Kategórie
Psychologický slovník

Genetická rozmanitosť

Genetická diverzita, úroveň biodiverzity, sa vzťahuje na celkový počet genetických charakteristík v genetickej výbave druhu. Odlišuje sa od genetickej variability, ktorá opisuje tendenciu genetických charakteristík meniť sa.

Genetická diverzita slúži populáciám na prispôsobenie sa meniacemu sa prostrediu. Pri väčšej variabilite je pravdepodobnejšie, že niektorí jedinci v populácii budú mať varianty alel, ktoré sú vhodné pre dané prostredie. Je pravdepodobnejšie, že títo jedinci prežijú a budú mať potomstvo s touto alelou. Populácia bude vďaka úspechu týchto jedincov pokračovať vo viacerých generáciách.

Akademická oblasť populačnej genetiky zahŕňa niekoľko hypotéz a teórií týkajúcich sa genetickej diverzity. Neutrálna teória evolúcie predpokladá, že rozmanitosť je výsledkom hromadenia neutrálnych substitúcií. Diverzifikačná selekcia je hypotéza, že dve subpopulácie druhu žijú v rôznych prostrediach, ktoré selektujú rôzne alely na určitom lokuse. K tomu môže dôjsť napríklad vtedy, ak má druh veľký rozsah v porovnaní s mobilitou jedincov v rámci neho. Výber závislý od frekvencie je hypotéza, že keď sa alely stávajú bežnejšími, stávajú sa zraniteľnejšími. To v interakciách medzi hostiteľom a patogénom, kde vysoká frekvencia obrannej alely u hostiteľa znamená, že je pravdepodobnejšie, že sa patogén rozšíri, ak je schopný túto alelu prekonať.

Význam genetickej rozmanitosti

Existuje mnoho rôznych spôsobov merania genetickej diverzity. Skúmali a identifikovali sa aj moderné príčiny straty genetickej diverzity zvierat. V štúdii, ktorú v roku 2007 uskutočnila Národná vedecká nadácia, sa zistilo, že genetická diverzita a biodiverzita (Biodiverzita je stupeň variability foriem života v danom ekosystéme) ] sú navzájom závislé – že diverzita v rámci druhu je potrebná na zachovanie diverzity medzi druhmi a naopak. Podľa vedúceho výskumníka štúdie, Dr. Richarda Lankaua, „ak sa zo systému odstráni ktorýkoľvek druh, cyklus sa môže prerušiť a v spoločenstve začne dominovať jeden druh.“ Genotypová a fenotypová rozmanitosť bola zistená u všetkých druhov na úrovni bielkovín, DNA a organizmu. Organizácia genómu a fenómu v prírode nie je náhodná, je silne štruktúrovaná a koreluje s abiotickou a environmentálnou diverzitou a stresom.

Vzájomná závislosť medzi genetickou a biologickou rozmanitosťou je krehká. Zmeny v biologickej diverzite vedú k zmenám v životnom prostredí, čo vedie k adaptácii zostávajúcich druhov. Zmeny v genetickej diverzite, napríklad pri strate druhov, vedú k strate biologickej diverzity.HU ;FJF I;AFSA
FA

Genetická rozmanitosť zohráva dôležitú úlohu pri prežití a prispôsobivosti druhov. Keď sa zmení životné prostredie populácie, populácia sa možno bude musieť prispôsobiť, aby prežila; „schopnosť populácií vyrovnať sa s touto [environmentálnou] výzvou závisí od ich schopnosti prispôsobiť sa meniacemu sa prostrediu.“ Variabilita v genofonde populácie poskytuje variabilné znaky medzi jedincami tejto populácie. Tieto variabilné znaky sa môžu selektovať prostredníctvom prirodzeného výberu; v konečnom dôsledku vedú k adaptačnej zmene populácie, ktorá jej umožňuje prežiť v zmenenom prostredí. Ak má populácia určitého druhu veľmi rôznorodý genofond, potom bude existovať väčšia variabilita znakov jedincov tejto populácie a následne viac znakov, na ktoré môže pôsobiť prírodný výber, aby vybral najvhodnejších jedincov na prežitie.

Vysoká genetická rozmanitosť je tiež nevyhnutná pre vývoj druhu. Druhy, ktoré majú menšiu genetickú variabilitu, sú vystavené väčšiemu riziku. Pri veľmi malej génovej variabilite v rámci druhu je zdravé rozmnožovanie čoraz ťažšie a potomstvo sa častejšie stretáva s problémami, ako je napríklad príbuzenské kríženie. Zraniteľnosť populácie voči určitým typom chorôb sa môže zvýšiť aj so znížením genetickej diverzity.

Veľmi podobná udalosť je príčinou neslávne známeho zemiakového hladomoru v Írsku. Keďže nové rastliny zemiakov nevznikajú v dôsledku rozmnožovania, ale z častí materskej rastliny, nevzniká genetická rozmanitosť a celá plodina je v podstate klonom jedného zemiaka, je mimoriadne náchylná na epidémiu. V 40. rokoch 19. storočia bola veľká časť obyvateľstva Írska závislá od zemiakov. Pestovali totiž odrodu zemiakov „lumper“, ktorá bola náchylná na oomycétu Phytophthora infestans spôsobujúcu hnilobu. Táto oomycéta zničila väčšinu úrody zemiakov a milión ľudí zomrelo od hladu.

Vyrovnávanie sa s nízkou genetickou rozmanitosťou

Príroda má niekoľko spôsobov, ako zachovať alebo zvýšiť genetickú rozmanitosť. V oceánskom planktóne pomáhajú pri procese genetického posunu vírusy. Oceánske vírusy, ktoré infikujú planktón, nesú okrem vlastných génov aj gény iných organizmov. Keď vírus obsahujúci gény jednej bunky infikuje inú, zmení sa jej genetická výbava. Tento neustály posun genetickej výbavy pomáha udržiavať zdravú populáciu planktónu napriek zložitým a nepredvídateľným zmenám prostredia.

Gepardy sú ohrozeným druhom. Nízka genetická diverzita a z toho vyplývajúca nízka kvalita spermií sťažuje rozmnožovanie a prežívanie gepardov. Okrem toho sa dospelosti dožíva len približne 5 % gepardov.
Nedávno sa však zistilo, že gepardie samice sa môžu páriť s viac ako jedným samcom na jeden vrh mláďat. Podliehajú indukovanej ovulácii, čo znamená, že pri každom párení samice sa vyprodukuje nové vajíčko. Párením s viacerými samcami matka zvyšuje genetickú rozmanitosť v rámci jedného vrhu mláďat.

Miery genetickej diverzity

Genetickú diverzitu populácie možno posúdiť pomocou niekoľkých jednoduchých opatrení.

Ďalšie opatrenia rozmanitosti

Prípadne sa môžu hodnotiť iné typy diverzity organizmov:

Medzi rôznymi typmi rozmanitosti existujú široké súvislosti. Napríklad existuje úzka súvislosť medzi taxonomickou a ekologickou diverzitou stavovcov.

Kategórie
Psychologický slovník

Kváziexperimentálne metódy

Kváziexperiment je výskumná metóda používaná pri navrhovaní experimentu empirickej štúdie, ktorá sa používa na odhad príčinného vplyvu intervencie na cieľovú populáciu. Kváziexperimentálne výskumné projekty majú mnoho podobností s tradičným experimentálnym projektom alebo randomizovanou kontrolovanou štúdiou, ale konkrétne im chýba prvok náhodného priradenia k liečbe alebo kontrole. Namiesto toho kváziexperimentálne návrhy zvyčajne umožňujú výskumníkovi kontrolovať priradenie k podmienkam liečby, ale s použitím iného kritéria ako náhodného priradenia (napr. hraničná hodnota oprávnenosti) . V niektorých prípadoch výskumník nemusí mať žiadnu kontrolu nad priradením k podmienkam liečby.

Kváziexperimenty sú spojené s obavami týkajúcimi sa internej validity, pretože liečebná a kontrolná skupina nemusia byť na začiatku porovnateľné. Pri náhodnom zaradení majú účastníci štúdie rovnakú šancu byť zaradení do intervenčnej alebo porovnávacej skupiny. Výsledkom je, že liečebná skupina bude na začiatku štatisticky identická s kontrolnou skupinou, pokiaľ ide o pozorované aj nepozorované charakteristiky (za predpokladu, že štúdia má primeranú veľkosť vzorky). Akákoľvek zmena charakteristík po intervencii je teda spôsobená len intervenciou. Pri kváziexperimentálnych štúdiách nemusí byť možné presvedčivo preukázať príčinnú súvislosť medzi podmienkami liečby a pozorovanými výsledkami. Platí to najmä vtedy, ak existujú mätúce premenné, ktoré nemožno kontrolovať alebo zohľadniť.

Prvou časťou tvorby kváziexperimentálneho dizajnu je identifikácia premenných. Kvázi nezávislá premenná bude premenná x, premenná, ktorá je manipulovaná s cieľom ovplyvniť závislú premennú. „X“ je vo všeobecnosti skupinová premenná s rôznymi úrovňami. Zoskupenie znamená dve alebo viac skupín, napríklad liečebnú skupinu a placebo alebo kontrolnú skupinu (placebo sa častejšie používa v lekárskych alebo fyziologických experimentoch). Predpokladaný výsledok je závislá premenná, ktorá je premennou y. Pri analýze časových radov sa závislá premenná sleduje v čase, či nedošlo k nejakým zmenám. Po identifikácii a definovaní premenných by sa mal následne zaviesť postup a mali by sa skúmať skupinové rozdiely.

V experimente s náhodným priradením majú jednotky štúdie rovnakú šancu, že budú zaradené do daného liečebného stavu. Náhodné priradenie ako také zabezpečuje, že experimentálna aj kontrolná skupina sú rovnocenné. V kváziexperimentálnom projekte je zaradenie do danej liečebnej podmienky založené na niečom inom ako na náhodnom zaradení. V závislosti od typu kváziexperimentálneho plánu môže mať výskumník kontrolu nad zaradením do liečebného stavu, ale na určenie účastníkov, ktorí dostanú liečbu, použije iné kritériá ako náhodné zaradenie (napr. hraničné skóre), alebo výskumník nemusí mať kontrolu nad zaradením do liečebného stavu a kritériá použité na zaradenie môžu byť neznáme. Faktory, ako sú náklady, uskutočniteľnosť, politické záujmy alebo pohodlie, môžu ovplyvniť spôsob, akým sa účastníci priradia k daným podmienkam liečby, a preto kváziexperimenty podliehajú obavám týkajúcim sa vnútornej platnosti (t. j. možno výsledky experimentu použiť na vyvodenie kauzálneho záveru?).

Kvázi experimenty sú účinné aj preto, že využívajú „pre-post testovanie“. To znamená, že pred zberom akýchkoľvek údajov sa vykonajú testy, aby sa zistilo, či nedochádza k zámene osôb alebo či niektorí účastníci majú určité tendencie. Potom sa vykoná samotný experiment so zaznamenaním výsledkov po testovaní. Tieto údaje sa môžu porovnať v rámci štúdie alebo sa údaje z predtestovania môžu zahrnúť do vysvetlenia skutočných experimentálnych údajov. Kvázi experimenty majú nezávislé premenné, ktoré už existujú, napríklad vek, pohlavie, farba očí. Tieto premenné môžu byť buď spojité (vek), alebo môžu byť kategorické (pohlavie). Stručne povedané, v rámci kvázi experimentov sa merajú prirodzene sa vyskytujúce premenné.

Existuje niekoľko typov kváziexperimentálnych návrhov, z ktorých každý má iné silné a slabé stránky a iné možnosti použitia. Medzi tieto modely patria (ale nie sú obmedzené len na ne):

Spomedzi všetkých týchto plánov má regresný diskontinuitný plán najbližšie k experimentálnemu plánu, pretože experimentátor si zachováva kontrolu nad priradením liečby a je známe, že „poskytuje neskreslený odhad účinkov liečby“. Vyžaduje si však veľký počet účastníkov štúdie a presné modelovanie funkčnej formy medzi priradením a výslednou premennou, aby sa dosiahla rovnaká sila ako pri tradičnom experimentálnom návrhu.

Hoci sa kváziexperimentom niekedy vyhýbajú tí, ktorí sa považujú za experimentálnych puristov (čo viedlo Donalda T. Campbella k tomu, aby pre ne zaviedol termín „queasy experiments“), sú mimoriadne užitočné v oblastiach, kde nie je možné alebo žiaduce vykonať experiment alebo randomizovanú kontrolnú štúdiu. Medzi takéto prípady patrí hodnotenie vplyvu zmien verejnej politiky, vzdelávacích intervencií alebo rozsiahlych zdravotníckych zásahov. Hlavnou nevýhodou kváziexperimentálnych dizajnov je, že nedokážu odstrániť možnosť zmätočného skreslenia, čo môže brániť schopnosti vyvodiť kauzálne závery. Táto nevýhoda sa často používa na znehodnotenie kváziexperimentálnych výsledkov. Takéto skreslenie sa však dá kontrolovať pomocou rôznych štatistických techník, ako je viacnásobná regresia, ak sa dá identifikovať a merať mätúca premenná (premenné). Takéto techniky sa môžu použiť na modelovanie a čiastočné odstránenie účinkov techník mätúcich premenných, čím sa zlepší presnosť výsledkov získaných z kváziexperimentov. Okrem toho, rozvíjajúce sa používanie propensity score matching na porovnanie účastníkov na základe premenných dôležitých pre proces výberu liečby môže tiež zlepšiť presnosť kváziexperimentálnych výsledkov.
Celkovo sú kváziexperimenty cenným nástrojom najmä pre aplikovaných výskumníkov. Samotné kváziexperimentálne návrhy neumožňujú robiť definitívne kauzálne závery; poskytujú však potrebné a cenné informácie, ktoré nemožno získať len experimentálnymi metódami. Výskumníci, najmä tí, ktorí sa zaujímajú o skúmanie otázok aplikovaného výskumu, by mali prekročiť tradičný experimentálny dizajn a využiť možnosti kváziexperimentálnych dizajnov.

Pri skutočnom experimente by sa deti náhodne zaradili do štipendijného programu, aby sa kontrolovali všetky ostatné premenné. Kváziexperimenty sa bežne používajú v spoločenských vedách, verejnom zdravotníctve, vzdelávaní a analýze politík, najmä ak nie je praktické alebo rozumné náhodne zaradiť účastníkov štúdie do podmienok liečby.

Niektorí autori rozlišujú medzi prirodzeným experimentom a „kváziexperimentom“. Rozdiel spočíva v tom, že v kváziexperimente kritérium pre zaradenie vyberá výskumník, zatiaľ čo v prirodzenom experimente sa zaradenie uskutočňuje „prirodzene“, bez zásahu výskumníka.

Kvázi experimenty majú výsledné ukazovatele, liečebné postupy a experimentálne jednotky, ale nepoužívajú náhodné priradenie. Kváziexperimenty sú často projektom, ktorý si väčšina ľudí vyberá namiesto skutočných experimentov. Hlavným dôvodom je, že sa zvyčajne dajú uskutočniť, zatiaľ čo pravé experimenty nie vždy. Kváziexperimenty sú zaujímavé, pretože prinášajú prvky z experimentálnych aj neexperimentálnych plánov. Môžu sa do nich zahrnúť merané premenné, ako aj manipulované premenné. Experimentátori si zvyčajne vyberajú kváziexperimenty, pretože maximalizujú internú a externú validitu.

Keďže kváziexperimentálne návrhy sa používajú v prípadoch, keď je náhodný výber nepraktický a/alebo neetický, zvyčajne sa ľahšie vytvárajú ako skutočné experimentálne návrhy, ktoré vyžadujú náhodné rozdelenie subjektov. Využívanie kváziexperimentálnych modelov navyše minimalizuje hrozby pre externú validitu, keďže prirodzené prostredie netrpí rovnakými problémami umelosti ako dobre kontrolované laboratórne prostredie. Keďže kváziexperimenty sú prirodzené experimenty, zistenia v jednom z nich možno aplikovať na iné subjekty a prostredia, čo umožňuje určité zovšeobecnenia o populácii. Táto experimentálna metóda je účinná aj v longitudinálnom výskume, ktorý zahŕňa dlhšie časové obdobia, ktoré možno sledovať v rôznych prostrediach.

Medzi ďalšie výhody kváziexperimentov patrí možnosť ľubovoľnej manipulácie, ktorú si experimentátor zvolí. V prirodzených experimentoch musia výskumníci nechať manipulácie prebiehať samé od seba a nemajú nad nimi žiadnu kontrolu. Taktiež použitie vlastných vybraných skupín v kvázi experimentoch odstraňuje šancu na etické, podmienené atď. obavy pri vykonávaní štúdie.

Kváziexperimentálne odhady vplyvu podliehajú kontaminácii mätúcimi premennými. Vo vyššie uvedenom príklade je možné, že variácia reakcie detí na výprask je ovplyvnená faktormi, ktoré sa nedajú jednoducho merať a kontrolovať, napríklad vnútornou divokosťou dieťaťa alebo podráždenosťou rodiča. Absencia náhodného priradenia v metóde kváziexperimentálneho dizajnu môže umožniť, aby boli štúdie uskutočniteľnejšie, ale zároveň to pre výskumníka predstavuje mnohé výzvy z hľadiska vnútornej validity. Tento nedostatok v náhodnom výbere sťažuje vylúčenie mätúcich premenných a prináša nové hrozby pre vnútornú validitu. Keďže chýba randomizácia, niektoré poznatky o údajoch možno aproximovať, ale závery o kauzálnych vzťahoch sa ťažko určujú vzhľadom na množstvo cudzích a mätúcich premenných, ktoré existujú v sociálnom prostredí. Navyše, aj keď sa tieto hrozby pre vnútornú validitu posúdia, príčinná súvislosť sa stále nedá úplne stanoviť, pretože experimentátor nemá úplnú kontrolu nad cudzími premennými.

Medzi nevýhody patrí aj to, že študijné skupiny môžu poskytovať slabšie dôkazy z dôvodu nedostatočnej náhodnosti. Náhodnosť prináša do štúdie veľa užitočných informácií, pretože rozširuje výsledky, a preto poskytuje lepšiu reprezentáciu populácie ako celku. Použitie nerovnakých skupín môže byť tiež hrozbou pre vnútornú validitu. Ak skupiny nie sú rovnocenné, čo nie je vždy prípad kváziexperimentov, potom experimentátor nemusí mať istotu, aké sú príčiny výsledkov.

Vnútorná validita je približná pravda o záveroch týkajúcich sa príčinných vzťahov alebo kauzálnych vzťahov. Práve preto je validita dôležitá pre kvázi experimenty, pretože v nich ide o náhodné vzťahy. Nastáva vtedy, keď sa experimentátor snaží kontrolovať všetky premenné, ktoré by mohli ovplyvniť výsledky experimentu. Štatistická regresia, história a účastníci sú možnými hrozbami pre vnútornú validitu. Otázka, ktorú by ste si chceli položiť, keď sa snažíte udržať vysokú internú validitu, znie: „Existujú aj iné možné dôvody pre výsledok okrem dôvodu, ktorý chcem, aby bol?“ Ak áno, potom interná validita nemusí byť taká silná.

Externá validita je zovšeobecnenie výsledkov získaných na menšej vzorke, o ktorých sa predpokladá, že sa dajú rozšíriť na zvyšok populácie. Keď je externá validita vysoká, zovšeobecnenie je presné a môže reprezentovať vonkajší svet z experimentu. Externá validita je veľmi dôležitá, keď ide o štatistický výskum, pretože chcete mať istotu, že máte správne zobrazenie populácie. Keď je externá validita nízka, dôveryhodnosť vášho výskumu je spochybnená. Znížiť ohrozenie externej validity možno tým, že sa zabezpečí náhodný výber účastníkov a tiež náhodné priradenie.

Najbežnejším typom kvázi experimentálneho dizajnu je dizajn „osoba po liečbe“. V tomto dizajne experimentátor meria aspoň jednu nezávislú premennú. Spolu s meraním jednej premennej bude experimentátor manipulovať aj s inou nezávislou premennou. Keďže sa manipuluje a merajú rôzne nezávislé premenné, výskum sa väčšinou vykonáva v laboratóriách. Dôležitým faktorom pri riešení dizajnov podľa osôb je, že sa bude musieť použiť náhodné priradenie, aby sa zabezpečilo, že experimentátor bude mať úplnú kontrolu nad manipuláciami, ktoré sa vykonávajú v rámci štúdie.

Príklad takéhoto typu projektu sa uskutočnil na univerzite v Notre Dame. Štúdia sa uskutočnila s cieľom zistiť, či mentorovanie pri práci vedie k zvýšeniu spokojnosti s prácou. Výsledky ukázali, že mnohí ľudia, ktorí mali mentora, vykazovali veľmi vysokú spokojnosť s prácou. Štúdia však ukázala aj to, že vysoký počet spokojných zamestnancov mali aj tí, ktorí mentora nedostali. Seibert dospel k záveru, že hoci pracovníci, ktorí mali mentorov, boli spokojní, nemohol predpokladať, že dôvodom boli samotní mentori, pretože počet vysokého počtu zamestnancov, ktorí nemali mentora, uviedol, že boli spokojní. Preto je veľmi dôležitý predbežný prieskum, aby ste mohli minimalizovať prípadné nedostatky v štúdii skôr, ako sa prejavia.

