trest smrti – Nesmrteľnosť – Úmrtnosť dojčiat – Úmrtnosť matiek – Úmrtnosť – Nevyliečiteľne chorí pacienti –

Posmrtný život – Pohreb – Kremácia – Obrady smrti – Pohreb – Smútok – Smútenie – Kübler-Rossov model smútku – Spiritualita – Zvyky – Uctievanie mŕtvych –

Skúsenosť blízkej smrti – Štúdie blízkej smrti – Výskum reinkarnácie – Tanatológia –

Genocída – fascinácia smrťou – mučeníctvo – obete (ľudské – zvieracie) –

Kategórie
Psychologický slovník

Demografické charakteristiky

Demografické charakteristiky sú charakteristiky obyvateľstva, ako je vek, pohlavie atď., ktoré sa používajú v demografii na vytvorenie demografického profilu.

Demografické údaje zahŕňajú vek, príjem, mobilitu (z hľadiska času potrebného na cestu do práce alebo počtu dostupných vozidiel), dosiahnuté vzdelanie, vlastníctvo bytov, stav zamestnanosti a dokonca aj lokalitu. Zaujímavé sú rozdelenia hodnôt v rámci demografickej premennej a medzi domácnosťami, ako aj trendy v čase. Demografické údaje sa využívajú v marketingovom výskume, výskume verejnej mienky, politickom výskume, pri štúdiu spotrebiteľského správania, ako aj v priamom marketingu, ktorý je hlavnou témou tohto článku.

Demografia je aplikované umenie

Pojem demografia sa často nesprávne používa pre demografiu, štúdium ľudskej populácie, jej štruktúry a zmien. Zatiaľ čo demografia je deskriptívna a prognostická veda, demografia je aplikované umenie a veda. V oboch prípadoch sú však predmetom štúdia charakteristiky ľudských populácií. V prípade demografie sa pri skúmaní charakteristík kladie dôraz na biologické procesy, ako je populačná dynamika, zatiaľ čo demografia sa zaoberá aj širokou škálou ekonomických, sociálnych a kultúrnych charakteristík. Demografiu zaujímajú všetky charakteristiky populácie, ktoré by mohli byť užitočné na pochopenie toho, čo si ľudia myslia, čo sú ochotní kúpiť a koľko z nich tomuto profilu zodpovedá.

Zoznam demografických premenných

Marketéri a iní sociológovia často rozdeľujú spotrebiteľov do segmentov na základe demografických premenných. Najčastejšie používané demografické premenné sú:

Okrem demografických premenných možno populáciu segmentovať na základe psychografických, geografických a behaviorálnych premenných. Ich zoznam nájdete v časti Segmenty trhu.

Marketéri zvyčajne kombinujú niekoľko premenných na definovanie demografického profilu. Demografický profil (často skracovaný na „demografický“) poskytuje dostatok informácií o typickom členovi tejto skupiny na vytvorenie mentálneho obrazu tohto hypotetického súboru. Marketér môže napríklad hovoriť o slobodnej, ženskej, strednej triede vo veku 18 až 24 rokov.

Marketingoví výskumníci majú v tejto súvislosti zvyčajne dva ciele: po prvé, určiť, aké segmenty alebo podskupiny existujú v celkovej populácii, a po druhé, vytvoriť jasný a úplný obraz charakteristík typického člena každého z týchto segmentov. Po vytvorení týchto profilov ich možno použiť na vypracovanie marketingovej stratégie a marketingového plánu.

Mnohé demografické trendy sa dajú pomerne ľahko určiť. Je to spôsobené predvídateľnosťou mnohých demografických vzťahov. Ak sa napríklad v určitých rokoch zvýši pôrodnosť (ako sa to skutočne stalo v rokoch baby boomu), môžeme určiť, že sa zvýši dopyt po detskej výžive a plienkach. Po niekoľkých rokoch sa zvýši dopyt po hračkách a detskom oblečení, po desiatich rokoch sa zvýši dopyt po verejnom vzdelávaní, videohrách a hudobných CD, po dvoch desaťročiach sa zvýši dopyt po univerzitných službách, kompaktných automobiloch, nájomných bytoch, svadobných fotografoch a nábytku, po štyroch desaťročiach sa zvýši dopyt po domoch, sedanoch, poistení, centrách na chudnutie a investičných službách, po šiestich desaťročiach sa zvýši dopyt po zdravotníckych službách a pohrebníctve.

Demografickými trendmi sa vysvetľuje všetko od dopytu po dovolenkových nehnuteľnostiach, cez tenisovú mániu v 70. rokoch až po výsledky volieb a akciových trhov. Samozrejme, žiadny spoločenský jav nie je taký jednoduchý, aby sa dal vysvetliť len pomocou demografie, ale je to dobrý začiatok. To je zmysel často citovaného tvrdenia profesora D. Foota (1996), že „demografia vysvetľuje asi dve tretiny všetkého“.

