Kategórie
Psychologický slovník

Vývoj neurónov

Vývoj nervovej sústavy zahŕňa procesy, ktoré vytvárajú, formujú a pretvárajú nervovú sústavu od najranejších štádií embryogenézy až po posledné roky života. Cieľom štúdia nervového vývoja je opísať bunkový základ vývoja mozgu a zaoberať sa základnými mechanizmami. Táto oblasť čerpá z neurovedy aj vývojovej biológie, aby poskytla pohľad na bunkové a molekulárne mechanizmy, pomocou ktorých sa vyvíjajú zložité nervové systémy. Defekty v nervovom vývoji môžu viesť ku kognitívnemu, motorickému a intelektuálnemu postihnutiu, ako aj k neurologickým poruchám, ako je autizmus, Rettov syndróm a mentálna retardácia.

Prehľad vývoja mozgu

Mozog vzniká počas embryonálneho vývoja z neurálnej trubice, čo je raná embryonálna štruktúra. Najprednejšia časť neurálnej trubice sa nazýva telencefalón, ktorý sa rýchlo rozširuje v dôsledku proliferácie buniek a nakoniec z neho vzniká mozog. Postupne sa niektoré bunky prestanú deliť a diferencujú sa na neuróny a gliové bunky, ktoré sú hlavnými bunkovými zložkami mozgu. Novovzniknuté neuróny migrujú do rôznych častí vyvíjajúceho sa mozgu a samoorganizujú sa do rôznych mozgových štruktúr. Keď neuróny dosiahnu svoje regionálne pozície, predlžujú axóny a dendrity, ktoré im umožňujú komunikovať s inými neurónmi prostredníctvom synapsií. Synaptická komunikácia medzi neurónmi vedie k vytvoreniu funkčných nervových obvodov, ktoré sprostredkúvajú senzorické a motorické procesy a sú základom správania.

Vysoko schematická schéma vývoja ľudského mozgu.

Aspekty nervového vývoja

Niektoré medzníky nervového vývoja zahŕňajú zrod a diferenciáciu neurónov z prekurzorov kmeňových buniek, migráciu nezrelých neurónov z miesta ich zrodu v embryu do ich konečnej polohy, vyrastanie axónov a dendritov z neurónov, vedenie pohyblivého rastového kužeľa embryom smerom k postsynaptickým partnerom, vytváranie synapsií medzi týmito axónmi a ich postsynaptickými partnermi a napokon celoživotné zmeny v synapsiách, ktoré sú považované za základ učenia a pamäti.

Vývojová neuroveda využíva rôzne živočíšne modely vrátane myší Mus musculus , ovocných mušiek Drosophila melanogaster , zebričiek Danio rerio , hlaváčov Xenopus laevis a červov Caenorhabditis elegans a ďalších.

Počas skorého embryonálneho vývoja sa ektoderma špecifikuje tak, aby dala vzniknúť epiderme (koži) a neurálnej platničke. Premena nediferencovaného ektodermu na neuroektoderm si vyžaduje signály z mezodermu. Na začiatku gastrulácie sa predpokladané mezodermálne bunky presúvajú cez dorzálny blastopór a vytvárajú vrstvu medzi endodermom a ektodermom. Tieto mezodermálne bunky, ktoré migrujú pozdĺž dorzálnej stredovej línie, dávajú vzniknúť štruktúre nazývanej notochord. Ektodermálne bunky prekrývajúce notochord sa vyvíjajú do neurálnej platničky ako odpoveď na difúzny signál produkovaný notochordom. Zo zvyšku ektodermy vzniká epiderma (koža). Schopnosť mezodermy premeniť nadložný ektoderm na nervové tkanivo sa nazýva neurálna indukcia.

Neurálna platnička sa v treťom týždni gravidity prehýba smerom von a vytvára neurálnu ryhu. Od budúcej oblasti krku sa neurálne záhyby tejto ryhy uzatvárajú a vytvárajú neurálnu trubicu. Tvorba neurálnej trubice z ektodermy sa nazýva neurulácia. Predná (predná) časť neurálnej trubice sa nazýva bazálna platnička; zadná (zadná) časť sa nazýva alárna platnička. Dutý vnútrajšok sa nazýva neurálny kanál. Koncom štvrtého týždňa tehotenstva sa otvorené konce neurálnej trubice (neuropóry) uzavrú.