„Prirodzené experimenty“ sú iným typom kvázi experimentu, ktorý používajú výskumníci. Od experimentu na základe osoby sa líši tým, že neexistuje premenná, ktorou by experimentátor manipuloval. Namiesto kontroly aspoň jednej premennej ako pri dizajne „osoba podľa liečby“ experimentátori nepoužívajú náhodné priradenie a ponechávajú kontrolu experimentu na náhodu. Odtiaľ pochádza názov „prirodzený“ experiment. Manipulácie prebiehajú prirodzene, a hoci sa to môže zdať ako nepresná technika, v skutočnosti sa v mnohých prípadoch ukázala ako užitočná. Ide o štúdie vykonávané na ľuďoch, ktorým sa niečo náhle stalo. To môže znamenať dobré alebo zlé, traumatické alebo euforické. Príkladom môžu byť štúdie vykonané na tých, ktorí mali autonehodu, a na tých, ktorí ju nemali. Automobilové nehody samozrejme nemôžu byť nasadené experimentátormi, musia sa vyskytnúť prirodzene. Tieto udalosti sa ukázali ako užitočné v štúdiách týkajúcich sa prípadov posttraumatickej stresovej poruchy.

Priemer (aritmetický, geometrický) – Medián – Modus – Výkon – Rozptyl – Smerodajná odchýlka

Testovanie hypotéz – Významnosť – Nulová hypotéza/alternatívna hypotéza – Chyba – Z-test – Studentov t-test – Maximálna pravdepodobnosť – Štandardné skóre/Z skóre – P-hodnota – Analýza rozptylu

Funkcia prežitia – Kaplan-Meier – Logrank test – Miera zlyhania – Modely proporcionálnych rizík

Normálna (zvonová krivka) – Poissonova – Bernoulliho

Zmiešavajúca premenná – Pearsonov koeficient korelácie súčinu a momentu – Korelácia poradia (Spearmanov koeficient korelácie poradia, Kendallov koeficient korelácie poradia tau)

Lineárna regresia – Nelineárna regresia – Logistická regresia

Kategórie
Psychologický slovník

Chyby typu I a typu II

Chyby typu I (chyba α alebo falošne pozitívny výsledok) a chyby typu II (chyba β alebo falošne negatívny výsledok) sú dva termíny používané na opis štatistických chýb.

Štatistická chyba vs. systematická chyba

Vedci uznávajú dva rôzne druhy chýb:

Štatistická chyba: Typ I a typ II

Štatistici hovoria o dvoch významných druhoch štatistických chýb. Kontext je taký, že existuje „nulová hypotéza“, ktorá zodpovedá predpokladanému štandardnému „prirodzenému stavu“, napr. že jedinec nie je chorý, že obvinený je nevinný alebo že potenciálny kandidát na prihlásenie nie je oprávnený. Nulovej hypotéze zodpovedá „alternatívna hypotéza“, ktorá zodpovedá opačnej situácii, t. j. že jednotlivec má chorobu, že obvinený je vinný alebo že kandidát na prihlásenie je oprávnený používateľ. Cieľom je presne určiť, či nulovú hypotézu možno zamietnuť v prospech alternatívnej. Vykoná sa nejaký test (krvný test, súdny proces, pokus o prihlásenie) a získajú sa údaje. Výsledok testu môže byť negatívny (to znamená, že nenaznačuje chorobu, vinu alebo oprávnenú identitu). Na druhej strane môže byť pozitívny (to znamená, že môže naznačovať chorobu, vinu alebo identitu). Ak výsledok testu nezodpovedá skutočnému stavu prírody, došlo k chybe, ale ak výsledok testu zodpovedá skutočnému stavu prírody, bolo prijaté správne rozhodnutie. Existujú dva druhy chýb, ktoré sa klasifikujú ako „chyba typu I“ a „chyba typu II“ v závislosti od toho, ktorá hypotéza bola nesprávne identifikovaná ako skutočný stav prírody.

Chyba typu I, známa aj ako „chyba prvého druhu“, chyba α alebo „falošne pozitívna“: chyba zamietnutia nulovej hypotézy, keď je v skutočnosti pravdivá. Jednoducho povedané, nastáva vtedy, keď pozorujeme rozdiel, hoci v skutočnosti žiadny nie je.

Falošná pozitivita zvyčajne znamená, že test tvrdí, že je niečo pozitívne, hoci to tak nie je. Napríklad tehotenský test s pozitívnym výsledkom (čo znamená, že osoba, ktorá test vykonala, je tehotná) je falošne pozitívny v prípade, že osoba tehotná nie je.

Chyba typu II, známa aj ako „chyba druhého druhu“, chyba β alebo „falošne negatívna chyba“: chyba spočívajúca v nezamietnutí nulovej hypotézy, keď alternatívna hypotéza je skutočným stavom prírody. Inými slovami, ide o chybu spočívajúcu v nepozorovaní rozdielu, keď v skutočnosti existuje. Tento typ chyby môže nastať len vtedy, keď štatistik nezamietne nulovú hypotézu.

Ďalšia terminológia je uvedená v časti Rôzne návrhy na ďalšie rozšírenie.

Chápanie chýb typu I a typu II

Testovanie hypotéz je umenie testovať, či sa rozdiel medzi dvoma rozdeleniami vzorky dá vysvetliť náhodou alebo nie. V mnohých praktických aplikáciách sú chyby typu I chúlostivejšie ako chyby typu II. V týchto prípadoch sa zvyčajne dbá na minimalizáciu výskytu tejto štatistickej chyby. Predpokladajme, že pravdepodobnosť chyby typu I je 1 % alebo 5 %, potom existuje 1 % alebo 5 % pravdepodobnosť, že pozorovaná odchýlka nie je pravdivá. Táto hodnota sa nazýva hladina významnosti. Zatiaľ čo 1 % alebo 5 % môže byť prijateľná úroveň významnosti pre jednu aplikáciu, iná aplikácia môže vyžadovať úplne inú úroveň. Napríklad štandardným cieľom šesť sigma je dosiahnuť presnosť o 4,5 štandardnej odchýlky nad alebo pod priemerom. To znamená, že pre normálne rozložený proces je prípustná odchýlka len 3,4 časti na milión. Pravdepodobnosť chyby typu I sa vo všeobecnosti označuje gréckym písmenom alfa.

V roku 1928 Jerzy Neyman (1894-1981) a Egon Pearson (1895-1980), obaja významní štatistici, diskutovali o problémoch spojených s „rozhodovaním o tom, či určitá vzorka môže byť považovaná za náhodne vybranú z určitej populácie“ (1928/1967, s. 1).): a ako poznamenal David, „je potrebné si uvedomiť, že prídavné meno ‚náhodný‘ [v pojme ‚náhodná vzorka‘] by sa malo vzťahovať na spôsob výberu vzorky, a nie na vzorku samotnú“ (1949, s. 28).

V roku 1933 poznamenali, že tieto „problémy sú zriedkavo prezentované v takej forme, aby sme mohli s istotou rozlíšiť medzi pravdivou a nepravdivou hypotézou“ (s. 187). Taktiež poznamenali, že pri rozhodovaní, či prijať alebo zamietnuť konkrétnu hypotézu spomedzi „súboru alternatívnych hypotéz“ (s. 201), je ľahké urobiť chybu:

Vo všetkých prácach, ktoré Neyman a Pearson napísali spoločne, výraz H0 vždy znamená „hypotéza, ktorá sa má testovať“ (pozri napríklad 1933/1967, s. 186).

Tieto príklady ilustrujú nejednoznačnosť, ktorá je jedným z nebezpečenstiev tohto širšieho používania: Mohli by sa použiť aj opačne, ako testovanie neviny, alebo by mohlo ísť o dva testy, jeden na vinu, druhý na nevinu. (Táto nejednoznačnosť je jedným z dôvodov tretieho možného verdiktu škótskeho právneho systému: nedokázané).

Nasledujúce tabuľky znázorňujú podmienky.

Príklad, použitie výsledkov testov infekčných chorôb:

Príklad, testovanie na vinu/nevinu:

Všimnite si, že v súvislosti s výsledkami testov sa pojmy pravdivý a nepravdivý používajú v dvoch rôznych významoch: stav aktuálneho stavu (pravdivý = prítomný verzus nepravdivý = neprítomný) a presnosť alebo nepresnosť výsledku testu (pravdivý pozitívny, nepravdivý pozitívny, pravdivý negatívny, nepravdivý negatívny). Pre niektorých čitateľov je to mätúce. Na objasnenie uvedených príkladov sme na označenie skutočného stavu, ktorý sa testuje, použili skôr slovné spojenie prítomný/neprítomný než pravdivý/nepravdivý.

Miera falošnej pozitivity je podiel negatívnych prípadov, ktoré boli chybne nahlásené ako pozitívne.

Rovná sa 1 mínus špecifickosť testu. To sa rovná tvrdeniu, že miera falošnej pozitivity sa rovná hladine významnosti.

V štatistickom testovaní hypotéz sa tento podiel označuje symbolom α a je definovaný ako špecifickosť testu. Zvyšovanie špecifickosti testu znižuje pravdepodobnosť chýb typu I, ale zvyšuje pravdepodobnosť chýb typu II (falošne negatívne výsledky, ktoré zamietajú alternatívnu hypotézu, hoci je pravdivá).

Falošne negatívna miera je podiel pozitívnych prípadov, ktoré boli chybne nahlásené ako negatívne.

Rovná sa 1 mínus „sila“ testu.

Pri testovaní štatistických hypotéz sa tento podiel označuje symbolom β.

Štatistici štandardne vykonávajú testy, aby zistili, či je možné podporiť „špekulatívnu hypotézu“ týkajúcu sa pozorovaných javov vo svete (alebo jeho obyvateľov). Výsledky takéhoto testovania určujú, či konkrétny súbor výsledkov primerane súhlasí (alebo nesúhlasí) so špekulatívnou hypotézou.

Na základe štatistickej konvencie sa vždy predpokladá, že predpokladaná hypotéza je nesprávna – a že pozorované javy sa vyskytujú jednoducho náhodne (a že v dôsledku toho predpokladaný činiteľ nemá žiadny vplyv) – test určí, či je hypotéza správna alebo nesprávna. Preto sa testovaná hypotéza často nazýva „nulová hypotéza“ (s najväčšou pravdepodobnosťou ju vytvoril Fisher (1935, s. 19)), pretože práve táto hypotéza má byť testom buď zrušená, alebo nezrušená.

Dôsledné uplatňovanie Neymanovej a Pearsonovej konvencie štatistikov, ktorí „testovanú hypotézu“ (alebo „hypotézu, ktorá sa má zrušiť“) predstavujú výrazom Ho, viedlo k tomu, že mnohí chápu výraz „nulová hypotéza“ ako „nulovú hypotézu“ – tvrdenie, že príslušné výsledky vznikli náhodou. Nemusí to tak byť – kľúčovým obmedzením podľa Fishera (1966) je, že „nulová hypotéza musí byť presná, t. j. bez nejasností a dvojznačností, pretože musí poskytnúť základ ‚problému rozdelenia‘, ktorého riešením je test významnosti“. Z toho vyplýva, že v experimentálnej vede je nulová hypotéza vo všeobecnosti tvrdenie, že určitý postup nemá žiadny účinok; v observačnej vede je to tvrdenie, že neexistuje rozdiel medzi hodnotou určitej meranej premennej a hodnotou experimentálnej predpovede.

Miera, do akej daný test ukazuje, že „predpokladaná hypotéza“ bola (alebo nebola) vyvrátená, sa nazýva hladina významnosti; a čím je hladina významnosti vyššia, tým je menej pravdepodobné, že daný jav mohol vzniknúť len náhodou. Britský štatistik Sir Ronald Aylmer Fisher (1890 – 1962) zdôraznil, že „nulová hypotéza“:

Pravdepodobnosť, že pozorovaný pozitívny výsledok je falošne pozitívny (na rozdiel od pozorovaného pozitívneho výsledku, ktorý je skutočne pozitívny), možno vypočítať pomocou Bayesovej vety.

Kľúčovým konceptom Bayesovej vety je, že skutočná miera falošne pozitívnych a falošne negatívnych výsledkov nie je funkciou samotnej presnosti testu, ale aj skutočnej miery alebo frekvencie výskytu v testovanej populácii; a často je silnejším problémom skutočná miera výskytu daného stavu v testovanej vzorke.

Rôzne návrhy na ďalšie rozšírenie

Keďže párové pojmy chýb I. typu (alebo „falošne pozitívnych“) a chýb II. typu (alebo „falošne negatívnych“), ktoré zaviedli Neyman a Pearson, sú v súčasnosti široko používané, ich výber terminológie („chyby prvého druhu“ a „chyby druhého druhu“) viedol ostatných k domnienke, že určité druhy chýb, ktoré identifikovali, môžu byť „chybami tretieho druhu“, „štvrtého druhu“ atď.

Žiadna z týchto navrhovaných kategórií sa nestretla so širokým prijatím. Nasleduje stručný opis niektorých z týchto návrhov.

V roku 1948 Frederick Mosteller (1916-) tvrdil, že na opis okolností, ktoré pozoroval, je potrebný „tretí druh chyby“, a to:

Henry F. Kaiser (1927-1992) vo svojej práci z roku 1966 rozšíril Mostellerovu klasifikáciu tak, že chyba tretieho druhu znamená nesprávne rozhodnutie o smere po zamietnutí dvojvýberového testu hypotézy. Vo svojej diskusii (1966, s. 162-163) Kaiser hovorí aj o chybách α, β a γ pre chyby I. typu, II. typu a III. typu.

V roku 1957 Allyn W. Kimball, štatistik z Oak Ridge National Laboratory, navrhol iný druh chyby, ktorý by mal stáť vedľa „prvého a druhého typu chyby v teórii testovania hypotéz“. Kimball definoval túto novú „chybu tretieho druhu“ ako „chybu, ktorej sa dopúšťame tým, že dávame správnu odpoveď na nesprávny problém“ (1957, s. 134).

Matematik Richard Hamming (1915-1998) vyslovil názor, že „je lepšie riešiť správny problém nesprávnym spôsobom ako riešiť nesprávny problém správnym spôsobom“.

Známy harvardský ekonóm Howard Raiffa opisuje prípad, keď aj on „padol do pasce práce na nesprávnom probléme“ (1968, s. 264-265).

V roku 1974 Ian Mitroff a Tom Featheringham rozšírili Kimballovu kategóriu a tvrdili, že „jedným z najdôležitejších determinantov riešenia problému je to, ako bol tento problém reprezentovaný alebo formulovaný“.

Chyby typu III definovali buď ako „chybu…, že sme vyriešili nesprávny problém…, keď sme mali vyriešiť správny problém“, alebo ako „chybu…, že sme si vybrali nesprávnu reprezentáciu problému…, keď sme si mali… vybrať správnu reprezentáciu problému“ (1974), s. 383).

V roku 1969 harvardský ekonóm Howard Raiffa vtipne navrhol „kandidáta na chybu štvrtého druhu: príliš neskoré riešenie správneho problému“ (1968, s. 264).

V roku 1970 Marascuilo a Levin navrhli „štvrtý druh chyby“ – „chybu IV. typu“ – ktorú definovali podobne ako Mosteller ako chybu „nesprávnej interpretácie správne zamietnutej hypotézy“; čo je podľa nich ekvivalentom „správnej diagnózy lekára, po ktorej nasleduje predpísanie nesprávneho lieku“ (1970, s. 398).

Prahovú hodnotu možno meniť, aby bol test prísnejší alebo citlivejší; prísnejšie testy zvyšujú riziko odmietnutia pravých pozitívnych výsledkov a citlivejšie testy zvyšujú riziko prijatia falošne pozitívnych výsledkov.

Pojmy „falošne pozitívne“ a „falošne negatívne“ sú v oblasti počítačov a počítačových aplikácií veľmi rozšírené.

Bezpečnostné zraniteľnosti sú dôležitým faktorom pri úlohe zabezpečiť bezpečnosť všetkých počítačových údajov a zároveň zachovať prístup k týmto údajom pre príslušných používateľov (pozri počítačová bezpečnosť, počítačová neistota). Moulton (1983) zdôrazňuje význam:

K falošne pozitívnym správam dochádza vtedy, keď techniky filtrovania alebo blokovania spamu nesprávne klasifikujú legitímnu e-mailovú správu ako spam a v dôsledku toho narušia jej doručenie. Hoci väčšina antispamových taktík dokáže zablokovať alebo odfiltrovať vysoké percento nežiaducich e-mailov, urobiť to bez toho, aby vznikali výrazné falošne pozitívne výsledky, je oveľa náročnejšia úloha.

Falošne negatívny výsledok nastane vtedy, keď sa nevyžiadaná e-mailová správa nezistí ako spam, ale klasifikuje sa ako „nevyžiadaná“. Nízky počet falošne negatívnych výsledkov je ukazovateľom účinnosti metód filtrovania spamu.

Termín falošne pozitívny sa používa aj vtedy, keď antivírusový softvér nesprávne klasifikuje neškodný súbor ako vírus. Nesprávna detekcia môže byť spôsobená heuristikou alebo nesprávnou vírusovou signatúrou v databáze. Podobné problémy sa môžu vyskytnúť aj v prípade antitrojanového alebo antispywarového softvéru.

Vyhľadávanie v počítačovej databáze

Pri vyhľadávaní v počítačových databázach sú falošne pozitívne výsledky vyhľadávania dokumenty, ktoré sú odmietnuté napriek tomu, že sú relevantné pre hľadanú otázku. Falošne negatívne dokumenty sú dokumenty, ktoré sú vyhľadávané napriek ich nerelevantnosti pre vyhľadávaciu otázku. Falošné negatíva sú bežné pri fulltextovom vyhľadávaní, pri ktorom vyhľadávací algoritmus skúma celý text vo všetkých uložených dokumentoch a snaží sa nájsť zhodu s jedným alebo viacerými vyhľadávacími výrazmi, ktoré zadal používateľ. Zvážte, ako to súvisí s filtrovaním nevyžiadanej pošty – je závažnejšie nevyzdvihnúť požadovaný dokument ako vyhľadať dokument, ktorý nechcete.

Väčšinu falošne pozitívnych výsledkov možno pripísať nedostatkom prirodzeného jazyka, ktorý je často nejednoznačný: napr. výraz „domov“ môže znamenať „obydlie osoby“ alebo „hlavná alebo najvyššia úroveň stránky na webovej stránke“.

Optické rozpoznávanie znakov (OCR)

Detekčné algoritmy všetkých druhov často vytvárajú falošne pozitívne výsledky. Softvér na optické rozpoznávanie znakov (OCR) môže detekovať písmeno „a“, pričom pre použitý algoritmus sa ako písmeno „a“ javia len niektoré body.

Pri bezpečnostných kontrolách na letiskách sa každý deň bežne zisťujú falošne pozitívne výsledky. Inštalované bezpečnostné alarmy majú zabrániť vnášaniu zbraní do lietadiel; často sú však nastavené na takú vysokú citlivosť, že sa mnohokrát za deň spustí poplach pri drobných predmetoch, ako sú kľúče, spony opaskov, drobné peniaze, mobilné telefóny a cvočky v topánkach (pozri detekcia výbušnín, detektor kovov).

Pomer falošne pozitívnych výsledkov (identifikácia nevinného cestujúceho ako teroristu) a skutočne pozitívnych výsledkov (odhalenie potenciálneho teroristu) je preto veľmi vysoký, a keďže takmer každý poplach je falošne pozitívny, pozitívna prediktívna hodnota týchto skríningových testov je veľmi nízka.

Biometrické overovanie, napríklad odtlačkov prstov, rozpoznávanie tváre alebo
rozpoznávanie dúhovky, je náchylné na chyby typu I a typu II. Štandardné
biometrickej terminológie pre tieto chyby sú:

FAR môže byť aj skratkou pre mieru falošného poplachu v závislosti od toho, či
biometrický systém je určený na povolenie prístupu alebo na rozpoznanie podozrivých osôb. FAR je
považuje za mieru bezpečnosti systému, zatiaľ čo FRR meria
úroveň nepohodlia pre používateľov. V prípade mnohých systémov je FRR do veľkej miery spôsobená nízkou kvalitou
snímok v dôsledku nesprávneho umiestnenia alebo osvetlenia. Niekedy sa používa terminológia FMR/FNMR
sa uprednostňuje pred FAR/FRR, pretože prvý termín meria mieru pre každé biometrické porovnanie, zatiaľ čo druhý
merajú výkonnosť aplikácie (t. j. môžu byť povolené tri pokusy).