Dr. Dychtwald (1989) opisuje „starnutie Ameriky“ a presvedčivo tvrdí, že zmena vekového rozloženia americkej populácie je „najdôležitejším trendom našej doby“. Uvažuje o dôsledkoch demografických faktov, ako napríklad: veková skupina nad 50 rokov vlastní 77 % všetkých finančných aktív v Amerike, predstavuje viac ako 50 % všetkých predajov nových automobilov (podľa hodnoty), míňa viac na cestovanie a rekreáciu ako ktorákoľvek iná veková skupina atď. Pýta sa, čo sa stane so systémami zdravotnej starostlivosti a nárokmi na sociálne zabezpečenie (dôchodkové dávky), keď šedivenie Ameriky bude klásť na systém ďalšie nároky a zároveň sa zníži počet prispievateľov do systému.

Sterling a Waite (1998) opisujú tento trend starnutia ako „generačnú vojnu“. Pýtajú sa, čo sa stane s hodnotou nehnuteľností a finančných aktív, keď sa ich všetci starnúci ľudia z obdobia baby boomu pokúsia predať. Ako na to zareaguje mladšia veková kohorta?

Medzi ďalšie demografické trendy v poslednom období patrí nárast počtu rodín s dvoma príjmami, rodín s jedným rodičom a nukleárnych rodín.

Generačná kohorta bola definovaná ako „zoskupenie jednotlivcov (v rámci určitej definície populácie), ktorí zažili rovnakú udalosť v rovnakom časovom intervale“ (Ryder, N., The cohort as a concept in the study of social change, prednesené na výročnom zasadnutí Americkej sociologickej asociácie v roku 1959). Pojem skupiny ľudí, ktorú spája zdieľanie skúseností so spoločnými historickými udalosťami, prvýkrát predstavil Karl Mannheim začiatkom 20. rokov 20. storočia. Dnes si tento pojem našiel cestu do populárnej kultúry prostredníctvom známych pomenovaní ako „baby boomer“ a „gen-Xer“.

Zaujímavá štúdia Straussa a Howea (The fourth turning) sa zaoberala podobnosťami a rozdielmi medzi generáciami od 15. storočia a dospela k záveru, že v priebehu 80 rokov prechádzajú generácie 4 etapami, z ktorých každá trvá približne 20 rokov. Prvá fáza pozostáva z obdobia relatívnej krízy a ľudia narodení v tomto období sa nazývali „umelci“. Ďalšou fázou bolo obdobie „vzostupu“ a ľudia narodení v tomto období sa nazývali „proroci“. Ďalšou fázou bolo obdobie „prebudenia“ a ľudia narodení v tomto období sa nazývali „nomádi“. Poslednou fázou bolo „obdobie odkrývania“ a ľudia narodení v tomto období sa nazývali „hrdinovia“. Posledné „obdobie vzostupu“ nastalo v 50. a 60. rokoch (preto sú baby boomers najnovšou úrodou „prorokov“).

Najdôkladnejšiu nedávnu štúdiu uskutočnili Schuman a Scott (1989) v roku 1985, v ktorej sa širokej vzorky dospelých všetkých vekových kategórií pýtali: „Aké svetové udalosti za posledných 50 rokov boli pre nich obzvlášť dôležité?“. Zistili, že s veľkou frekvenciou sa spomínalo 33 udalostí. Keď sa porovnal vek respondentov s vyjadrenými rebríčkami dôležitosti, ukázalo sa sedem odlišných kohort. Dnes pre tieto kohorty používame nasledujúce deskriptory:

Americký úrad pre sčítanie ľudu považuje tieto demografické kohorty za narodené na základe miery pôrodnosti, ktorá je merateľná a reprodukovateľná:

Rozdelené skupiny sa vyskytujú v prípade rokov vrcholného rozmachu alebo inverzného vrcholného poklesu a môžu byť reprezentované normálnou alebo inverznou zvonovitou krivkou (namiesto rovnej krivky). Dielčie skupiny možno považovať za „pred vrcholom“ a „po vrchole“. Aj keď počet narodených po vrchole (napr. Trailing Edge Boomers) klesá a niekedy sa označuje ako „bust“, stále je relatívne veľký počet narodených.

Kritika a výhrady

Demografické profilovanie je v podstate zovšeobecňovaním skupín ľudí. Ako pri všetkých takýchto zovšeobecneniach si musíme byť vedomí, že mnohí jednotlivci v rámci týchto skupín nebudú zodpovedať profilu. Demografické techniky sú zjednodušením reality a nemali by nás zaslepiť pred bohatstvom individuálnej zložitosti. Najdôležitejšie je, aby sme svoj pohľad na konkrétne situácie nepredurčovali stanovením očakávaní o jednotlivcoch na základe zovšeobecnení o skupinách, do ktorých patria. Demografické informácie sú súhrnné a pravdepodobnostné informácie o skupinách, nie o konkrétnych jednotlivcoch.

Väčšina demografických informácií je kultúrne špecifická. Napríklad vyššie uvedené informácie o generačných kohortách sa vzťahujú predovšetkým na Severnú Ameriku (a v menšej miere na západnú Európu). Vážne chyby vznikajú, keď sa demografické informácie aplikujú na iné skupiny, ako sú skupiny podobné tým v pôvodnej štúdii.