V súvislosti s používaním týchto opatrení v biometrických systémoch je potrebné uviesť niekoľko obmedzení:

V medicínskej praxi existuje významný rozdiel medzi použitím skríningu a testovania:

Väčšina štátov v USA napríklad vyžaduje, aby sa novorodenci vyšetrovali okrem iných vrodených porúch aj na fenylketonúriu a hypotyreózu. Hoci sa pri nich vyskytuje vysoký počet falošne pozitívnych výsledkov, skríningové testy sa považujú za cenné, pretože výrazne zvyšujú pravdepodobnosť odhalenia týchto porúch v oveľa skoršom štádiu.

Jednoduché krvné testy, ktoré sa používajú na vyšetrenie možných darcov krvi na HIV a hepatitídu, majú značný podiel falošne pozitívnych výsledkov; lekári však používajú oveľa drahšie a presnejšie testy na určenie, či je osoba skutočne infikovaná niektorým z týchto vírusov.

Asi najviac sa diskutuje o falošne pozitívnych výsledkoch lekárskeho skríningu, ktoré pochádzajú z mamografického vyšetrenia rakoviny prsníka. Miera falošne pozitívnych výsledkov mamografie v USA dosahuje až 15 %, čo je najviac na svete. Najnižšia miera na svete je v Holandsku, 1 %.

Preto ak sa niekto rozhodne použiť lekársky test na účely populačného skríningu, musí byť test navrhnutý tak, aby bol lacný, ľahko sa vykonával a pokiaľ možno nedával žiadne falošne negatívne výsledky. Takéto testy zvyčajne produkujú viac falošne pozitívnych výsledkov, ktoré sa následne dajú vyriešiť sofistikovanejším (a drahším) testovaním.

Falošne negatívne a falošne pozitívne výsledky sú v lekárskom testovaní významným problémom.

Falošne negatívne výsledky môžu pacientom a lekárom poskytnúť falošne upokojujúcu správu, že choroba nie je prítomná, hoci v skutočnosti prítomná je. To niekedy vedie k nevhodnej alebo neadekvátnej liečbe pacienta aj jeho ochorenia. Bežným príkladom je spoliehanie sa na záťažové testy srdca pri zisťovaní koronárnej aterosklerózy, hoci je známe, že záťažové testy srdca zisťujú len obmedzenie prietoku krvi koronárnou tepnou v dôsledku pokročilých stenóz.

Falošne negatívne výsledky spôsobujú vážne a neintuitívne problémy, najmä ak je hľadaný stav bežný. Ak sa test s falošne negatívnou mierou výskytu iba 10 % použije na testovanie populácie so skutočnou mierou výskytu 70 %, mnohé „negatívne“ zistené testom budú falošné. (Pozri Bayesovu vetu)

Falošne pozitívne výsledky môžu tiež spôsobiť vážne a neintuitívne problémy, ak je hľadaný stav zriedkavý, ako je to pri skríningu. Ak je miera falošnej pozitivity testu jedna z desaťtisíc, ale len jedna z milióna vzoriek (alebo ľudí) je skutočne pozitívna, väčšina „pozitívnych“ prípadov zistených týmto testom bude falošná.

Pojem falošne pozitívny dôkaz si osvojili tí, ktorí skúmajú paranormálne javy alebo javy duchov, aby opísali fotografiu, nahrávku alebo iný dôkaz, ktorý sa nesprávne javí ako paranormálny pôvod – v tomto použití je falošne pozitívny dôkaz vyvrátený mediálny „dôkaz“ (obrázok, film, zvuková nahrávka atď.), ktorý má normálne vysvetlenie.

Priemer (aritmetický, geometrický) – Medián – Modus – Výkon – Rozptyl – Smerodajná odchýlka

Testovanie hypotéz – Významnosť – Nulová hypotéza/alternatívna hypotéza – Chyba – Z-test – Studentov t-test – Maximálna pravdepodobnosť – Štandardné skóre/Z skóre – P-hodnota – Analýza rozptylu

Funkcia prežitia – Kaplan-Meier – Logrank test – Miera zlyhania – Modely proporcionálnych rizík

Normálna (zvonová krivka) – Poissonova – Bernoulliho

Zmiešavajúca premenná – Pearsonov koeficient korelácie súčinu a momentu – Korelácia poradia (Spearmanov koeficient korelácie poradia, Kendallov koeficient korelácie poradia tau)

Lineárna regresia – Nelineárna regresia – Logistická regresia

Kategórie
Psychologický slovník

Kontrola pôrodnosti

Antikoncepcia, niekedy synonymum pre antikoncepciu, je režim jedného alebo viacerých opatrení, pomôcok alebo liekov, ktoré sa používajú s cieľom úmyselne zabrániť tehotenstvu alebo pôrodu alebo znížiť pravdepodobnosť ich vzniku. Antikoncepcia sa môže konkrétne vzťahovať na mechanizmy, ktorých cieľom je znížiť pravdepodobnosť oplodnenia vajíčka spermiou.

História antikoncepcie sa začala objavom súvislosti medzi súložou a tehotenstvom. K najstarším formám kontroly pôrodnosti patrili koitus interruptus, pesary a požitie bylín, o ktorých sa predpokladalo, že sú antikoncepčné alebo abortívne. Najstarším záznamom o používaní antikoncepcie je návod na vytvorenie antikoncepčného pesaru zo starého Egypta.

Rôzne metódy antikoncepcie majú rôzne vlastnosti. Napríklad kondómy sú jedinou metódou, ktorá poskytuje významnú ochranu pred pohlavne prenosnými chorobami. Kultúrne a náboženské postoje k antikoncepcii sa výrazne líšia.

Zariadenie na plánovanie rodiny v Kuala Terengganu v Malajzii.

„A zloduch ju stále prenasleduje.“ Humorná pohľadnica z viktoriánskej éry.

Pravdepodobne najstaršími metódami antikoncepcie (okrem sexuálnej abstinencie) sú koitus interruptus, niektoré bariérové metódy a rastlinné metódy (emmenagulačné a abortívne prostriedky).

Coitus interruptus (vytiahnutie penisu z vagíny pred ejakuláciou) pravdepodobne predchádzal akejkoľvek inej forme antikoncepcie. Akonáhle sa zistila súvislosť medzi vypúšťaním semena do pošvy a tehotenstvom alebo podozrenie naň, niektorí muži začali túto techniku používať. Nejde o obzvlášť spoľahlivú metódu antikoncepcie, pretože len málo mužov má dostatočnú sebakontrolu na to, aby túto metódu správne praktizovali pri každom jednom pohlavnom styku. Hoci sa všeobecne verí, že preejakulátna tekutina môže spôsobiť tehotenstvo, moderný výskum ukázal, že preejakulátna tekutina neobsahuje životaschopné spermie.

Existujú historické záznamy o egyptských ženách, ktoré používali pesar (vaginálny čapík) vyrobený z rôznych kyslých látok a namazaný medom alebo olejom, ktorý mohol byť do určitej miery účinný pri ničení spermií. Je však dôležité poznamenať, že spermatická bunka bola objavená až koncom 17. storočia, keď Anton van Leeuwenhoek vynašiel mikroskop, takže bariérové metódy používané pred týmto obdobím nemohli poznať podrobnosti o počatí. Ázijské ženy možno používali ako krčný uzáver naolejovaný papier a Európanky mohli na tento účel používať včelí vosk. Kondóm sa objavil niekedy v 17. storočí a pôvodne bol vyrobený z dĺžky zvieracieho čreva. Nebol obzvlášť obľúbený ani taký účinný ako moderné latexové kondómy, ale používal sa ako antikoncepčný prostriedok a v nádeji, že sa predíde syfilisu, ktorý bol pred objavením antibiotík veľmi obávaný a ničivý.

V histórii ľudstva sa používali rôzne abortíva. Niektoré z nich boli účinné, iné nie; tie najúčinnejšie mali aj závažné vedľajšie účinky. Jedno z abortív, o ktorom sa uvádzalo, že má nízku úroveň vedľajších účinkov – silfium – sa zbieralo až do vyhynutia okolo 1. storočia.
Požitie niektorých jedov ženou môže narušiť reprodukčný systém; ženy na tento účel pili roztoky obsahujúce ortuť, arzén alebo iné toxické látky. Grécky gynekológ Soranus v 2. storočí navrhoval, aby ženy pili vodu, ktorú kováči používali na chladenie kovu. Bylinky tansy a pennyroyal sú v ľudovej slovesnosti známe ako potratové prostriedky, ale tie tiež „fungujú“ tak, že otrávia ženu. Hladiny účinných chemických látok v týchto bylinách, ktoré vyvolajú potrat, sú dostatočne vysoké na to, aby poškodili pečeň, obličky a iné orgány, takže sú veľmi nebezpečné. V tých časoch, keď bolo riziko úmrtia matky v dôsledku popôrodných komplikácií vysoké, sa však riziká a vedľajšie účinky toxických liekov mohli zdať menej zaťažujúce. Niektorí bylinkári tvrdia, že čaj z čierneho cohoshu bude v určitých prípadoch účinný aj ako abortívum.

Okrem potratových prostriedkov patrilo k bylinnej antikoncepcii v ľudovom prostredí aj niekoľko preventívnych opatrení. Hibiscus rosa-sinensis, známy v ajurvéde ako antikoncepčný prostriedok, môže mať antiestrogénne vlastnosti. Semená papáje, o ktorých sa hovorí, že sú mužským antikoncepčným prostriedkom, boli nedávno skúmané pre ich azoospermický účinok na opice.

Skutočnosť, že v starovekom svete boli známe rôzne účinné metódy kontroly pôrodnosti, ostro kontrastuje so zdanlivou neznalosťou týchto metód v širokých vrstvách obyvateľstva ranokresťanskej Európy. Táto nevedomosť pretrvávala až do 20. storočia a bola sprevádzaná mimoriadne vysokou pôrodnosťou v európskych krajinách v 18. a 19. storočí. Niektorí historici to pripisujú sérii donucovacích opatrení, ktoré zaviedol vznikajúci moderný štát v snahe znovu zaľudniť Európu po populačnej katastrofe čiernej smrti, ktorá sa začala v roku 1348. Podľa tohto názoru boli hony na čarodejnice prvým opatrením, ktoré moderný štát prijal v snahe eliminovať vedomosti o kontrole pôrodnosti v populácii a monopolizovať ich v rukách štátom zamestnaných mužských lekárskych špecialistov (gynekológov). Pred honom na čarodejnice o mužských špecialistoch nebolo počuť, pretože kontrola pôrodnosti bola prirodzene ženskou doménou.

Prednášajúci na konferencii o plánovaní rodiny rozprávali príbeh o arabských obchodníkoch, ktorí vkladali ťavám do maternice malé kamene, aby zabránili tehotenstvu, čo je koncept veľmi podobný modernému vnútromaternicovému teliesku. Hoci sa tento príbeh opakoval ako pravda, nemá žiadny historický základ a mal slúžiť len na zábavné účely.
Prvé medzimenštruačné pomôcky (ktoré zaberali vagínu aj maternicu) boli prvýkrát uvedené na trh okolo roku 1900. Prvé moderné vnútromaternicové zariadenie (ktoré sa celé nachádzalo v maternici) bolo opísané v nemeckej publikácii v roku 1909, hoci autor zrejme svoj výrobok nikdy neuviedol na trh.

Rytmická metóda (s pomerne vysokou mierou zlyhania metódy (desať percent ročne) bola vyvinutá začiatkom 20. storočia, keď vedci zistili, že žena ovuluje len raz za menštruačný cyklus. Až v 50. rokoch 20. storočia, keď vedci lepšie pochopili fungovanie menštruačného cyklu a hormónov, ktoré ho riadia, boli vyvinuté metódy hormonálnej antikoncepcie a moderné metódy uvedomenia si plodnosti (nazývané aj prirodzené plánovanie rodiny).

Bariérové metódy fyzicky bránia pohybu spermií do ženského reprodukčného traktu.

Najobľúbenejšou bariérovou metódou je mužský kondóm, latexový alebo polyuretánový návlek nasadený na penis. Kondóm je k dispozícii aj v ženskej verzii, ktorá je vyrobená z polyuretánu. Ženský kondóm má na každom konci pružný krúžok – jeden sa upevňuje za lonovú kosť, aby kondóm držal na mieste, zatiaľ čo druhý krúžok zostáva mimo vagíny.

Cervikálne zábrany sú pomôcky, ktoré sú úplne umiestnené vo vnútri vagíny. Antikoncepčná špongia má priehlbinu, ktorá ju drží na mieste nad krčkom maternice. Cervikálna čiapočka je najmenšia cervikálna bariéra. Na svojom mieste zostáva vďaka prisatiu na krčok maternice alebo na steny pošvy. Leaov štít je väčšia cervikálna bariéra, ktorá tiež drží na mieste odsávaním. Membrána sa umiestňuje na miesto za lonovú kosť ženy a má pevný, ale pružný krúžok, ktorý jej pomáha pritlačiť sa k pošvovým stenám.

Membrána SILCS je nová konštrukcia membrány, ktorá je stále v štádiu klinického testovania a zatiaľ nie je k dispozícii.

Ortho Tri-cyclen, značka perorálnej antikoncepcie, v dávkovači s číselníkom.

Existuje celý rad spôsobov podávania hormonálnej antikoncepcie.

Bežne sa používajú kombinácie syntetických estrogénov a progestínov (syntetické progestagény). Patrí medzi ne kombinovaná perorálna antikoncepčná tableta („The Pill“), náplasť a antikoncepčný vaginálny krúžok („NuvaRing“). V súčasnosti nie je v Spojených štátoch na predaj Lunelle, mesačná injekcia.

Iné metódy obsahujú iba progestín (syntetický progestagén). Patria medzi ne tabletky obsahujúce iba progestín (POP alebo „minipilulka“), injekčné prípravky Depo Provera (depotný prípravok medroxyprogesterón acetátu podávaný vo forme intramuskulárnej injekcie každé tri mesiace) a Noristerat (noretindrón acetát podávaný vo forme intramuskulárnej injekcie každých 8 týždňov) a antikoncepčné implantáty. Tablety obsahujúce iba progestín sa musia užívať každý deň v presnejšie zapamätaných časoch ako kombinované tablety. Prvý antikoncepčný implantát, pôvodný 6-kapsulový Norplant, bol z trhu v Spojených štátoch stiahnutý v roku 1999, hoci novší jednopólový implantát s názvom Implanon bol v Spojených štátoch schválený na predaj 17. júla 2006. Rôzne metódy obsahujúce iba progestín môžu počas používania spôsobovať nepravidelné krvácanie.

Ormeloxifén (Centchroman)

Ormeloxifén (Centchroman) je selektívny modulátor estrogénových receptorov alebo SERM. Spôsobuje, že ovulácia prebieha asynchrónne s tvorbou sliznice maternice, čím zabraňuje implantácii zygoty. Od začiatku 90. rokov 20. storočia je v Indii široko dostupný ako metóda antikoncepcie, predávaný pod obchodným názvom Saheli. Centchroman je legálne dostupný len v Indii.

Terminológia používaná pre tieto zariadenia sa v Spojenom kráľovstve a Spojených štátoch líši. V USA sa všetky pomôcky, ktoré sa umiestňujú do maternice s cieľom zabrániť otehotneniu, označujú ako vnútromaternicové telieska (IUD) alebo vnútromaternicové antikoncepčné pomôcky (IUCD). V Spojenom kráľovstve sa IUD (alebo IUCD) nazývajú len pomôcky obsahujúce meď a hormonálne vnútromaternicové antikoncepčné prostriedky sa označujú termínom vnútromaternicový systém (IUS). Dôvodom môže byť skutočnosť, že v Spojenom kráľovstve je k dispozícii sedem typov medených vnútromaternicových teliesok, zatiaľ čo v USA je k dispozícii len jedno.

Niektoré kombinované tablety a POP sa môžu užívať vo vysokých dávkach na zabránenie otehotneniu po zlyhaní antikoncepcie (napríklad po pretrhnutí kondómu) alebo po nechránenom pohlavnom styku. Hormonálna núdzová antikoncepcia je známa aj ako „tabletka ráno po“, hoci je povolená na užívanie do troch dní po pohlavnom styku.

Medené vnútromaternicové telieska sa môžu používať aj ako núdzová antikoncepcia. Na toto použitie sa musia zaviesť do piatich dní od zlyhania antikoncepcie alebo nechráneného pohlavného styku.

Keďže núdzová antikoncepcia môže zabrániť vývoju oplodneného vajíčka, niektorí ľudia ju považujú za formu potratu.

Potrat možno vykonať chirurgickými metódami, zvyčajne potrat odsávaním (v prvom trimestri) alebo dilatáciou a evakuáciou (v druhom trimestri). Pri lekárskom potrate sa na ukončenie tehotenstva používajú lieky a je schválený pre tehotenstvá, pri ktorých dĺžka tehotenstva nepresiahla 8 týždňov.

Predpokladá sa, že niektoré byliny spôsobujú potrat (abortíva). Účinnosť týchto rastlín ako takých nebola nikdy skúmaná na ľuďoch. Niektoré štúdie na zvieratách zistili ich účinnosť na iné druhy. Používanie bylín na vyvolanie potratu sa neodporúča vzhľadom na riziko závažných vedľajších účinkov.

Potraty sú predmetom etickej diskusie.

Chirurgická sterilizácia je dostupná vo forme podviazania vajíčkovodov u žien a vazektómie u mužov. U žien sa tento proces môže označovať ako „podviazanie vajíčkovodov“, ale vajíčkovody sa môžu podviazať, prerezať, zovrieť alebo zablokovať. Slúži to na to, aby sa zabránilo spojeniu spermií s neoplodneným vajíčkom. Príkladom zákroku, ktorý blokuje vajíčkovody, je nechirurgický sterilizačný zákrok Essure. Sterilizácia by sa mala považovať za trvalú.

Metódy uvedomenia si plodnosti založené na symptómoch zahŕňajú pozorovanie a zaznamenávanie príznakov plodnosti v tele ženy s cieľom určiť plodné a neplodné fázy jej cyklu. Väčšina metód sleduje jeden alebo viac z troch základných znakov plodnosti: zmeny bazálnej telesnej teploty, hlienu krčka maternice a polohy krčka maternice. Ak žena sleduje bazálnu telesnú teplotu aj iný primárny znak, metóda sa označuje ako symptotermálna. Niektoré prístroje na monitorovanie plodnosti používajú analýzu moču na sledovanie hladín estrogénu a luteinizačného hormónu počas menštruačného cyklu ženy. Ostatné telesné signály, ako napríklad mittelschmerz, sa považujú za sekundárne ukazovatele.

Metódy založené na kalendári, ako napríklad metóda Rytmus a metóda Štandardné dni, sa od metód založených na symptómoch plodnosti líšia tým, že nezahŕňajú pozorovanie alebo zaznamenávanie telesných signálov plodnosti. Namiesto toho štatistické metódy odhadujú pravdepodobnosť plodnosti na základe dĺžky minulých menštruačných cyklov. Štatistické metódy sú menej presné ako metódy uvedomovania si plodnosti a mnohí učitelia uvedomovania si plodnosti ich považujú za zastarané už najmenej 20 rokov.

Mapovanie menštruačného cyklu môže žena vykonávať na papieri alebo pomocou softvéru. Pri metódach založených na kalendári sa môže používať zariadenie, ako napríklad CycleBeads. Pri metódach založených na symptómoch môžu pomáhať zariadenia na monitorovanie plodnosti, ktoré prijímajú a interpretujú údaje o teplote, informácie z domácich testov moču alebo oboje. Aby sa predišlo otehotneniu pri uvedomení si plodnosti, nechránený pohlavný styk sa obmedzuje na najmenej plodné obdobie. Počas najplodnejšieho obdobia môže využiť bariérové metódy alebo sa môže zdržať pohlavného styku.

Pojem prirodzené plánovanie rodiny (NFP) sa niekedy používa na označenie akéhokoľvek používania metód FA. Tento termín sa však konkrétne vzťahuje na praktiky, ktoré sú povolené Rímskokatolíckou cirkvou – dojčenie neplodných detí a pravidelná abstinencia v plodnom období. Metódy FA môžu používatelia NFP používať na určenie týchto plodných období.

Coitus interruptus (doslova „prerušovaný sex“), známy aj ako metóda vynechania, je praktika ukončenia pohlavného styku („vynechania“) pred ejakuláciou. Hlavným rizikom koitus interruptus je, že muž nemusí manéver vykonať včas. Hoci sa vyjadrili obavy z rizika otehotnenia zo spermií v preejakuláte, v niekoľkých malých štúdiách sa v tekutine nenašli žiadne životaschopné spermie.

Vyhýbanie sa vaginálnemu styku

Riziko otehotnenia pri nevaginálnom sexe, ako je vonkajší styk (sex bez penetrácie), análny sex alebo orálny sex, je prakticky nulové. (Veľmi malé riziko vyplýva z možnosti úniku semena na vulvu (pri análnom sexe) alebo kontaktu s predmetom, napríklad rukou, ktorý sa neskôr dostane do kontaktu s vulvou.) Pri tejto metóde však treba dbať na to, aby sa zabránilo prechodu k pohlavnému styku.

Sexuálna abstinencia je zdržanie sa akejkoľvek sexuálnej aktivity.

Väčšina dojčiacich žien má po narodení dieťaťa obdobie neplodnosti. Metóda laktačnej amenorey alebo LAM poskytuje návod na určenie dĺžky obdobia neplodnosti dojčiacej ženy.

Okrem prezervatívov a abstinencie v súčasnosti neexistujú žiadne iné dostupné metódy reverzibilnej antikoncepcie, ktoré by mohli muži používať alebo kontrolovať. Niekoľko metód je v štádiu výskumu a vývoja:

Moderné mylné predstavy a mestské legendy viedli k množstvu nepravdivých tvrdení:

Plagát vydaný v 70. rokoch 20. storočia Združením pre plánovanie rodiny v štáte Victoria, Austrália.

Účinnosť sa meria podľa toho, koľko žien otehotnie pri používaní danej antikoncepčnej metódy v prvom roku jej používania. Ak teda 100 žien používa metódu, ktorá má 12-percentnú mieru zlyhania v prvom roku používania, potom by niekedy počas prvého roku používania malo otehotnieť 12 žien.

Najefektívnejšie metódy, ktoré sa bežne používajú, sú tie, ktoré nie sú závislé od pravidelnej činnosti používateľa. Chirurgická sterilizácia, Depo-Provera, implantáty a vnútromaternicové telieska (IUD) majú pri dokonalom používaní mieru zlyhania v prvom roku menej ako jedno percento. Sterilizácia, implantáty a vnútromaternicové telieska majú tiež typickú mieru zlyhania pod jedno percento. O typickej miere zlyhania Depo-Provery sa vedú spory, pričom údaje sa pohybujú od menej ako jedného percenta až po tri percentá.

Iné metódy môžu byť vysoko účinné, ak sa používajú dôsledne a správne, ale môžu mať typickú mieru zlyhania v prvom roku používania, ktorá je podstatne vyššia v dôsledku nesprávneho alebo neúčinného používania používateľom. Hormonálne antikoncepčné tabletky, náplasti alebo krúžky, metódy zvyšujúce povedomie o plodnosti a metóda laktačnej amenorey (LAM), ak sa používajú dôsledne, majú mieru zlyhania v prvom roku (alebo v prípade LAM v prvom 6. mesiaci) nižšiu ako 1 %. V jednom prieskume sa zistilo, že typická miera zlyhania hormonálnych antikoncepčných tabletiek (a extrapoláciou aj náplastí alebo krúžkov) v prvom roku používania dosahuje až päť percent ročne. Metódy zvyšujúce povedomie o plodnosti ako celok majú typickú mieru zlyhania v prvom roku používania až 25 % ročne; ako sa však uvádza vyššie, dokonalé používanie týchto metód znižuje mieru zlyhania v prvom roku na menej ako 1 %.

Kondómy a cervikálne bariéry, ako je napríklad diafragma, majú podobnú mieru zlyhania v prvom roku používania (14 a 20 percent), ale dokonalé používanie kondómu je účinnejšie (tri percentá zlyhania v prvom roku oproti šiestim percentám) a kondómy majú navyše tú vlastnosť, že pomáhajú predchádzať šíreniu pohlavne prenosných chorôb, ako je napríklad vírus HIV. Pri dôslednom a správnom používaní abstinenčnej metódy je miera zlyhania v prvom roku štyri percentá. Vzhľadom na ťažkosti s dôsledným a správnym používaním abstinenčnej metódy je jej typická miera zlyhania v prvom roku používania 19 percent a niektorí lekári ju neodporúčajú.

Ochrana pred pohlavne prenosnými infekciami

Nie všetky metódy antikoncepcie poskytujú ochranu pred pohlavne prenosnými infekciami. Abstinencia od všetkých foriem sexuálneho správania chráni pred prenosom týchto infekcií pohlavným stykom. Mužský latexový kondóm poskytuje pri správnom a dôslednom používaní určitú ochranu pred niektorými z týchto chorôb, rovnako ako ženský kondóm, hoci ten bol schválený len na vaginálny sex. Ženský kondóm môže poskytovať väčšiu ochranu pred pohlavne prenosnými infekciami, ktoré prechádzajú kontaktom kože s kožou, pretože vonkajší krúžok pokrýva viac odhalenej kože ako mužský kondóm, a môže sa používať pri análnom sexe na ochranu pred pohlavne prenosnými infekciami. Ženský kondóm sa však môže ťažko používať. Často ho žena môže nesprávne nasadiť, aj keď sa domnieva, že ho používa správne.

Ostatné metódy antikoncepcie neposkytujú významnú ochranu pred pohlavným prenosom týchto chorôb.

Takzvané pohlavne prenosné infekcie sa však môžu prenášať aj nepohlavným spôsobom, a preto abstinencia od sexuálneho správania nezaručuje stopercentnú ochranu pred pohlavne prenosnými infekciami. HIV sa môže prenášať napríklad kontaminovanými ihlami, ktoré sa môžu používať pri intravenóznom užívaní drog, tetovaní, piercingu alebo injekciách. Zdravotnícki pracovníci sa infikovali vírusom HIV v dôsledku profesionálnej expozície náhodným poraneniam ihlami.

Náboženské a kultúrne postoje

Náboženské názory na kontrolu pôrodnosti

Názory náboženstiev na etiku kontroly pôrodnosti sa značne líšia. V kresťanstve rímskokatolícka cirkev akceptuje len prirodzené plánovanie rodičovstva, zatiaľ čo protestanti zastávajú širokú škálu názorov od nepovolenia žiadnej až po veľmi zhovievavé. Názory v judaizme sa pohybujú od prísnejšej ortodoxnej sekty až po uvoľnenejšiu reformovanú sektu. V islame sú antikoncepčné prostriedky povolené, ak neohrozujú zdravie alebo nevedú k neplodnosti, hoci sa ich používanie neodporúča. Hinduisti môžu používať prirodzenú aj umelú antikoncepciu.

Mnohí tínedžeri, najčastejšie vo vyspelých krajinách, absolvujú v škole určitú formu sexuálnej výchovy. O tom, aké informácie by sa mali v takýchto programoch poskytovať, sa vedú vášnivé spory, najmä v Spojených štátoch a vo Veľkej Británii. Medzi možné témy patrí anatómia pohlavných orgánov, sexuálne správanie človeka, informácie o pohlavne prenosných chorobách, sociálne aspekty sexuálnej interakcie, vyjednávacie zručnosti, ktoré majú pomôcť dospievajúcim dodržať rozhodnutie o abstinencii alebo o používaní antikoncepcie počas sexu a informácie o metódach antikoncepcie.

Jeden z typov programu sexuálnej výchovy, ktorý sa používa najmä v Spojených štátoch, sa nazýva výchova len k abstinencii a podporuje sexuálnu abstinenciu až do manželstva. Program neposkytuje informácie o antikoncepcii, prípadne kladie veľký dôraz na informácie, ako je miera zlyhania a stratégie, ako sa vyhnúť intímnym situáciám. Zástancovia vzdelávania zameraného len na abstinenciu veria, že tieto programy povedú k zníženiu miery tehotenstva a nákazy pohlavnými chorobami u dospievajúcich. V nenáhodnom internetovom prieskume 1 400 žien, ktoré našli a vyplnili 10-minútový online dotazník s viacerými možnosťami odpovede uvedený v jednom z niekoľkých populárnych vyhľadávačov, ženy, ktoré absolvovali sexuálnu výchovu v školách poskytujúcich predovšetkým informácie o abstinencii alebo informácie o antikoncepcii a abstinencii v rovnakej miere, uviedli menej neplánovaných tehotenstiev ako tie, ktoré dostali predovšetkým informácie o antikoncepcii, ktoré zasa uviedli menej neplánovaných tehotenstiev ako tie, ktoré nedostali žiadne informácie.
Randomizované kontrolované štúdie však dokazujú, že programy sexuálnej výchovy zamerané len na abstinenciu zvyšujú mieru tehotenstva a pohlavne prenosných chorôb v populácii dospievajúcich.
Odborné lekárske organizácie vrátane AMA, AAP, ACOG, APHA a Spoločnosti pre medicínu dospievajúcich podporujú komplexnú sexuálnu výchovu (poskytovanie informácií o abstinencii a antikoncepcii) a sú proti výhradnému používaniu sexuálnej výchovy zameranej len na abstinenciu.

Kategórie
Psychologický slovník

Úroveň merania

„Úrovne merania“ alebo stupnice merania sú výrazy, ktoré zvyčajne odkazujú na teóriu typov stupníc, ktorú vypracoval psychológ Stanley Smith Stevens. Stevens navrhol svoju teóriu v roku 1946 vo vedeckom článku s názvom „On the theory of scales of measurement“ (O teórii stupníc merania). V tomto článku Stevens tvrdil, že všetky merania vo vede sa vykonávajú pomocou štyroch rôznych typov škál, ktoré nazval „nominálne“, „ordinálne“, „intervalové“ a „pomerové“.

Stevens (1946, 1951) navrhol, že merania možno rozdeliť do štyroch rôznych typov stupníc. Tieto sú uvedené v nasledujúcej tabuľke: nominálne, ordinálne, intervalové a pomerové.

V nominálnej škále, t. j. pre nominálnu kategóriu, sa používajú značky; napríklad horniny možno všeobecne kategorizovať ako vyvreliny, sedimenty a metamorfity. Pre túto škálu sú niektoré platné operácie ekvivalencie a príslušnosti k množine. Nominálne miery ponúkajú názvy alebo značky pre určité charakteristiky.

Premenné hodnotené na nominálnej stupnici sa nazývajú kategoriálne premenné; pozri tiež kategoriálne údaje. Kategoricky typizované náhodné premenné, ktoré majú len dva možné výsledky (často označované ako „áno“ vs. „nie“ alebo „úspech“ vs. „neúspech“), sa nazývajú binárne premenné (alebo Bernoulliho premenné) a charakterizujú sa pomocou Bernoulliho rozdelenia. Kategoriálna premenná s tromi alebo viacerými výsledkami sa niekedy označuje ako viaccestná (alebo K-cestná pre určitú špecifickú hodnotu K) a charakterizuje sa kategoriálnym rozdelením.

Stevens(1946, s. 679) musel vedieť, že tvrdenie, že nominálne stupnice merajú zjavne nekvantitatívne veci, by vyvolalo kritiku, preto sa odvolával na svoju teóriu merania, aby zdôvodnil nominálne stupnice ako meranie:

Centrálna tendencia nominálneho atribútu je daná jeho modusom; strednú hodnotu ani medián nemožno definovať.

Môžeme použiť jednoduchý príklad nominálnej kategórie: krstné mená. Ak sa pozrieme na ľudí v okolí, môžeme nájsť jedného alebo viacerých ľudí s menom Aamir. Aamir je ich označenie a množina všetkých krstných mien je nominálna škála. Môžeme len skontrolovať, či dvaja ľudia majú rovnaké meno (ekvivalencia) alebo či sa dané meno nachádza v určitom zozname mien (príslušnosť k množine), ale nie je možné povedať, ktoré meno je väčšie alebo menšie ako iné (porovnanie), ani zmerať rozdiel medzi dvoma menami. Ak máme danú množinu ľudí, môžeme túto množinu opísať pomocou najčastejšieho mena (modus), ale nemôžeme poskytnúť „priemerné meno“ alebo dokonca „stredné meno“ medzi všetkými menami. Ak sa však rozhodneme zoradiť mená podľa abecedy (alebo ich zoradiť podľa dĺžky; alebo podľa toho, koľkokrát sa vyskytli pri sčítaní obyvateľov USA), začneme túto nominálnu stupnicu meniť na ordinálnu stupnicu.

Zoradenie údajov podľa poradia jednoducho umiestni údaje na ordinálnu stupnicu. Ordinálne merania opisujú poradie, ale nie relatívnu veľkosť alebo stupeň rozdielu medzi meranými položkami. V tomto type stupnice čísla priradené objektom alebo udalostiam predstavujú poradie (1., 2., 3. atď.) hodnotených entít. Príkladom ordinálnej stupnice je výsledok konských dostihov, ktorý hovorí len o tom, ktoré kone prišli prvé, druhé alebo tretie, ale neobsahuje žiadne informácie o čase dostihov. Ďalším príkladom sú vojenské hodnosti; majú poradie, ale nemajú presne definovaný číselný rozdiel medzi hodnosťami.

Pri použití ordinálnej škály možno centrálnu tendenciu skupiny položiek opísať pomocou módu (najčastejšia položka) alebo mediánu (položka so stredným poradím), ale priemer (alebo priemer) nemožno definovať.

V roku 1946 si Stevens všimol, že psychologické merania zvyčajne fungujú na ordinálnych stupniciach a že bežné štatistiky ako priemer a štandardná odchýlka nemajú platnú interpretáciu. Napriek tomu sa takáto štatistika môže často použiť na získanie plodných informácií s tým, že pri vyvodzovaní záverov z takýchto štatistických údajov treba byť opatrný.

Psychometrici radi teoretizujú o tom, že psychometrické testy vytvárajú intervalové škály kognitívnych schopností (napr. Lord & Novick, 1968; von Eye, 2005), ale existuje len málo dôkazov, ktoré by naznačovali, že takéto atribúty sú pre väčšinu psychologických údajov niečo viac ako ordinálne (Cliff, 1996; Cliff & Keats, 2003; Michell, 2008). Najmä skóre IQ odráža skôr ordinálnu škálu, v ktorej sú všetky skóre významné len na porovnanie, než intervalovú škálu, v ktorej daný počet „bodov“ IQ zodpovedá jednotke inteligencie. Preto je chybou napísať, že IQ 160 sa líši od IQ 130 rovnako ako IQ 100 od IQ 70.

V matematickej teórii usporiadania definuje ordinálna stupnica celkové predusporiadanie objektov (v podstate spôsob usporiadania všetkých objektov, v ktorom môžu byť niektoré objekty viazané). Samotné hodnoty stupnice (ako napríklad označenia typu „skvelý“, „dobrý“ a „zlý“; 1., 2. a 3.) majú celkové poradie, v ktorom môžu byť zoradené do jedného riadku bez nejednoznačností. Ak sa na definovanie stupnice použijú čísla, zostanú správne, aj keď sa transformujú ľubovoľnou monotónne rastúcou funkciou. Táto vlastnosť je známa ako izomorfizmus poradia. Nasleduje jednoduchý príklad:

Keďže x-8, 3x a x3 sú monotónne rastúce funkcie, nahradenie poradového skóre rozhodcu ktorýmkoľvek z týchto alternatívnych skóre nemá vplyv na relatívne poradie kuchárskych schopností piatich ľudí. Každý stĺpec čísel predstavuje rovnako legitímnu ordinálnu stupnicu na opis ich schopností. Číselný (aditívny) rozdiel medzi rôznymi ordinálnymi skóre však nemá žiadny osobitný význam.

Všetky kvantitatívne atribúty sú merateľné na intervalových stupniciach, pretože akýkoľvek rozdiel medzi úrovňami atribútu možno vynásobiť ľubovoľným reálnym číslom, aby bol vyšší alebo rovný inému rozdielu. Veľmi známym príkladom merania na intervalovej stupnici je teplota so stupnicou Celzia. V tejto konkrétnej stupnici je jednotkou merania 1/100 teplotného rozdielu medzi bodom tuhnutia a varu vody pri tlaku 1 atmosféra. Nulový bod“ na intervalovej stupnici je ľubovoľný a môžu sa používať aj záporné hodnoty. Formálny matematický termín je afinný priestor (v tomto prípade afinná priamka). Premenné merané na intervalovej úrovni sa nazývajú „intervalové premenné“ alebo niekedy „škálované premenné“, pretože majú merné jednotky.

Pomery medzi číslami na stupnici nie sú zmysluplné, takže operácie ako násobenie a delenie nemožno vykonávať priamo. Pomery rozdielov sa však dajú vyjadriť; napríklad jeden rozdiel môže byť dvojnásobkom druhého.

Centrálnu tendenciu premennej meranú na úrovni intervalu možno vyjadriť jej modusom, mediánom alebo aritmetickým priemerom. Štatistický rozptyl možno merať väčšinou obvyklých spôsobov, ktoré práve zahŕňali rozdiely alebo spriemerovanie, ako je rozsah, medzikvartilové rozpätie a štandardná odchýlka. Keďže sa nedá deliť, nedajú sa definovať miery, ktoré si vyžadujú pomer, ako napríklad študovaný rozsah alebo variačný koeficient. Jemnejšie povedané, hoci sa dajú definovať momenty okolo počiatku, užitočné sú len centrálne momenty, pretože výber počiatku je ľubovoľný a nemá význam. Možno definovať štandardizované momenty, pretože pomery rozdielov sú zmysluplné, ale nemožno definovať variačný koeficient, pretože priemer je momentom okolo počiatku, na rozdiel od štandardnej odchýlky, ktorá je (druhou odmocninou) centrálneho momentu.

Väčšina meraní vo fyzikálnych a technických vedách sa vykonáva na pomerových stupniciach. Hmotnosť, dĺžka, čas, rovinný uhol, energia a elektrický náboj sú príkladmi fyzikálnych mier, ktoré sú pomerovými stupnicami. Názov tohto typu stupnice pochádza zo skutočnosti, že meranie je odhadom pomeru medzi veľkosťou spojitej veličiny a jednotkovou veľkosťou toho istého druhu (Michell, 1997, 1999). Neformálne je charakteristickým znakom pomerovej stupnice vlastnosť nulovej hodnoty. Napríklad Kelvinova teplotná stupnica má nearbitrárny nulový bod absolútnej nuly, ktorý sa označuje 0 K a rovná sa -273,15 stupňov Celzia. Tento nulový bod presne reprezentuje častice, ktoré tvoria hmotu pri tejto teplote, majúce nulovú kinetickú energiu.

Príklady pomerových meraní v behaviorálnych vedách takmer neexistujú. Luce (2000) tvrdí, že príklad merania na pomerovej škále v psychológii možno nájsť v teórii očakávanej užitočnosti závislej od poradia a znamienka.

Pre premennú meranú na úrovni pomeru možno použiť všetky štatistické miery, pretože sú definované všetky potrebné matematické operácie. Centrálnu tendenciu premennej meranej na úrovni pomeru môže okrem modusu, mediánu alebo aritmetického priemeru reprezentovať aj geometrický priemer alebo harmonický priemer. Okrem mier štatistického rozptylu definovaných pre intervalové premenné, ako sú rozsah a smerodajná odchýlka, možno pre pomerové premenné definovať aj miery, ktoré si vyžadujú pomer, ako napríklad študovaný rozsah alebo variačný koeficient.

Diskusia o klasifikačnom systéme

O opodstatnenosti klasifikácií sa viedli a stále vedú diskusie, najmä v prípade nominálnej a ordinálnej klasifikácie (Michell, 1986). Hoci je Stevensova klasifikácia všeobecne prijímaná, v žiadnom prípade nie je všeobecne akceptovaná.

Duncan (1986) poznamenal, že Stevensova klasifikácia nominálneho merania je v rozpore s jeho vlastnou definíciou merania. Stevens (1975) o svojej vlastnej definícii merania povedal, že „priradenie môže byť akékoľvek konzistentné pravidlo. Jediné pravidlo, ktoré by nebolo povolené, by bolo náhodné priradenie, pretože náhodnosť sa v podstate rovná nepravidlu“. Takzvané nominálne meranie však zahŕňa ľubovoľné priradenie a „prípustnou transformáciou“ je akékoľvek číslo pre akékoľvek iné. To je jeden z bodov, na ktorý upozorňuje Lord (1953) v satirickom článku O štatistickom zaobchádzaní s futbalovými číslami.

Medzi tými, ktorí akceptujú klasifikačnú schému, existuje v behaviorálnych vedách aj určitá polemika o tom, či má priemer význam pre ordinálne meranie. Z hľadiska teórie merania nie je, pretože aritmetické operácie sa nevykonávajú s číslami, ktoré sú meraniami v jednotkách, a tak výsledky výpočtov nedávajú čísla v jednotkách. Mnohí behaviorálni vedci však aj tak používajú priemery pre ordinálne údaje. Často sa to odôvodňuje tým, že ordinálne stupnice v behaviorálnych vedách sú v skutočnosti niekde medzi skutočnými ordinálnymi a intervalovými stupnicami; hoci intervalový rozdiel medzi dvoma ordinálnymi stupnicami nie je konštantný, často má rovnakú rádovú hodnotu. Napríklad aplikácie modelov merania vo vzdelávacom kontexte často naznačujú, že celkové skóre má pomerne lineárny vzťah s meraním v celom rozsahu hodnotenia. Preto niektorí tvrdia, že pokiaľ neznámy intervalový rozdiel medzi poradovými stupnicami nie je príliš premenlivý, môžu sa štatistiky intervalových stupníc, ako sú napríklad priemery, zmysluplne používať na premenné s poradovou stupnicou. Softvér na štatistickú analýzu, ako je PSPP, vyžaduje, aby používateľ vybral vhodnú triedu merania pre každú premennú. Tým sa zabezpečí, že následné chyby používateľa nemôžu neúmyselne vykonať nezmyselné analýzy (napríklad korelačnú analýzu s premennou na nominálnej úrovni).

L. L. Thurstone dosiahol pokrok vo vývoji zdôvodnenia získavania meraní na úrovni intervalov na základe zákona porovnávacieho úsudku. Bežnú aplikáciu tohto zákona nájdete v Analytickom hierarchickom procese. Ďalší pokrok dosiahol Georg Rasch (1960), ktorý vyvinul pravdepodobnostný Raschov model, ktorý poskytuje teoretický základ a odôvodnenie na získanie meraní na úrovni intervalov z počtov pozorovaní, ako sú celkové výsledky v hodnoteniach.

Ďalší problém vychádza z článku Nicholasa R. Chrismana „Rethinking Levels of Measurement for Cartography“ (Prehodnotenie úrovní merania pre kartografiu), v ktorom zavádza rozšírený zoznam úrovní merania s cieľom zohľadniť rôzne merania, ktoré nemusia nevyhnutne zodpovedať tradičnému poňatiu úrovní merania. Merania viazané na rozsah a opakovanie (ako sú stupne v kruhu, čas atď.), odstupňované kategórie príslušnosti a iné typy meraní nezapadajú do pôvodnej Stevenovej práce, čo viedlo k zavedeniu 6 nových úrovní merania, ktoré vedú k (1) Nominálne, (2) Odstupňované členstvo, (3) Ordinálne, (4) Intervalové, (5) Logaritmické, (6) Extenzívne pomery, (7) Cyklické pomery, (8) Odvodené pomery, (9) Počty a nakoniec (10) Absolútne. Rozšírené úrovne merania sa mimo akademickej geografie používajú len zriedka.

Typy škál a Stevensova „operačná teória merania“

Teória typov škál je intelektuálnou služobníčkou Stevensovej „operačnej teórie merania“, ktorá sa mala stať definitívnou v psychológii a behaviorálnych vedách, napriek tomu, že Michell ju charakterizoval ako úplne protichodnú s meraním v prírodných vedách (Michell, 1999). Operačná teória merania bola v podstate reakciou na závery výboru, ktorý v roku 1932 zriadila Britská asociácia pre rozvoj vedy s cieľom preskúmať možnosť skutočného vedeckého merania v psychologických a behaviorálnych vedách. Tento výbor, ktorý sa stal známym ako Fergusonov výbor, uverejnil záverečnú správu (Ferguson, et al., 1940, s. 245), v ktorej bola predmetom kritiky Stevensova sone scale (Stevens a Davis, 1938):

To znamená, že ak Stevensova stupnica skutočne merala intenzitu sluchových vnemov, potom je potrebné predložiť dôkazy o tom, že tieto vnemy sú kvantitatívnymi atribútmi. Potrebným dôkazom bola prítomnosť aditívnej štruktúry – konceptu, ktorý komplexne spracoval nemecký matematik Otto Hölder (Hölder, 1901). Vzhľadom na to, že v rokovaniach Fergusonovho výboru dominoval fyzik a teoretik merania Norman Robert Campbell, výbor dospel k záveru, že meranie v spoločenských vedách nie je možné z dôvodu absencie konkatenačných operácií. Tento záver sa neskôr ukázal ako nesprávny objavením teórie konjunkturálneho merania Debreuom (1960) a nezávisle od neho Luceom a Tukeym (1964). Stevensova reakcia však nespočívala v tom, že by uskutočnil experimenty na overenie prítomnosti aditívnej štruktúry v pocitoch, ale v tom, že závery Fergusonovho výboru vyhlásil za neplatné tým, že navrhol novú teóriu merania:

Stevensa výrazne ovplyvnili myšlienky iného harvardského akademika, nositeľa Nobelovej ceny za fyziku Percyho Bridgmana (1927), ktorého doktrínu operacionalizmu Stevens použil na definovanie merania. V Stevensovej definícii je to napríklad použitie meradla, ktoré definuje dĺžku (predmet merania) ako merateľnú (a teda implicitne kvantitatívnu). Kritici operacionalizmu namietajú, že zamieňa vzťahy medzi dvoma objektmi alebo udalosťami za vlastnosti jedného z týchto objektov alebo udalostí (Hardcastle, 1995; Michell, 1999; Moyer, 1981a,b; Rogers, 1989).

Kanadský teoretik merania William Rozeboom (1966) bol skorým a ostrým kritikom Stevensovej teórie typov škál. Ale až oveľa neskôr v prácach matematických psychológov Theodora Alpera (1985, 1987), Louisa Narensa (1981a, b) a R. Duncana Lucea (1986, 1987, 2001) dostala koncepcia typov škál matematickú prísnosť, ktorá jej chýbala na začiatku. Ako Luce (1997, s. 395) otvorene uviedol:

Kategórie
Psychologický slovník

Nervové oscilácie

Nervová oscilácia je rytmická alebo opakujúca sa nervová aktivita v centrálnom nervovom systéme. Nervové tkanivo môže generovať oscilačnú aktivitu mnohými spôsobmi, ktoré sú poháňané buď mechanizmami lokalizovanými v jednotlivých neurónoch, alebo interakciami medzi neurónmi. V jednotlivých neurónoch sa oscilácie môžu prejavovať buď ako oscilácie membránového potenciálu, alebo ako rytmické vzory akčných potenciálov, ktoré potom vyvolávajú oscilačnú aktiváciu postsynaptických neurónov. Na úrovni neurónových súborov môže synchronizovaná aktivita veľkého počtu neurónov viesť k makroskopickým osciláciám, ktoré možno pozorovať na elektroencefalograme (EEG). Oscilačná aktivita v skupinách neurónov vo všeobecnosti vzniká zo spätnoväzbových spojení medzi neurónmi, ktoré vedú k synchronizácii ich vzorov vypaľovania. Interakcia medzi neurónmi môže viesť k vzniku oscilácií s inou frekvenciou, ako je frekvencia výpalu jednotlivých neurónov. Známym príkladom makroskopických neurónových oscilácií je alfa aktivita.

Nervové oscilácie pozorovali výskumníci už v čase Hansa Bergera, ale ich funkčná úloha stále nie je úplne pochopená. Medzi možné úlohy neurónových oscilácií patrí viazanie funkcií, mechanizmy prenosu informácií a generovanie rytmického motorického výstupu. V posledných desaťročiach sa podarilo získať viac poznatkov, najmä vďaka pokroku v zobrazovaní mozgu. Hlavná oblasť výskumu v neurovede zahŕňa určenie toho, ako oscilácie vznikajú a aké sú ich úlohy. Oscilačná aktivita v mozgu je široko pozorovaná na rôznych úrovniach pozorovania a predpokladá sa, že zohráva kľúčovú úlohu pri spracovaní nervových informácií. Početné experimentálne štúdie skutočne podporujú funkčnú úlohu nervových oscilácií; jednotná interpretácia však stále chýba.

Simulácia nervových oscilácií pri frekvencii 10 Hz. Horný panel zobrazuje spikovanie jednotlivých neurónov (pričom každá bodka predstavuje individuálny akčný potenciál v rámci populácie neurónov) a dolný panel lokálny potenciál poľa odrážajúci ich súhrnnú aktivitu. Obrázok znázorňuje, ako môžu synchronizované vzory akčných potenciálov vyústiť do makroskopických oscilácií, ktoré možno merať mimo skalpu.

Nervové oscilácie sa pozorujú v celom centrálnom nervovom systéme a na všetkých úrovniach, napr. hrotové vlaky, lokálne potenciály poľa a rozsiahle oscilácie, ktoré možno merať elektroencefalografiou. Vo všeobecnosti možno oscilácie charakterizovať ich frekvenciou, amplitúdou a fázou. Tieto vlastnosti signálu možno získať z nervových záznamov pomocou časovo-frekvenčnej analýzy. Pri veľkorozmerných osciláciách sa zmeny amplitúdy považujú za dôsledok zmien synchronizácie v rámci neurónového súboru, ktoré sa označujú aj ako lokálna synchronizácia. Okrem lokálnej synchronizácie sa môže synchronizovať aj oscilačná aktivita vzdialených neurónových štruktúr (jednotlivých neurónov alebo neurónových súborov). Neurónové oscilácie a synchronizácia sú spojené s mnohými kognitívnymi funkciami, ako je prenos informácií, vnímanie, motorická kontrola a pamäť.

Neurónové oscilácie sa najčastejšie skúmajú v oblasti nervovej aktivity generovanej veľkými skupinami neurónov. Veľkú aktivitu možno merať technikami, ako je elektroencefalografia (EEG). Signály EEG majú vo všeobecnosti široký spektrálny obsah podobný ružovému šumu, ale odhaľujú aj oscilačnú aktivitu v špecifických frekvenčných pásmach. Prvým objaveným a najznámejším frekvenčným pásmom je alfa aktivita (8 – 12 Hz), ktorú možno zistiť z okcipitálneho laloku počas uvoľnenej bdelosti a ktorá sa zvyšuje, keď sú oči zatvorené. Ďalšie frekvenčné pásma sú: delta (1 – 4 Hz), theta (4 – 8 Hz), beta (13 – 30 Hz) a gama (30 – 70 Hz), pričom rýchlejšie rytmy, ako je gama aktivita, boli spojené s kognitívnym spracovaním. Signály EEG sa počas spánku skutočne dramaticky menia a vykazujú prechod od rýchlejších frekvencií, ako sú vlny alfa, k čoraz pomalším frekvenciám. V skutočnosti sa rôzne štádiá spánku bežne charakterizujú podľa ich spektrálneho obsahu. Následne boli neurálne oscilácie spojené s kognitívnymi stavmi, ako je vedomie a vedomie.

Hoci sa nervové oscilácie v ľudskej mozgovej aktivite skúmajú najmä pomocou EEG záznamov, pozorujú sa aj pomocou invazívnejších záznamových techník, ako sú napríklad záznamy jednotlivých jednotiek. Neuróny môžu generovať rytmické vzory akčných potenciálov alebo hrotov. Niektoré typy neurónov majú tendenciu vystreľovať na určitých frekvenciách, tzv. rezonátoroch. Ďalšou formou rytmických hrotov je bursting. Vzory špicatenia sa považujú za základné pre kódovanie informácií v mozgu. Oscilačnú aktivitu možno pozorovať aj vo forme podprahových oscilácií membránových potenciálov (t. j. v neprítomnosti akčných potenciálov). Ak početné neuróny spikujú synchrónne, môžu vyvolať oscilácie lokálnych potenciálov poľa (LFP). Kvantitatívne modely môžu odhadnúť silu neurónových oscilácií v zaznamenaných údajoch.

Neurónové oscilácie sa bežne skúmajú z matematického hľadiska a patria do oblasti „neurodynamiky“, čo je oblasť výskumu v kognitívnych vedách, ktorá kladie veľký dôraz na dynamický charakter nervovej aktivity pri opise funkcie mozgu. Považuje mozog za dynamický systém a používa diferenciálne rovnice na opis toho, ako sa nervová aktivita vyvíja v čase. Jej cieľom je najmä prepojiť dynamické vzorce mozgovej činnosti s kognitívnymi funkciami, ako je vnímanie a pamäť. Vo veľmi abstraktnej forme možno nervové oscilácie analyzovať analyticky. Pri štúdiu vo fyziologicky realistickejšom prostredí sa oscilačná aktivita zvyčajne študuje pomocou počítačových simulácií počítačového modelu.

Funkcie nervových oscilácií sú široké a líšia sa pre rôzne typy oscilačných aktivít. Príkladom je generovanie rytmickej aktivity, ako je napríklad tlkot srdca, a nervové viazanie zmyslových znakov pri vnímaní, ako je napríklad tvar a farba objektu. Neurónové oscilácie zohrávajú dôležitú úlohu aj pri mnohých neurologických poruchách, ako je nadmerná synchronizácia počas záchvatovej aktivity pri epilepsii alebo tremor u pacientov s Parkinsonovou chorobou. Oscilačná aktivita sa dá využiť aj na ovládanie externých zariadení v mozgovo-počítačových rozhraniach, v ktorých môžu subjekty ovládať externé zariadenie zmenou amplitúdy určitých mozgových rytmov.

Oscilačná aktivita sa pozoruje v celom centrálnom nervovom systéme na všetkých úrovniach organizácie. Všeobecne sa uznávajú tri rôzne úrovne: mikroúroveň (aktivita jedného neurónu), mezoúroveň (aktivita lokálnej skupiny neurónov) a makroúroveň (aktivita rôznych oblastí mozgu).

Tonický vzor vypaľovania jedného neurónu, ktorý vykazuje rytmickú špicatú aktivitu

Neuróny vytvárajú akčné potenciály, ktoré sú výsledkom zmien elektrického membránového potenciálu. Neuróny môžu generovať viacero akčných potenciálov za sebou a vytvárať tzv. spike trains. Tieto spike trains sú základom pre nervové kódovanie a prenos informácií v mozgu. Spike trains môžu vytvárať rôzne druhy vzorov, ako sú rytmické spiky a burstingy, a často vykazujú oscilačnú aktivitu. Oscilačnú aktivitu v jednotlivých neurónoch možno pozorovať aj v podprahových fluktuáciách membránového potenciálu. Tieto rytmické zmeny membránového potenciálu nedosahujú kritický prah, a preto nevyúsťujú do akčného potenciálu. Môžu byť výsledkom postsynaptických potenciálov zo synchrónnych vstupov alebo vnútorných vlastností neurónov.

Neuronálne spiky možno klasifikovať podľa ich vzorcov aktivity. Vzrušivosť neurónov možno rozdeliť do triedy I a II. Neuróny triedy I môžu generovať akčné potenciály s ľubovoľne nízkou frekvenciou v závislosti od sily vstupu, zatiaľ čo neuróny triedy II generujú akčné potenciály v určitom frekvenčnom pásme, ktoré je relatívne necitlivé na zmeny sily vstupu. Neuróny triedy II sú tiež náchylnejšie na vykazovanie podprahových oscilácií membránového potenciálu.

Skupina neurónov môže tiež vytvárať oscilačnú aktivitu. Prostredníctvom synaptických interakcií sa môžu synchronizovať vzory vypaľovania rôznych neurónov a rytmické zmeny elektrického potenciálu spôsobené ich akčnými potenciálmi sa sčítajú (konštruktívna interferencia). To znamená, že synchronizované vzory vypaľovania majú za následok synchronizovaný vstup do iných kortikálnych oblastí, čo vedie k osciláciám lokálneho potenciálu poľa s veľkou amplitúdou. Tieto veľkoškálové oscilácie možno merať aj mimo skalpu pomocou elektroencefalografie a magnetoencefalografie. Elektrické potenciály generované jednotlivými neurónmi sú príliš malé na to, aby sa dali zachytiť mimo skalpu, a aktivita EEG alebo MEG vždy odráža súčet synchrónnej aktivity tisícov alebo miliónov neurónov, ktoré majú podobnú priestorovú orientáciu. Neuróny v neurónovom zoskupení zriedkavo vystrelia všetky v presne rovnakom okamihu, t. j. úplne synchronizovane. Namiesto toho je pravdepodobnosť vypálenia rytmicky modulovaná tak, že neuróny s väčšou pravdepodobnosťou vypália v rovnakom čase, čo spôsobuje oscilácie ich priemernej aktivity (pozri obrázok v hornej časti strany). Frekvencia veľkoplošných oscilácií ako taká nemusí zodpovedať vzorcom vypaľovania jednotlivých neurónov. Izolované kortikálne neuróny za určitých podmienok horia pravidelne, ale v intaktnom mozgu sú kortikálne bunky bombardované vysoko fluktuujúcimi synaptickými vstupmi a zvyčajne horia zdanlivo náhodne. Ak je však pravdepodobnosť veľkej skupiny neurónov rytmicky modulovaná na spoločnej frekvencii, vytvoria oscilácie v strednom poli (pozri aj obrázok v hornej časti strany). Neurónové súbory môžu generovať oscilačnú aktivitu endogénne prostredníctvom lokálnych interakcií medzi excitačnými a inhibičnými neurónmi. Najmä inhibičné interneuróny zohrávajú dôležitú úlohu pri vytváraní synchronizácie neurónového súboru tým, že vytvárajú úzke okno pre účinnú excitáciu a rytmicky modulujú rýchlosť vypaľovania excitačných neurónov.

Nervové oscilácie môžu vznikať aj v dôsledku interakcií medzi rôznymi oblasťami mozgu. Dôležitú úlohu tu zohráva časové oneskorenie. Keďže všetky oblasti mozgu sú obojsmerne prepojené, tieto spojenia medzi oblasťami mozgu vytvárajú spätné väzby. Pozitívne spätné slučky majú tendenciu spôsobovať oscilačnú aktivitu, ktorej frekvencia je nepriamo úmerná času oneskorenia. Príkladom takejto spätnoväzbovej slučky sú spojenia medzi talamom a mozgovou kôrou. Táto talamokortikálna sieť je schopná generovať oscilačnú aktivitu známu ako rekurentná talamo-kortikálna rezonancia. Talamokortikálna sieť zohráva dôležitú úlohu pri generovaní alfa aktivity.

Vedci identifikovali niektoré vnútorné vlastnosti neurónov, ktoré zohrávajú dôležitú úlohu pri generovaní oscilácií membránového potenciálu. Najmä napäťovo riadené iónové kanály sú rozhodujúce pri generovaní akčných potenciálov. Dynamika týchto iónových kanálov bola zachytená v osvedčenom Hodgkinovom-Huxleyho modeli, ktorý opisuje, ako sa akčné potenciály iniciujú a šíria pomocou súboru diferenciálnych rovníc. Pomocou bifurkačnej analýzy možno určiť rôzne oscilačné odrody týchto neuronálnych modelov, čo umožňuje klasifikáciu typov neuronálnych reakcií. Oscilačná dynamika neuronálneho spikingu identifikovaná v Hodgkinovom-Huxleyho modeli sa úzko zhoduje s empirickými zisteniami. Okrem periodického špicovania môžu k oscilačnej aktivite prispievať aj podprahové oscilácie membránových potenciálov, t. j. rezonančné správanie, ktoré nevyúsťuje do akčných potenciálov, a to tým, že uľahčujú synchrónnu aktivitu susedných neurónov. Podobne ako pacemakerové neuróny v centrálnych generátoroch vzorov, podtypy kortikálnych buniek rytmicky vystreľujú výbuchy hrotov (krátke zhluky hrotov) pri preferovaných frekvenciách. Neuróny s burstingom majú potenciál slúžiť ako pacemakery pre synchrónne oscilácie siete a bursty hrotov môžu byť základom alebo posilnením neuronálnej rezonancie.

Ak skupina neurónov vykonáva synchronizovanú oscilačnú aktivitu, neurónový súbor možno matematicky reprezentovať ako jeden oscilátor. Rôzne neurónové súbory sú prepojené prostredníctvom prepojení s dlhým dosahom a tvoria sieť slabo prepojených oscilátorov v ďalšej priestorovej mierke. Slabo prepojené oscilátory môžu vytvárať celý rad dynamík vrátane oscilačnej aktivity. Spojenia dlhého dosahu medzi rôznymi mozgovými štruktúrami, ako je napríklad talamus a kôra (pozri talamokortikálna oscilácia), zahŕňajú časové oneskorenia v dôsledku konečnej rýchlosti vedenia axónov. Keďže väčšina spojení je recipročná, vytvárajú spätné slučky, ktoré podporujú oscilačnú aktivitu. Oscilácie zaznamenané z viacerých kortikálnych oblastí sa môžu synchronizovať a vytvoriť rozsiahlu sieť, ktorej dynamiku a funkčnú konektivitu možno študovať pomocou spektrálnej analýzy a meraní Grangerovej kauzality. Koherentná aktivita rozsiahlej mozgovej činnosti môže vytvárať dynamické prepojenia medzi oblasťami mozgu potrebné na integráciu distribuovaných informácií.

Okrem rýchlych priamych synaptických interakcií medzi neurónmi tvoriacimi sieť je oscilačná aktivita modulovaná neurotransmitermi v oveľa pomalšom časovom rozsahu. To znamená, že je známe, že úrovne koncentrácie určitých neurotransmiterov regulujú množstvo oscilačnej aktivity. Napríklad sa ukázalo, že koncentrácia GABA pozitívne koreluje s frekvenciou oscilácií pri indukovaných stimuloch. Množstvo jadier v mozgovom kmeni má difúzne projekcie v celom mozgu, ktoré ovplyvňujú koncentračné hladiny neurotransmiterov, ako sú noradrenalín, acetylcholín a serotonín. Tieto neurotransmiterové systémy ovplyvňujú fyziologický stav, napr. bdelosť alebo vzrušenie, a majú výrazný vplyv na amplitúdu rôznych mozgových vĺn, napr. alfa aktivity.

Oscilácie možno často opísať a analyzovať pomocou matematiky. Matematici identifikovali niekoľko dynamických mechanizmov, ktoré vytvárajú rytmickosť. Medzi najdôležitejšie patria harmonické (lineárne) oscilátory, oscilátory s limitným cyklom a oscilátory s oneskorenou spätnou väzbou. Harmonické oscilácie sa v prírode vyskytujú veľmi často – príkladom sú zvukové vlny, pohyb kyvadla a vibrácie každého druhu. Všeobecne vznikajú, keď je fyzikálny systém narušený o malý stupeň od stavu s minimálnou energiou, a sú dobre matematicky pochopiteľné. Harmonické oscilátory riadené hlukom realisticky simulujú alfa rytmus v EEG v bdelom stave, ako aj pomalé vlny a vretená v EEG v spánku. Úspešné algoritmy analýzy EEG boli založené na takýchto modeloch. Niekoľko ďalších zložiek EEG sa lepšie opisuje pomocou oscilácií s hraničným cyklom alebo oneskorenou spätnou väzbou. Oscilácie hraničného cyklu vznikajú vo fyzikálnych systémoch, ktoré vykazujú veľké odchýlky od rovnováhy, zatiaľ čo oscilácie s oneskorenou spätnou väzbou vznikajú, keď sa zložky systému navzájom ovplyvňujú s výrazným časovým oneskorením. Oscilácie s medzným cyklom môžu byť zložité, ale na ich analýzu existujú výkonné matematické nástroje; matematika oscilácií s oneskorenou spätnou väzbou je v porovnaní s nimi primitívna. Lineárne oscilátory a oscilátory s limitným cyklom sa kvalitatívne líšia v tom, ako reagujú na fluktuácie na vstupe. V lineárnom oscilátore je frekvencia viac-menej konštantná, ale amplitúda sa môže výrazne meniť. V oscilátore s limitným cyklom býva amplitúda viac-menej konštantná, ale frekvencia sa môže výrazne meniť. Srdcový tep je príkladom oscilácie s medzným cyklom, pretože frekvencia úderov sa značne mení, zatiaľ čo každý jednotlivý úder naďalej pumpuje približne rovnaké množstvo krvi.

Výpočtové modely využívajú rôzne abstrakcie na opis komplexnej oscilačnej dynamiky pozorovanej v mozgovej činnosti. V tejto oblasti sa používa mnoho modelov, pričom každý z nich je definovaný na inej úrovni abstrakcie a snaží sa modelovať rôzne aspekty nervových systémov. Ich rozsah siaha od modelov krátkodobého správania jednotlivých neurónov cez modely toho, ako dynamika neurónových obvodov vzniká z interakcií medzi jednotlivými neurónmi, až po modely toho, ako môže správanie vzniknúť z abstraktných neurónových modulov, ktoré predstavujú úplné subsystémy.

Simulácia Hindmarsh-Roseho neurónu, ktorá ukazuje typické burstové správanie: rýchly rytmus generovaný jednotlivými hrotmi a pomalší rytmus generovaný burstami.

Model biologického neurónu je matematický opis vlastností nervových buniek alebo neurónov, ktorý je určený na presný opis a predpovedanie biologických procesov. Najúspešnejší a najpoužívanejší model neurónov, Hodgkinov-Huxleyho model, je založený na údajoch z obrovského axónu sépie. Je to súbor nelineárnych obyčajných diferenciálnych rovníc, ktorý aproximuje elektrické charakteristiky neurónu, najmä generovanie a šírenie akčných potenciálov. Tento model je veľmi presný a podrobný a Hodgkin a Huxley zaň v roku 1963 dostali Nobelovu cenu za fyziológiu alebo medicínu.

Matematika Hodgkinovho-Huxleyho modelu je pomerne komplikovaná a bolo navrhnutých niekoľko zjednodušení, ako napríklad FitzHughov-Nagumov model a Hindmarshov-Rosov model. Takéto modely zachytávajú len základnú dynamiku neurónov, ako sú rytmické špičky a bursting, ale sú výpočtovo efektívnejšie. To umožňuje simulovať veľký počet vzájomne prepojených neurónov, ktoré tvoria neurónovú sieť.

Model neurónovej siete opisuje populáciu fyzicky prepojených neurónov alebo skupinu rôznorodých neurónov, ktorých vstupy alebo signalizačné ciele definujú rozpoznateľný obvod. Cieľom týchto modelov je opísať, ako dynamika neurónových obvodov vzniká z interakcií medzi jednotlivými neurónmi. Lokálne interakcie medzi neurónmi môžu viesť k synchronizácii špicatej aktivity a tvoriť základ oscilačnej aktivity. Konkrétne sa ukázalo, že modely vzájomne sa ovplyvňujúcich pyramídových buniek a inhibičných interneurónov vytvárajú mozgové rytmy, ako je napríklad gama aktivita.

Simulácia modelu neurónovej hmoty zobrazujúca špičky siete počas nástupu záchvatu. So zvyšovaním zosilnenia A začne sieť kmitať pri frekvencii 3 Hz.

Modely neurónového poľa sú ďalším dôležitým nástrojom pri štúdiu neurónových oscilácií a predstavujú matematický rámec opisujúci vývoj premenných, ako je napríklad priemerná rýchlosť vypaľovania v priestore a čase. Pri modelovaní aktivity veľkého počtu neurónov je hlavnou myšlienkou previesť hustotu neurónov na hranicu kontinua, čo vedie k priestorovo spojitým neurónovým sieťam. Namiesto modelovania jednotlivých neurónov tento prístup aproximuje skupinu neurónov jej priemernými vlastnosťami a interakciami. Je založený na prístupe stredného poľa, čo je oblasť štatistickej fyziky, ktorá sa zaoberá rozsiahlymi systémami. Modely založené na týchto princípoch boli použité na matematický opis neurónových oscilácií a rytmov EEG. Použili sa napríklad na skúmanie zrakových halucinácií.

Simulácia Kuramotovho modelu zobrazujúca nervovú synchronizáciu a oscilácie v strednom poli

Kuramotov model spojených fázových oscilátorov je jedným z najabstraktnejších a najzákladnejších modelov používaných na skúmanie nervových oscilácií a sychronizácie. Zachytáva aktivitu lokálneho systému (napr. jedného neurónu alebo neurónového súboru) len jeho kruhovou fázou, a teda ignoruje amplitúdu oscilácií (amplitúda je konštantná). Interakcie medzi týmito oscilátormi sa zavádzajú jednoduchou algebraickou formou (napr. funkciou sin) a spoločne vytvárajú dynamický vzor na globálnej úrovni. Kuramotov model sa široko používa na štúdium oscilačnej aktivity mozgu a bolo navrhnutých niekoľko rozšírení, ktoré zvyšujú jeho neurobiologickú vierohodnosť, napríklad začlenením topologických vlastností lokálnej kortikálnej konektivity. Opisuje najmä to, ako sa môže aktivita skupiny vzájomne sa ovplyvňujúcich neurónov synchronizovať a vytvárať oscilácie veľkého rozsahu. Simulácie s použitím Kuramotovho modelu s realistickou kortikálnou konektivitou s veľkým dosahom a časovo oneskorenými interakciami odhaľujú vznik pomalých vzorových fluktuácií, ktoré reprodukujú funkčné mapy BOLD v pokojovom stave, ktoré možno merať pomocou fMRI.

Jednotlivé neuróny aj skupiny neurónov môžu spontánne vytvárať oscilačnú aktivitu. Okrem toho môžu vykazovať oscilačné reakcie na percepčný vstup alebo motorický výstup. Niektoré typy neurónov sa rytmicky zapaľujú aj bez akéhokoľvek synaptického vstupu. Podobne aj aktivita v celom mozgu odhaľuje oscilačnú aktivitu, zatiaľ čo subjekty nevyvíjajú žiadnu činnosť, tzv. aktivitu v pokojovom stave. Tieto prebiehajúce rytmy sa môžu meniť rôznymi spôsobmi v reakcii na percepčný vstup alebo motorický výstup. Oscilačná aktivita môže reagovať zvýšením alebo znížením frekvencie a amplitúdy alebo môže vykazovať dočasné prerušenie, ktoré sa označuje ako resetovanie fázy. Okrem toho vonkajšia aktivita nemusí vôbec interagovať s prebiehajúcou aktivitou, čo vedie k aditívnej reakcii.

Spontánna aktivita je mozgová aktivita bez explicitnej úlohy, ako je napríklad senzorický vstup alebo motorický výstup, a preto sa označuje aj ako aktivita v pokojovom stave. Je protikladom indukovanej aktivity, t. j. aktivity mozgu, ktorá je vyvolaná zmyslovými podnetmi alebo motorickými reakciami. Termín prebiehajúca mozgová aktivita sa v elektroencefalografii a magnetoencefalografii používa pre tie zložky signálu, ktoré nie sú spojené so spracovaním podnetu alebo výskytom špecifických iných udalostí, ako je napríklad pohyb časti tela, t. j. udalosti, ktoré netvoria evokované potenciály/evokované polia alebo indukovanú aktivitu. Spontánna aktivita sa zvyčajne považuje za šum, ak sa zaujímame o spracovanie podnetov. Spontánna aktivita sa však považuje za kľúčovú úlohu počas vývoja mozgu, napríklad pri tvorbe sietí a synaptogenéze. Spontánna aktivita môže byť informatívna, pokiaľ ide o aktuálny duševný stav osoby (napr. bdelosť, ostražitosť), a často sa využíva pri výskume spánku. Súčasťou spontánnej aktivity sú určité typy oscilačných aktivít, ako sú alfa vlny. Štatistická analýza výkonových fluktuácií alfa aktivity odhaľuje bimodálne rozdelenie, t. j. režim s vysokou a nízkou amplitúdou, a teda ukazuje, že aktivita v pokojovom stave neodráža len proces šumu. V prípade fMRI spontánne fluktuácie signálu závislého od hladiny kyslíka v krvi (BOLD) odhaľujú korelačné vzory, ktoré súvisia so sieťami pokojových stavov, ako je napríklad predvolená sieť. Časový vývoj sietí pokojového stavu je korelovaný s fluktuáciami oscilačnej aktivity EEG v rôznych frekvenčných pásmach.

Prebiehajúca mozgová aktivita môže tiež zohrávať dôležitú úlohu pri vnímaní, pretože môže interagovať s aktivitou súvisiacou s prichádzajúcimi podnetmi. Štúdie EEG skutočne naznačujú, že vizuálne vnímanie závisí od fázy aj amplitúdy kortikálnych oscilácií. Napríklad amplitúda a fáza alfa aktivity v okamihu zrakovej stimulácie predpovedá, či subjekt bude vnímať slabý podnet.

V reakcii na vstupné údaje môže neurón alebo súbor neurónov zmeniť frekvenciu, pri ktorej osciluje. Toto je veľmi bežné u jednotlivých neurónov, kde frekvencia vypaľovania závisí od súčtu aktivít, ktoré dostáva. Označuje sa to ako kódovanie rýchlosti. Zmeny frekvencie sa bežne pozorujú aj v centrálnych generátoroch vzorov a priamo súvisia s rýchlosťou motorických činností, ako je napríklad frekvencia krokov pri chôdzi. Zmeny frekvencie nie sú také bežné pri oscilačnej aktivite zahŕňajúcej rôzne oblasti mozgu, keďže frekvencia oscilačnej aktivity často súvisí s časovými oneskoreniami medzi oblasťami mozgu.

Popri evokovanej aktivite môže nervová aktivita súvisiaca so spracovaním podnetov viesť k indukovanej aktivite. Indukovaná aktivita sa vzťahuje na moduláciu prebiehajúcej mozgovej aktivity vyvolanú spracovaním podnetov alebo prípravou pohybu. Odráža teda nepriamu reakciu na rozdiel od evokovaných reakcií. Dobre preskúmaným typom indukovanej aktivity je zmena amplitúdy v oscilačnej aktivite. Napríklad gama aktivita sa často zvyšuje počas zvýšenej mentálnej aktivity, napríklad počas reprezentácie objektov. Keďže indukované odpovede môžu mať pri rôznych meraniach rôzne fázy, a preto by sa pri priemerovaní vyrušili, možno ich získať len pomocou časovo-frekvenčnej analýzy. Indukovaná aktivita vo všeobecnosti odráža aktivitu mnohých neurónov: predpokladá sa, že zmeny amplitúdy v oscilačnej aktivite vznikajú synchronizáciou nervovej aktivity, napríklad synchronizáciou časovania hrotov alebo fluktuácií membránových potenciálov jednotlivých neurónov. Zvýšenie oscilačnej aktivity sa preto často označuje ako synchronizácia súvisiaca s udalosťami, zatiaľ čo jej zníženie sa označuje ako desynchronizácia súvisiaca s udalosťami

Ďalšou možnosťou je, že vstup do neurónu alebo súboru neurónov obnovuje fázu prebiehajúcich oscilácií. Resetovanie fázy je veľmi bežné v jednotlivých neurónoch, kde sa časovanie hrotov prispôsobuje vstupným údajom neurónu. Napríklad neurón môže začať spikovať s pevným oneskorením v reakcii na periodický vstup, čo sa označuje ako uzamknutie fázy. K resetovaniu fázy môže dôjsť aj na úrovni neurónových súborov, keď sa fázy viacerých neurónov upravujú súčasne. Fázové resetovanie prebiehajúcich oscilácií súboru poskytuje alternatívne vysvetlenie pre potenciály súvisiace s udalosťami získané spriemerovaním viacerých pokusov EEG vzhľadom na začiatok podnetu alebo udalosti. To znamená, že ak sa fáza prebiehajúcich oscilácií vynuluje na pevnú fázu počas viacerých pokusov, oscilácie sa už nebudú spriemerovávať, ale sčítajú sa a vznikne potenciál súvisiaci s udalosťou. Okrem toho je resetovanie fázy alebo uzamknutie fázy zásadné aj pre synchronizáciu rôznych neurónov alebo rôznych oblastí mozgu. V tomto prípade sa časovanie hrotov fázovo uzamkne na aktivitu iných neurónov namiesto na vonkajší vstup.

Termín evokovaná aktivita sa v elektroencefalografii a magnetoencefalografii používa pre reakcie v mozgovej činnosti, ktoré priamo súvisia s aktivitou súvisiacou s podnetom. Evokované potenciály a potenciály súvisiace s udalosťami sa získavajú z elektroencefalogramu priemerovaním s uzamknutým stimulom, t. j. priemerovaním rôznych pokusov s pevne stanovenými latenciami okolo prezentácie stimulu. V dôsledku toho sa zachovávajú tie zložky signálu, ktoré sú rovnaké v každom jednotlivom meraní, a všetky ostatné, t. j. prebiehajúca alebo spontánna aktivita, sa spriemerujú. To znamená, že potenciály súvisiace s udalosťami odrážajú len oscilácie mozgovej aktivity, ktoré sú fázovo viazané na podnet alebo udalosť. Evokovaná aktivita sa často považuje za nezávislú od prebiehajúcej mozgovej aktivity, hoci o tom sa stále diskutuje.

Neurónová synchronizácia môže byť modulovaná obmedzeniami úlohy, ako je pozornosť, a predpokladá sa, že zohráva úlohu pri viazaní funkcií, komunikácii neurónov a motorickej koordinácii. Neuronálne oscilácie sa stali horúcou témou v neurovede v 90. rokoch 20. storočia, keď sa ukázalo, že štúdie zrakového systému mozgu, ktoré uskutočnili Gray, Singer a ďalší, podporujú hypotézu neurónovej väzby. Podľa tejto myšlienky synchrónne oscilácie v neurónových súboroch viažu neuróny reprezentujúce rôzne vlastnosti objektu. Napríklad, keď sa človek pozerá na strom, neuróny zrakovej kôry reprezentujúce kmeň stromu a neuróny reprezentujúce vetvy toho istého stromu by synchrónne oscilovali a vytvorili by jedinú reprezentáciu stromu. Tento jav je najlepšie viditeľný v lokálnych poľných potenciáloch, ktoré odrážajú synchrónnu aktivitu lokálnych skupín neurónov, ale bol preukázaný aj v záznamoch EEG a MEG, ktoré poskytujú čoraz viac dôkazov o úzkom vzťahu medzi synchrónnou oscilačnou aktivitou a rôznymi kognitívnymi funkciami, ako je napríklad percepčné zoskupovanie.

Bunky sinoatriálneho uzla, ktorý sa nachádza v pravej predsieni srdca, sa spontánne depolarizujú približne 100-krát za minútu. Hoci všetky bunky srdca majú schopnosť generovať akčné potenciály, ktoré spúšťajú kontrakciu srdca, sinoatriálny uzol ju zvyčajne iniciuje, jednoducho preto, že generuje impulzy o niečo rýchlejšie ako ostatné oblasti. Preto tieto bunky generujú normálny sínusový rytmus a nazývajú sa pacemakerové bunky, pretože priamo riadia srdcovú frekvenciu. Pri absencii vonkajšej nervovej a hormonálnej kontroly sa bunky v SA uzle rytmicky vybíjajú. Sinoatriálny uzol je bohato inervovaný autonómnym nervovým systémom, ktorý nahor alebo nadol reguluje frekvenciu spontánneho vypálenia pacemakerových buniek.

Synchronizované spúšťanie neurónov je tiež základom periodických motorických príkazov pre rytmické pohyby. Tieto rytmické výstupy vytvára skupina vzájomne sa ovplyvňujúcich neurónov, ktoré tvoria sieť nazývanú centrálny generátor vzorov. Centrálne generátory vzorov sú neurónové obvody, ktoré – keď sú aktivované – môžu vytvárať rytmické motorické vzory v neprítomnosti senzorických alebo zostupných vstupov, ktoré nesú špecifické časové informácie. Príkladom je chôdza, dýchanie a plávanie, Väčšina dôkazov o centrálnych generátoroch vzorov pochádza z nižších živočíchov, ako je napríklad mihuľa, ale existujú aj dôkazy o centrálnych generátoroch vzorov v chrbtici u ľudí.

Neuronálne špičky sa všeobecne považujú za základ prenosu informácií v mozgu. Na takýto prenos je potrebné, aby bola informácia zakódovaná vo vzorci špicatenia. Boli navrhnuté rôzne typy kódovacích schém, napríklad kódovanie rýchlosti a časové kódovanie.

Synchronizácia vypaľovania neurónov môže slúžiť ako prostriedok na zoskupenie priestorovo oddelených neurónov, ktoré reagujú na rovnaký podnet, s cieľom prepojiť tieto odpovede na ďalšie spoločné spracovanie, t. j. využiť časovú synchronizáciu na kódovanie vzťahov. Najskôr boli navrhnuté čisto teoretické formulácie hypotézy o viazaní prostredníctvom synchrónie, ale následne sa objavili rozsiahle experimentálne dôkazy podporujúce potenciálnu úlohu synchrónie ako relačného kódu.

Funkčná úloha synchronizovanej oscilačnej aktivity v mozgu bola zistená najmä v experimentoch vykonaných na bdelých mačiatkach s viacerými elektródami implantovanými do zrakovej kôry. Tieto experimenty ukázali, že skupiny priestorovo segregovaných neurónov sa pri aktivácii zrakovými podnetmi zapájajú do synchrónnej oscilačnej aktivity. Frekvencia týchto oscilácií bola v rozsahu 40 Hz a líšila sa od periodickej aktivácie vyvolanej mriežkou, čo naznačuje, že oscilácie a ich synchronizácia boli spôsobené vnútornými interakciami neurónov. Podobné zistenia paralelne preukázala aj Eckhornova skupina, čím poskytla ďalšie dôkazy o funkčnej úlohe neurónovej synchronizácie pri viazaní funkcií. Odvtedy sa v mnohých štúdiách tieto zistenia zopakovali a rozšírili na rôzne modality, napríklad EEG, čím sa poskytli rozsiahle dôkazy o funkčnej úlohe gama oscilácií pri zrakovom vnímaní.

Gilles Laurent a jeho kolegovia ukázali, že oscilačná synchronizácia má dôležitú funkčnú úlohu pri vnímaní pachov. Vnímanie rôznych pachov vedie k tomu, že rôzne podskupiny neurónov spúšťajú rôzne sady oscilačných cyklov. Tieto oscilácie možno narušiť blokátorom GABA pikrotoxínom. Narušenie oscilačnej synchronizácie vedie k zhoršeniu behaviorálnej diskriminácie chemicky podobných pachov u včiel a k podobnejším reakciám na rôzne pachy v nadväzujúcich neurónoch β-lobe.

Predpokladá sa, že nervové oscilácie sa podieľajú aj na vnímaní času a somatosenzorickom vnímaní. Nedávne zistenia však hovoria proti hodinovej funkcii kortikálnych gama oscilácií.

Oscilácie boli bežne zaznamenané v motorickom systéme. Pfurtscheller a jeho kolegovia zistili zníženie alfa (8 – 12 Hz) a beta (13 – 30 Hz) oscilácií v aktivite EEG, keď subjekty vykonávali pohyb. Pomocou intrakortikálnych záznamov zistili podobné zmeny v oscilačnej aktivite v motorickej kôre, keď opice vykonávali motorické úkony, ktoré si vyžadovali značnú pozornosť. Okrem toho sa oscilácie na spinálnej úrovni synchronizujú s beta osciláciami v motorickej kôre počas konštantnej svalovej aktivácie, čo sa určilo pomocou MEG/EEG-EMG koherencie. Nedávno sa zistilo, že kortikálne oscilácie sa šíria ako putujúce vlny po povrchu motorickej kôry pozdĺž dominantných priestorových osí charakteristických pre lokálne obvody motorickej kôry.

Oscilačné rytmy s frekvenciou 10 Hz boli zaznamenané v oblasti mozgu nazývanej dolná oliva, ktorá je spojená s mozočkom. Tieto oscilácie sa pozorujú aj pri motorickom výstupe fyziologického tremoru a pri vykonávaní pomalých pohybov prstov. Tieto zistenia môžu naznačovať, že ľudský mozog riadi súvislé pohyby prerušovane. Na podporu toho sa ukázalo, že tieto prerušované pohyby priamo súvisia s oscilačnou aktivitou v mozočko-talamo-kortikálnej slučke, ktorá môže predstavovať nervový mechanizmus prerušovanej motorickej kontroly.

Nervové oscilácie sú vo veľkej miere spojené s pamäťovými funkciami, najmä s aktivitou theta. Rytmy theta sú veľmi silné v hipokampoch a entorhinálnej kôre hlodavcov počas učenia a vybavovania pamäte a predpokladá sa, že sú nevyhnutné pre indukciu dlhodobej potenciácie, potenciálneho bunkového mechanizmu učenia a pamäte. Predpokladá sa, že spojenie medzi theta a gama aktivitou je nevyhnutné pre pamäťové funkcie. Tesná koordinácia časovania hrotov jednotlivých neurónov s lokálnymi osciláciami theta súvisí s úspešným vytváraním pamäte u ľudí, keďže viac stereotypných hrotov predpovedá lepšiu pamäť.

Spánok je prirodzene sa opakujúci stav charakterizovaný zníženým alebo neprítomným vedomím a prebieha v cykloch rýchlych pohybov očí (REM) a spánku bez rýchlych pohybov očí (NREM). Normálne poradie fáz spánku je N1 → N2 → N3 → N2 → REM. Štádiá spánku sú charakterizované spektrálnym obsahom EEG, napríklad štádium N1 sa vzťahuje na prechod mozgu z vĺn alfa (bežných v bdelom stave) na vlny theta, zatiaľ čo štádium N3 (hlboký alebo pomalý spánok) je charakterizované prítomnosťou vĺn delta.

Rukopis osoby postihnutej Parkinsonovou chorobou, ktorý ukazuje rytmickú aktivitu tremoru v úderoch

Generalizované 3 Hz hrotové a vlnové výboje odrážajúce záchvatovú aktivitu

Špecifické typy nervových oscilácií sa môžu objaviť aj v patologických situáciách, ako je Parkinsonova choroba alebo epilepsia. Je zaujímavé, že tieto patologické oscilácie často pozostávajú z aberantnej verzie normálnych oscilácií. Napríklad jedným z najznámejších typov sú oscilácie hrotov a vĺn, ktoré sú typické pre generalizované alebo absenčné epileptické záchvaty a ktoré sa podobajú normálnym osciláciám vretena počas spánku.

Tŕpnutie je mimovoľné, do istej miery rytmické sťahovanie a uvoľňovanie svalov, ktoré zahŕňa pohyby jednej alebo viacerých častí tela. Je to najbežnejší zo všetkých mimovoľných pohybov a môže postihovať ruky, paže, oči, tvár, hlavu, hlasivky, trup a nohy. Väčšina trasov sa vyskytuje na rukách. U niektorých ľudí je tras príznakom inej neurologickej poruchy. Bolo identifikovaných mnoho rôznych foriem tremoru, napríklad esenciálny tremor alebo parkinsonský tremor. Tvrdí sa, že tras je pravdepodobne multifaktoriálneho pôvodu, pričom k nemu prispievajú nervové oscilácie v centrálnych nervových systémoch, ale aj periférne mechanizmy, ako sú rezonancie reflexných slučiek.

Epilepsia je bežná chronická neurologická porucha charakterizovaná záchvatmi. Tieto záchvaty sú prechodné príznaky a/alebo symptómy abnormálnej, nadmernej alebo hypersynchrónnej aktivity neurónov v mozgu.

Uvažovalo sa o využití nervových oscilácií ako riadiaceho signálu pre rôzne rozhrania mozog-počítač. Neinvazívne rozhranie BCI sa vytvára umiestnením elektród na pokožku hlavy a následným meraním slabých elektrických signálov. Neinvazívne BCI vytvára slabé rozlíšenie signálu, pretože lebka tlmí a rozmazáva elektromagnetické signály. V dôsledku toho nie je možné obnoviť aktivitu jednotlivých neurónov, ale oscilačná aktivita sa stále dá spoľahlivo zistiť. Niektoré formy BCI umožňujú používateľom ovládať zariadenie najmä meraním amplitúdy oscilačnej aktivity v špecifických frekvenčných pásmach vrátane mu a beta rytmov.

Neúplný zoznam typov oscilačných aktivít, ktoré sa nachádzajú v centrálnom nervovom systéme:

Kategórie
Psychologický slovník

Binárna klasifikácia

Binárna alebo binomická klasifikácia je úloha klasifikovať členov daného súboru objektov do dvoch skupín na základe toho, či majú alebo nemajú nejakú vlastnosť. Niektoré typické úlohy binárnej klasifikácie sú

Štatistická klasifikácia vo všeobecnosti je jedným z problémov, ktoré sa študujú v informatike s cieľom automaticky sa naučiť klasifikačné systémy; niektoré metódy vhodné na učenie binárnych klasifikátorov zahŕňajú rozhodovacie stromy, Bayesove siete, stroje s podpornými vektormi, neurónové siete, probitovú regresiu a logitovú regresiu.

Niekedy sú úlohy klasifikácie triviálne. Ak máme k dispozícii 100 loptičiek, z ktorých niektoré sú červené a niektoré modré, človek s normálnym farebným videním ich ľahko rozdelí na červené a modré. Niektoré úlohy, ako napríklad úlohy v praktickej medicíne a úlohy zaujímavé z hľadiska informatiky, však zďaleka nie sú triviálne, a ak sa vykonajú nepresne, môžu priniesť chybné výsledky.

Pri tradičnom testovaní štatistických hypotéz začína testujúci s nulovou hypotézou a alternatívnou hypotézou, vykoná experiment a potom sa rozhodne, či zamietne nulovú hypotézu v prospech alternatívnej. Testovanie hypotéz je teda binárna klasifikácia skúmanej hypotézy.

Pozitívny alebo štatisticky významný výsledok je taký, ktorý zamieta nulovú hypotézu. Ak sa to urobí, keď je nulová hypotéza v skutočnosti pravdivá – falošne pozitívna – je to chyba typu I; ak sa to urobí, keď je nulová hypotéza nepravdivá, výsledkom je skutočne pozitívna hypotéza. Negatívny alebo štatisticky nevýznamný výsledok je taký, ktorý nezamieta nulovú hypotézu. Ak je nulová hypotéza v skutočnosti falošná – falošne negatívna – ide o chybu typu II; ak je nulová hypotéza pravdivá, ide o pravdivý negatívny výsledok.

Hodnotenie binárnych klasifikátorov

Z matice zámeny môžete odvodiť štyri základné miery

Na meranie výkonnosti lekárskeho testu sa často používajú pojmy citlivosť a špecifickosť; tieto pojmy sú ľahko použiteľné na hodnotenie akéhokoľvek binárneho klasifikátora. Povedzme, že testujeme niekoľko ľudí na prítomnosť choroby. Niektorí z týchto ľudí majú túto chorobu a náš test je pozitívny. Títo ľudia sa nazývajú skutočne pozitívni (TP). Niektorí majú chorobu, ale test tvrdí, že ju nemajú. Títo ľudia sa nazývajú falošne negatívni (FN). Niektorí ochorenie nemajú a test tvrdí, že ho nemajú – praví negatívni (TN). A napokon môžu existovať aj zdraví ľudia, ktorí majú pozitívny výsledok testu – falošne pozitívni (FP). Počet pravých pozitívnych, falošne negatívnych, pravých negatívnych a falošne pozitívnych sa teda sčítava do 100 % súboru.

Špecifickosť (TNR) je podiel osôb, ktoré boli testované negatívne (TN), zo všetkých osôb, ktoré sú skutočne negatívne (TN+FP). Rovnako ako na citlivosť sa na ňu možno pozerať ako na pravdepodobnosť, že výsledok testu je negatívny vzhľadom na to, že pacient nie je chorý. Pri vyššej špecifickosti je menej zdravých ľudí označených za chorých (alebo v prípade továrne tým menej peňazí, ktoré továreň stráca vyradením dobrých výrobkov namiesto ich predaja).

Citlivosť (TPR), známa aj ako recall, je podiel osôb, ktoré boli testované pozitívne (TP), zo všetkých osôb, ktoré sú skutočne pozitívne (TP+FN). Možno ju chápať ako pravdepodobnosť, že test je pozitívny vzhľadom na to, že pacient je chorý. Pri vyššej citlivosti zostáva menej skutočných prípadov ochorenia neodhalených (alebo, v prípade kontroly kvality v továrni, menej chybných výrobkov ide na trh).

Vzťah medzi citlivosťou a špecificitou, ako aj výkonnosť klasifikátora, možno vizualizovať a študovať pomocou krivky ROC.

Teoreticky sú citlivosť a špecifickosť nezávislé v tom zmysle, že je možné dosiahnuť 100 % v oboch prípadoch (ako napríklad vo vyššie uvedenom príklade červenej/modrej lopty). V praktickejších, menej vymyslených prípadoch však zvyčajne dochádza ku kompromisu, takže sú si do určitej miery nepriamo úmerné. Je to preto, lebo málokedy meriame skutočnú vec, ktorú chceme klasifikovať; skôr meriame ukazovateľ veci, ktorú chceme klasifikovať, označovaný ako náhradný ukazovateľ. Dôvod, prečo je v príklade s loptou možné dosiahnuť 100 %, je ten, že červenosť a modrosť sa určuje priamym zisťovaním červenosti a modrosti. Indikátory sú však niekedy kompromitované, napríklad keď neindikátory napodobňujú indikátory alebo keď sú indikátory časovo závislé a prejavia sa až po určitom čase oneskorenia. Nasledujúci príklad tehotenského testu využije takýto indikátor.

Moderné tehotenské testy nevyužívajú na určenie stavu tehotenstva samotné tehotenstvo, ale ako náhradný marker, ktorý indikuje, že žena je tehotná, sa používa ľudský choriový gonadotropín alebo hCG prítomný v moči gravidných žien. Keďže hCG môže byť produkovaný aj nádorom, špecifickosť moderných tehotenských testov nemôže byť 100 % (v tom zmysle, že sú možné falošne pozitívne výsledky). Aj preto, že hCG je v moči prítomný v takej malej koncentrácii po oplodnení a na začiatku embryogenézy, citlivosť moderných tehotenských testov nemôže byť 100 % (v tom zmysle, že sú možné falošne negatívne výsledky).

Okrem citlivosti a špecifickosti možno výkonnosť binárneho klasifikačného testu merať pomocou pozitívnej prediktívnej hodnoty (PPV), známej aj ako presnosť, a negatívnej prediktívnej hodnoty (NPV). Pozitívna prediktívna hodnota odpovedá na otázku „Ak je výsledok testu pozitívny, ako dobre predpovedá skutočnú prítomnosť ochorenia?“. Vypočíta sa ako (skutočne pozitívne výsledky) / (skutočne pozitívne výsledky + falošne pozitívne výsledky); to znamená, že ide o podiel skutočne pozitívnych výsledkov zo všetkých pozitívnych výsledkov. (Hodnota negatívnej predpovede je rovnaká, ale prirodzene pre negatívne výsledky).

Medzi týmito dvoma pojmami je jeden zásadný rozdiel: Citlivosť a špecifickosť sú nezávislé od populácie v tom zmysle, že sa nemenia v závislosti od testovaného podielu pozitívnych a negatívnych výsledkov. Citlivosť testu možno skutočne určiť testovaním len pozitívnych prípadov. Hodnoty predikcie sú však závislé od populácie.

Napokon, presnosť meria podiel všetkých prípadov, ktoré sú správne zaradené do kategórie; je to pomer počtu správnych klasifikácií k celkovému počtu správnych alebo nesprávnych klasifikácií.

Predpokladajme, že existuje test na chorobu s 99 % citlivosťou a 99 % špecificitou. Ak sa testuje 2000 ľudí, 1000 z nich je chorých a 1000 zdravých. Je pravdepodobných približne 990 pravdivých pozitívnych výsledkov 990 pravdivých negatívnych výsledkov, pričom 10 je falošne pozitívnych a 10 falošne negatívnych výsledkov. Hodnoty pozitívnej a negatívnej predpovede by boli 99 %, takže vo výsledok možno mať vysokú dôveru.

Ak je však z 2000 ľudí skutočne chorých len 100, pravdepodobný výsledok je 99 pravdivých pozitívnych výsledkov, 1 falošne negatívny výsledok, 1881 pravdivých negatívnych výsledkov a 19 falošne pozitívnych výsledkov. Z 19 + 99 pozitívne testovaných ľudí má len 99 skutočne chorobu – to intuitívne znamená, že vzhľadom na to, že výsledok testu pacienta je pozitívny, existuje len 84 % pravdepodobnosť, že pacient skutočne má chorobu. Na druhej strane, vzhľadom na to, že výsledok testu pacienta je negatívny, existuje len 1 šanca z 1882, teda 0,05 % pravdepodobnosť, že pacient má chorobu napriek výsledku testu.

Prevod spojitých hodnôt na binárne

Testy, ktorých výsledky majú spojité hodnoty, ako napríklad väčšina krvných hodnôt, sa môžu umelo zmeniť na binárne definovaním hraničnej hodnoty, pričom výsledky testu sa označia ako pozitívne alebo negatívne v závislosti od toho, či je výsledná hodnota vyššia alebo nižšia ako hraničná hodnota.

Takáto konverzia však spôsobuje stratu informácií, pretože výsledná binárna klasifikácia nehovorí o tom, o koľko je hodnota nad alebo pod hraničnou hodnotou. V dôsledku toho je pri konverzii spojitej hodnoty, ktorá je blízko hraničnej hodnoty, na binárnu hodnotu výsledná pozitívna alebo negatívna prediktívna hodnota spravidla vyššia ako prediktívna hodnota daná priamo zo spojitej hodnoty. V takýchto prípadoch označenie testu ako pozitívneho alebo negatívneho vyvoláva dojem neprimerane vysokej istoty, zatiaľ čo hodnota sa v skutočnosti nachádza v intervale neistoty. Napríklad pri koncentrácii hCG v moči ako spojitej hodnote sa tehotenský test v moči, ktorý nameral 52 mIU/ml hCG, môže zobraziť ako „pozitívny“ s hodnotou 50 mIU/ml ako hraničnou hodnotou, ale v skutočnosti je v intervale neistoty, čo môže byť zrejmé len pri znalosti pôvodnej spojitej hodnoty. Na druhej strane, výsledok testu veľmi vzdialený od hraničnej hodnoty má vo všeobecnosti výslednú pozitívnu alebo negatívnu prediktívnu hodnotu, ktorá je nižšia ako prediktívna hodnota uvedená z kontinuálnej hodnoty. Napríklad hodnota hCG v moči 200 000 mIU/ml poskytuje veľmi vysokú pravdepodobnosť tehotenstva, ale prepočet na binárne hodnoty vedie k tomu, že sa ukáže rovnako „pozitívna“ ako hodnota 52 mIU/ml.

Kategórie
Psychologický slovník

Úroveň merania

„Úrovne merania“ alebo stupnice merania sú výrazy, ktoré zvyčajne odkazujú na teóriu typov stupníc, ktorú vypracoval psychológ Stanley Smith Stevens. Stevens navrhol svoju teóriu v roku 1946 vo vedeckom článku s názvom „On the theory of scales of measurement“ (O teórii stupníc merania). V tomto článku Stevens tvrdil, že všetky merania vo vede sa vykonávajú pomocou štyroch rôznych typov škál, ktoré nazval „nominálne“, „ordinálne“, „intervalové“ a „pomerové“.

Stevens (1946, 1951) navrhol, že merania možno rozdeliť do štyroch rôznych typov stupníc. Tieto sú uvedené v nasledujúcej tabuľke: nominálne, ordinálne, intervalové a pomerové.

V nominálnej škále, t. j. pre nominálnu kategóriu, sa používajú značky; napríklad horniny možno všeobecne kategorizovať ako vyvreliny, sedimenty a metamorfity. Pre túto škálu sú niektoré platné operácie ekvivalencie a príslušnosti k množine. Nominálne miery ponúkajú názvy alebo značky pre určité charakteristiky.

Premenné hodnotené na nominálnej stupnici sa nazývajú kategoriálne premenné; pozri tiež kategoriálne údaje. Kategoricky typizované náhodné premenné, ktoré majú len dva možné výsledky (často označované ako „áno“ vs. „nie“ alebo „úspech“ vs. „neúspech“), sa nazývajú binárne premenné (alebo Bernoulliho premenné) a charakterizujú sa pomocou Bernoulliho rozdelenia. Kategoriálna premenná s tromi alebo viacerými výsledkami sa niekedy označuje ako viaccestná (alebo K-cestná pre určitú špecifickú hodnotu K) a charakterizuje sa kategoriálnym rozdelením.

Stevens(1946, s. 679) musel vedieť, že tvrdenie, že nominálne stupnice merajú zjavne nekvantitatívne veci, by vyvolalo kritiku, preto sa odvolával na svoju teóriu merania, aby zdôvodnil nominálne stupnice ako meranie:

Centrálna tendencia nominálneho atribútu je daná jeho modusom; strednú hodnotu ani medián nemožno definovať.

Môžeme použiť jednoduchý príklad nominálnej kategórie: krstné mená. Ak sa pozrieme na ľudí v okolí, môžeme nájsť jedného alebo viacerých ľudí s menom Aamir. Aamir je ich označenie a množina všetkých krstných mien je nominálna škála. Môžeme len skontrolovať, či dvaja ľudia majú rovnaké meno (ekvivalencia) alebo či sa dané meno nachádza v určitom zozname mien (príslušnosť k množine), ale nie je možné povedať, ktoré meno je väčšie alebo menšie ako iné (porovnanie), ani zmerať rozdiel medzi dvoma menami. Ak máme danú množinu ľudí, môžeme túto množinu opísať pomocou najčastejšieho mena (modus), ale nemôžeme poskytnúť „priemerné meno“ alebo dokonca „stredné meno“ medzi všetkými menami. Ak sa však rozhodneme zoradiť mená podľa abecedy (alebo ich zoradiť podľa dĺžky; alebo podľa toho, koľkokrát sa vyskytli pri sčítaní obyvateľov USA), začneme túto nominálnu stupnicu meniť na ordinálnu stupnicu.

Zoradenie údajov podľa poradia jednoducho umiestni údaje na ordinálnu stupnicu. Ordinálne merania opisujú poradie, ale nie relatívnu veľkosť alebo stupeň rozdielu medzi meranými položkami. V tomto type stupnice čísla priradené objektom alebo udalostiam predstavujú poradie (1., 2., 3. atď.) hodnotených entít. Príkladom ordinálnej stupnice je výsledok konských dostihov, ktorý hovorí len o tom, ktoré kone prišli prvé, druhé alebo tretie, ale neobsahuje žiadne informácie o čase dostihov. Ďalším príkladom sú vojenské hodnosti; majú poradie, ale nemajú presne definovaný číselný rozdiel medzi hodnosťami.

Pri použití ordinálnej škály možno centrálnu tendenciu skupiny položiek opísať pomocou módu (najčastejšie sa vyskytujúcej položky) alebo mediánu (stredne umiestnenej položky), ale priemer (alebo priemer) nemožno definovať.

V roku 1946 si Stevens všimol, že psychologické merania zvyčajne fungujú na ordinálnych stupniciach a že bežné štatistiky ako priemer a štandardná odchýlka nemajú platnú interpretáciu. Napriek tomu sa takáto štatistika môže často použiť na získanie plodných informácií s tým, že pri vyvodzovaní záverov z takýchto štatistických údajov treba byť opatrný.

Psychometrici radi teoretizujú o tom, že psychometrické testy vytvárajú intervalové škály kognitívnych schopností (napr. Lord & Novick, 1968; von Eye, 2005), ale existuje len málo dôkazov, ktoré by naznačovali, že takéto atribúty sú pre väčšinu psychologických údajov niečo viac ako ordinálne (Cliff, 1996; Cliff & Keats, 2003; Michell, 2008). Najmä skóre IQ odráža skôr ordinálnu škálu, v ktorej sú všetky skóre významné len na porovnanie, než intervalovú škálu, v ktorej daný počet „bodov“ IQ zodpovedá jednotke inteligencie. Preto je chybou napísať, že IQ 160 sa líši od IQ 130 rovnako ako IQ 100 od IQ 70.

V matematickej teórii usporiadania definuje ordinálna stupnica celkové predusporiadanie objektov (v podstate spôsob usporiadania všetkých objektov, v ktorom môžu byť niektoré objekty viazané). Samotné hodnoty stupnice (ako napríklad označenia typu „skvelý“, „dobrý“ a „zlý“; 1., 2. a 3.) majú celkové poradie, v ktorom môžu byť zoradené do jedného riadku bez nejednoznačností. Ak sa na definovanie stupnice použijú čísla, zostanú správne, aj keď sa transformujú ľubovoľnou monotónne rastúcou funkciou. Táto vlastnosť je známa ako izomorfizmus poradia. Nasleduje jednoduchý príklad:

Keďže x-8, 3x a x3 sú monotónne rastúce funkcie, nahradenie poradového skóre rozhodcu ktorýmkoľvek z týchto alternatívnych skóre nemá vplyv na relatívne poradie kuchárskych schopností piatich ľudí. Každý stĺpec čísel predstavuje rovnako legitímnu ordinálnu stupnicu na opis ich schopností. Číselný (aditívny) rozdiel medzi rôznymi ordinálnymi skóre však nemá žiadny osobitný význam.

Všetky kvantitatívne atribúty sú merateľné na intervalových stupniciach, pretože akýkoľvek rozdiel medzi úrovňami atribútu možno vynásobiť ľubovoľným reálnym číslom, aby bol vyšší alebo rovný inému rozdielu. Veľmi známym príkladom merania na intervalovej stupnici je teplota so stupnicou Celzia. V tejto konkrétnej stupnici je jednotkou merania 1/100 teplotného rozdielu medzi bodom tuhnutia a varu vody pri tlaku 1 atmosféra. Nulový bod“ na intervalovej stupnici je ľubovoľný a môžu sa používať aj záporné hodnoty. Formálny matematický termín je afinný priestor (v tomto prípade afinná priamka). Premenné merané na intervalovej úrovni sa nazývajú „intervalové premenné“ alebo niekedy „škálované premenné“, pretože majú merné jednotky.

Pomery medzi číslami na stupnici nie sú zmysluplné, takže operácie ako násobenie a delenie nemožno vykonávať priamo. Pomery rozdielov sa však dajú vyjadriť; napríklad jeden rozdiel môže byť dvojnásobkom druhého.

Centrálnu tendenciu premennej meranú na úrovni intervalu možno vyjadriť jej modusom, mediánom alebo aritmetickým priemerom. Štatistický rozptyl možno merať väčšinou obvyklých spôsobov, ktoré práve zahŕňali rozdiely alebo spriemerovanie, ako je rozsah, medzikvartilové rozpätie a štandardná odchýlka. Keďže sa nedá deliť, nedajú sa definovať miery, ktoré si vyžadujú pomer, ako napríklad študovaný rozsah alebo variačný koeficient. Jemnejšie povedané, hoci sa dajú definovať momenty okolo počiatku, užitočné sú len centrálne momenty, pretože výber počiatku je ľubovoľný a nemá význam. Možno definovať štandardizované momenty, pretože pomery rozdielov sú zmysluplné, ale nemožno definovať variačný koeficient, pretože priemer je momentom okolo počiatku, na rozdiel od štandardnej odchýlky, ktorá je (druhou odmocninou) centrálneho momentu.

Väčšina meraní vo fyzikálnych a technických vedách sa vykonáva na pomerových stupniciach. Hmotnosť, dĺžka, čas, rovinný uhol, energia a elektrický náboj sú príkladmi fyzikálnych mier, ktoré sú pomerovými stupnicami. Názov tohto typu stupnice pochádza zo skutočnosti, že meranie je odhadom pomeru medzi veľkosťou spojitej veličiny a jednotkovou veľkosťou toho istého druhu (Michell, 1997, 1999). Neformálne je charakteristickým znakom pomerovej stupnice vlastnosť nulovej hodnoty. Napríklad Kelvinova teplotná stupnica má nearbitrárny nulový bod absolútnej nuly, ktorý sa označuje 0 K a rovná sa -273,15 stupňov Celzia. Tento nulový bod presne reprezentuje častice, ktoré tvoria hmotu pri tejto teplote, majúce nulovú kinetickú energiu.

Príklady pomerových meraní v behaviorálnych vedách takmer neexistujú. Luce (2000) tvrdí, že príklad merania na pomerovej škále v psychológii možno nájsť v teórii očakávanej užitočnosti závislej od poradia a znamienka.

Pre premennú meranú na úrovni pomeru možno použiť všetky štatistické miery, pretože sú definované všetky potrebné matematické operácie. Centrálnu tendenciu premennej meranej na úrovni pomeru môže okrem modusu, mediánu alebo aritmetického priemeru reprezentovať aj geometrický priemer alebo harmonický priemer. Okrem mier štatistického rozptylu definovaných pre intervalové premenné, ako sú rozsah a smerodajná odchýlka, možno pre pomerové premenné definovať aj miery, ktoré si vyžadujú pomer, ako je študovaný rozsah alebo variačný koeficient.

Diskusia o klasifikačnom systéme

O opodstatnenosti klasifikácií sa viedli a stále vedú diskusie, najmä v prípade nominálnej a ordinálnej klasifikácie (Michell, 1986). Hoci je Stevensova klasifikácia všeobecne prijímaná, v žiadnom prípade nie je všeobecne akceptovaná.

Duncan (1986) poznamenal, že Stevensova klasifikácia nominálneho merania je v rozpore s jeho vlastnou definíciou merania. Stevens (1975) o svojej vlastnej definícii merania povedal, že „priradenie môže byť akékoľvek konzistentné pravidlo. Jediné pravidlo, ktoré by nebolo povolené, by bolo náhodné priradenie, pretože náhodnosť sa v podstate rovná nepravidlu“. Takzvané nominálne meranie však zahŕňa ľubovoľné priradenie a „prípustnou transformáciou“ je akékoľvek číslo pre akékoľvek iné. To je jeden z bodov, na ktorý upozorňuje Lord (1953) v satirickom článku O štatistickom zaobchádzaní s futbalovými číslami.

Medzi tými, ktorí akceptujú klasifikačnú schému, existuje v behaviorálnych vedách aj určitá polemika o tom, či má priemer význam pre ordinálne meranie. Z hľadiska teórie merania nie je, pretože aritmetické operácie sa nevykonávajú s číslami, ktoré sú meraniami v jednotkách, a tak výsledky výpočtov nedávajú čísla v jednotkách. Mnohí behaviorálni vedci však aj tak používajú priemery pre ordinálne údaje. Často sa to odôvodňuje tým, že ordinálne stupnice v behaviorálnych vedách sú v skutočnosti niekde medzi skutočnými ordinálnymi a intervalovými stupnicami; hoci intervalový rozdiel medzi dvoma ordinálnymi stupnicami nie je konštantný, často má rovnakú rádovú hodnotu. Napríklad aplikácie modelov merania vo vzdelávacom kontexte často naznačujú, že celkové skóre má pomerne lineárny vzťah s meraním v celom rozsahu hodnotenia. Preto niektorí tvrdia, že pokiaľ neznámy intervalový rozdiel medzi poradovými stupnicami nie je príliš premenlivý, môžu sa štatistiky intervalových stupníc, ako sú napríklad priemery, zmysluplne používať na premenné s poradovou stupnicou. Softvér na štatistickú analýzu, ako je PSPP, vyžaduje, aby používateľ vybral vhodnú triedu merania pre každú premennú. Tým sa zabezpečí, že následné chyby používateľa nemôžu neúmyselne vykonať nezmyselné analýzy (napríklad korelačnú analýzu s premennou na nominálnej úrovni).

L. L. Thurstone dosiahol pokrok vo vývoji zdôvodnenia získavania meraní na úrovni intervalov na základe zákona porovnávacieho úsudku. Bežnú aplikáciu tohto zákona nájdete v Analytickom hierarchickom procese. Ďalší pokrok dosiahol Georg Rasch (1960), ktorý vyvinul pravdepodobnostný Raschov model, ktorý poskytuje teoretický základ a odôvodnenie na získanie meraní na úrovni intervalov z počtov pozorovaní, ako sú celkové výsledky v hodnoteniach.

Ďalší problém vychádza z článku Nicholasa R. Chrismana „Rethinking Levels of Measurement for Cartography“ (Prehodnotenie úrovní merania pre kartografiu), v ktorom zavádza rozšírený zoznam úrovní merania s cieľom zohľadniť rôzne merania, ktoré nemusia nevyhnutne zodpovedať tradičnému poňatiu úrovní merania. Merania viazané na rozsah a opakovanie (ako sú stupne v kruhu, čas atď.), odstupňované kategórie príslušnosti a iné typy meraní nezapadajú do pôvodnej Stevenovej práce, čo viedlo k zavedeniu 6 nových úrovní merania, ktoré vedú k (1) Nominálne, (2) Odstupňované členstvo, (3) Ordinálne, (4) Intervalové, (5) Logaritmické, (6) Extenzívne pomery, (7) Cyklické pomery, (8) Odvodené pomery, (9) Počty a nakoniec (10) Absolútne. Rozšírené úrovne merania sa mimo akademickej geografie používajú len zriedka.

Typy škál a Stevensova „operačná teória merania“

Teória typov škál je intelektuálnou služobníčkou Stevensovej „operačnej teórie merania“, ktorá sa mala stať definitívnou v psychológii a behaviorálnych vedách, napriek tomu, že Michell ju charakterizoval ako úplne protichodnú s meraním v prírodných vedách (Michell, 1999). Operačná teória merania bola v podstate reakciou na závery výboru, ktorý v roku 1932 zriadila Britská asociácia pre rozvoj vedy s cieľom preskúmať možnosť skutočného vedeckého merania v psychologických a behaviorálnych vedách. Tento výbor, ktorý sa stal známym ako Fergusonov výbor, uverejnil záverečnú správu (Ferguson, et al., 1940, s. 245), v ktorej bola predmetom kritiky Stevensova sone scale (Stevens a Davis, 1938):

To znamená, že ak Stevensova stupnica skutočne merala intenzitu sluchových vnemov, potom je potrebné predložiť dôkazy o tom, že tieto vnemy sú kvantitatívnymi atribútmi. Potrebným dôkazom bola prítomnosť aditívnej štruktúry – konceptu, ktorý komplexne spracoval nemecký matematik Otto Hölder (Hölder, 1901). Vzhľadom na to, že v rokovaniach Fergusonovho výboru dominoval fyzik a teoretik merania Norman Robert Campbell, výbor dospel k záveru, že meranie v spoločenských vedách nie je možné z dôvodu absencie konkatenačných operácií. Tento záver sa neskôr ukázal ako nesprávny objavením teórie konjunkturálneho merania Debreuom (1960) a nezávisle od neho Luceom a Tukeym (1964). Stevensova reakcia však nespočívala v tom, že by uskutočnil experimenty na overenie prítomnosti aditívnej štruktúry v pocitoch, ale v tom, že závery Fergusonovho výboru vyhlásil za neplatné tým, že navrhol novú teóriu merania:

Stevensa výrazne ovplyvnili myšlienky iného harvardského akademika, nositeľa Nobelovej ceny za fyziku Percyho Bridgmana (1927), ktorého doktrínu operacionalizmu Stevens použil na definovanie merania. V Stevensovej definícii je to napríklad použitie meradla, ktoré definuje dĺžku (predmet merania) ako merateľnú (a teda implicitne kvantitatívnu). Kritici operacionalizmu namietajú, že zamieňa vzťahy medzi dvoma objektmi alebo udalosťami za vlastnosti jedného z týchto objektov alebo udalostí (Hardcastle, 1995; Michell, 1999; Moyer, 1981a,b; Rogers, 1989).

Kanadský teoretik merania William Rozeboom (1966) bol skorým a ostrým kritikom Stevensovej teórie typov škál. Ale až oveľa neskôr v prácach matematických psychológov Theodora Alpera (1985, 1987), Louisa Narensa (1981a, b) a R. Duncana Lucea (1986, 1987, 2001) dostala koncepcia typov škál matematickú prísnosť, ktorá jej chýbala na začiatku. Ako Luce (1997, s. 395) otvorene uviedol:

Kategórie
Psychologický slovník

Dotazník šestnástich osobnostných faktorov

Dotazník šestnástich osobnostných faktorov (alebo 16PF) je osobnostný dotazník s viacerými možnosťami výberu, ktorý bol vedecky vyvinutý počas niekoľkých desaťročí výskumu Raymondom B. Cattellom a jeho kolegami. Od 40. rokov 20. storočia Cattell používal novo vznikajúce techniky faktorovej analýzy (založené na korelačnom koeficiente) v snahe pokúsiť sa odhaliť všetky základné rozmery ľudskej osobnosti. Takto bol empiricky vyvinutý dotazník 16PF, ktorý komplexne meral všetky základné črty normálnej osobnosti.

Okrem šestnástich základných čŕt títo výskumníci objavili aj päť čŕt „druhého rádu“ osobnosti, ktoré sú dnes známe ako Veľká päťka a ktoré sa nedávno stali populárnymi. Cattell už na začiatku svojho výskumu zistil, že štruktúra osobnosti je viacúrovňová alebo hierarchická, s vlastnosťami primárnej aj sekundárnej úrovne . Šestnásť primárnych faktorov bolo výsledkom faktorovej analýzy stoviek hodnotení každodenného správania s cieľom nájsť za nimi štruktúru. Ďalej bolo faktorovou analýzou šestnástich primárnych čŕt objavených päť globálnych faktorov (alebo faktorov druhého stupňa). 16PF teda poskytuje skóre globálnych čŕt druhého rádu, ktoré poskytujú prehľad o osobnosti na vyššej, širokej, koncepčnej úrovni, ako aj presnejšie primárne črty, ktoré odhaľujú jemné detaily každej jedinečnej osobnosti. Zoznam týchto vlastností nájdete v článku o modeli 16 faktorov osobnosti. Cattell tiež zistil, že existuje tretia úroveň organizácie osobnosti, ktorá obsahuje len dva zastrešujúce faktory najvyššej úrovne , ale definovaniu tejto najabstraktnejšej úrovne organizácie osobnosti venoval menej času.

Vzhľadom na svoj vedecký pôvod má 16PF dlhú históriu empirického výskumu a je zakotvená v Cattellovej komplexnej teórii individuálnych rozdielov. Šesťdesiat rokov výskumu testu ukázalo, že je účinný v rôznych prostrediach, kde je potrebné hĺbkové, integrované pochopenie celého človeka. Používa sa v školách a na vysokých školách, v klinických a poradenských zariadeniach, v kariérovom poradenstve a pri výbere a rozvoji zamestnancov, ako aj v základnom výskume osobnosti. Zistilo sa, že test predpovedá širokú škálu dôležitých správaní, ako sú tvorivosť, akademické výsledky, kognitívny štýl, empatia a medziľudské zručnosti, vodcovský potenciál, svedomitosť, sebaúcta, frustračná tolerancia, spôsoby zvládania, manželská kompatibilita a pracovný výkon . Tento test je široko používaný na medzinárodnej úrovni. Bol preložený a upravený do viac ako 35 jazykov a dialektov.

Cattell a jeho kolegovia tiež vyvinuli paralelné osobnostné dotazníky na meranie vlastností v rôznych vekových kategóriách, ako napríklad Dotazník osobnosti dospievajúceho vo veku 12 až 18 rokov. Pre personálne prostredie bola vyvinutá kratšia verzia, Dotazník 16PF Select . Cattell vyvinul aj merania schopností, napríklad tri škály testu inteligencie Culture-Fair a testy motivácie. Tieto testy sú k dispozícii na stránke IPAT.com.

Najnovšie vydanie Dotazníka šestnástich osobnostných faktorov (16PF) je piatym vydaním testu. Test bol pôvodne uverejnený v roku 1949; druhé a tretie vydanie boli uverejnené v roku 1956, resp. 1962; štvrté vydanie malo päť alternatívnych foriem, ktoré boli vydané v rokoch 1967 až 1969. Revízia piateho vydania bola zameraná na aktualizáciu, zlepšenie a zjednodušenie jazyka použitého v teste; zjednodušenie formátu odpovedí; vytvorenie nových indexov platnosti; zlepšenie psychometrických vlastností testu vrátane nových údajov o spoľahlivosti a platnosti; a vytvorenie novej štandardizačnej vzorky, ktorá odráža súčasnú populáciu USA pri sčítaní ľudu.

Piate vydanie 16PF pozostáva zo 185 položiek s výberom odpovede, ktoré sú napísané na úrovni piatej triedy. Obsah položiek nie je výhražný a kladú sa v nich jednoduché otázky o každodennom správaní, záujmoch a názoroch. Administrácia testu trvá približne 35 – 50 minút v prípade papierovej verzie a približne 30 minút prostredníctvom počítača. Keďže inštrukcie k testu sú jednoduché a priamočiare a test nie je časovo obmedzený, je prakticky samostatne vykonateľný a môže byť zadaný buď individuálne, alebo skupinovo.

Dotazník 16PF bol navrhnutý pre dospelých vo veku približne 16 rokov a viac, ale existujú paralelné testy pre rôzne mladšie vekové kategórie (napr. Dotazník osobnosti dospievajúceho 16PF). Test poskytuje skóre na šestnástich základných škálach (z ktorých jedna je krátka škála schopností), piatich globálnych škálach a troch škálach validity. Všetky osobnostné škály sú bipolárne, čo znamená, že oba konce každej škály majú jasnú, zmysluplnú definíciu.

Dotazník 16PF bol preložený do viac ako 35 jazykov a dialektov na celom svete. Test je teda možné administrovať v mnohých rôznych jazykoch, vyhodnotiť ho pomocou miestnej národnej normatívnej vzorky pre danú jazykovú skupinu a podať správu vo viac ako desiatich rôznych jazykoch. Test bol v týchto krajinách kultúrne prispôsobený, pričom normalizačné vzorky plus informácie o spoľahlivosti a platnosti boli zhromaždené na miestnej úrovni a uvedené v príručkách.

Kratšia verzia testu, 16PF Select (Cattell, Cattell, Cattell a Kelly, 1999), bola vyvinutá špeciálne na použitie pri výbere zamestnancov a zahŕňa podmnožinu položiek a škál v bežnom teste. 16PF Express (Gorsuch, 2007) poskytuje veľmi krátku, 15-minútovú verziu testu na výskumné účely, ktorá obsahuje približne štyri položky na faktor a odlišný formát odpovedí. Znaky 16PF sú zahrnuté aj v PsychEval Personality Questionnaire (PEPQ), ktorý spája merania normálnych aj abnormálnych dimenzií osobnosti do jedného testu (Cattell, Cattell, Cattell a Russell, 2003)

Kategórie
Psychologický slovník

Platnosť kritéria

Platné opatrenie skutočne meria to, čo sa v ňom uvádza. Aby bolo možné definovať opatrenie ako platné, je možné posúdiť rôzne typy platnosti. Typ posudzovanej validity merania závisí od toho, čo chce výskumník zistiť. Kriteriálna platnosť je jednou z metód posudzovania platnosti merania.

V psychometrii je kritériová validita mierou toho, ako dobre jedna premenná alebo súbor premenných predpovedá výsledok na základe informácií z iných premenných, a dosiahne sa, ak sa súbor meraní z osobnostného testu vzťahuje na kritérium správania, na ktorom sa psychológovia zhodnú. Typickým spôsobom, ako to dosiahnuť, je vo vzťahu k miere, do akej môže výsledok testu osobnosti predpovedať budúci výkon alebo správanie. Iný spôsob zahŕňa koreláciu výsledkov testu s iným zavedeným testom, ktorý tiež meria rovnakú osobnostnú charakteristiku.

Kriteriálna alebo konkrétna validita je miera, do akej sú opatrenia preukázateľne spojené s konkrétnymi kritériami v „reálnom“ svete. Tento typ validity sa často delí na „súbežnú“ a „prediktívnu“ podtyp. Pojem „súbežná platnosť“ je vyhradený pre preukázanie vzťahu opatrenia k iným konkrétnym kritériám posudzovaným súčasne. „Prediktívna platnosť“ sa vzťahuje na mieru, do akej môže akékoľvek meradlo predpovedať budúce alebo nezávislé minulé udalosti.
Tieto premenné sa často predstavujú ako „medziľahlé“ a „konečné“ kritériá. Povedzme napríklad, že vykonávame štúdiu o úspešnosti na vysokej škole. Ak zistíme, že existuje vysoká korelácia medzi známkami študentov na hodinách matematiky na strednej škole a ich úspechom na vysokej škole (ktorý možno merať mnohými možnými premennými), povedali by sme, že medzi medziľahlou premennou (známky na hodinách matematiky na strednej škole) a konečnou premennou (úspech na vysokej škole) existuje vysoká validita súvisiaca s kritériom. V podstate sa známky, ktoré študenti dostali z matematiky na strednej škole, dajú použiť na predpovedanie ich úspechu na vysokej škole.