Identifikácia nervových induktorov

Transplantovaný blastoporálny pysk môže premeniť ektoderm na nervové tkanivo a hovorí sa, že má indukčný účinok. Neurálne induktory sú molekuly, ktoré môžu indukovať expresiu neurálnych génov v explantátoch ektodermy bez toho, aby indukovali aj mezodermálne gény. Neurálna indukcia sa často študuje na embryách Xenopus, pretože majú jednoduchý telesný vzor a existujú dobré markery na rozlíšenie neurálneho a neurálneho tkaniva. Príkladom neurálnych induktorov sú molekuly Noggin a Chordin.

Keď sa embryonálne ektodermálne bunky kultivujú pri nízkej hustote v neprítomnosti mezodermálnych buniek, podliehajú neurálnej diferenciácii (exprimujú neurálne gény), čo naznačuje, že neurálna diferenciácia je predvoleným osudom ektodermálnych buniek. V explantátových kultúrach (ktoré umožňujú priame interakcie medzi bunkami) sa tie isté bunky diferencujú na epidermu. Je to spôsobené pôsobením BMP4 (proteínu rodiny TGF-β), ktorý indukuje diferenciáciu ektodermálnych kultúr na epidermis. Počas neurálnej indukcie sú Noggin a Chordin produkované dorzálnym mezodermom (notochordom) a difundujú do nadväzujúceho ektodermu, aby inhibovali aktivitu BMP4. Táto inhibícia BMP4 spôsobuje diferenciáciu buniek na neurálne bunky.

Koncom štvrtého týždňa sa horná časť neurálnej trubice ohýba na úrovni budúceho stredného mozgu – mezencefala. Nad mezencefalom je prosencefalon (budúci predný mozog) a pod ním je rombencefalon (budúci zadný mozog).

Optický mechúrik (ktorý sa nakoniec stane zrakovým nervom, sietnicou a dúhovkou) sa vytvára na bazálnej platničke prosencefala. Alárna platňa prosencefala sa rozširuje a vytvára mozgové hemisféry (telencefalon), zatiaľ čo jeho bazálna platňa sa stáva diencefalonom. Nakoniec sa optický mechúrik zväčší a vytvorí optický výrastok.

Vzorkovanie nervového systému

U chordátov tvorí dorzálny ektoderm celé nervové tkanivo a nervovú sústavu. K modelovaniu dochádza v dôsledku špecifických podmienok prostredia – rôznych koncentrácií signálnych molekúl

Ventrálnu polovicu neurálnej platničky ovláda notochord, ktorý funguje ako „organizátor“. Dorzálnu polovicu ovláda ektodermová platnička, ktorá lemuje neurálnu platničku z oboch strán.

Ektoderm sa štandardnou cestou stáva nervovým tkanivom. Dôkazom toho sú jednotlivé kultivované bunky ektodermy, z ktorých sa vytvorí nervové tkanivo. Predpokladá sa, že je to spôsobené nedostatkom BMP, ktoré sú blokované organizátorom. Organizátor môže produkovať molekuly ako follistatín, noggin a chordin, ktoré inhibujú BMP.

Ventrálna neurálna trubica je modelovaná Shh z notochordu, ktorý funguje ako indukčné tkanivo. Induktor Shh spôsobuje diferenciáciu podlahovej dosky. Shh-nulové tkanivo nedokáže vytvoriť všetky typy buniek ventrálnej trubice, čo naznačuje, že Shh je potrebný na jej indukciu. Predpokladaný mechanizmus naznačuje, že Shh viaže patch, čím zmierňuje inhibíciu patch hladkého konca, čo vedie k aktivácii transkripčných faktorov gli.

V tomto kontexte Shh pôsobí ako morfogén – indukuje diferenciáciu buniek v závislosti od svojej koncentrácie. Pri nízkych koncentráciách vytvára ventrálne interneuróny, pri vyšších koncentráciách indukuje vývoj motorických neurónov a pri najvyšších koncentráciách indukuje diferenciáciu dnových platničiek. Zlyhanie diferenciácie modulovanej Shh spôsobuje haloprosencefáliu.

Dorzálna neurálna trubica sa formuje pomocou BMP z epidermálneho ektodermu, ktorý obklopuje neurálnu platničku. Tie indukujú senzorické interneuróny aktiváciou Sr/Thr kináz a zmenou hladín transkripčných faktorov SMAD.

Dorzoventrálna indukcia ventrálneho tkaniva exprimuje charakteristické predné tkanivo. Diferenciáciu zadných tkanív riadia aj iné signály vrátane FGF a kyseliny retinovej.

Napríklad zadný mozog je modelovaný Hox génmi, ktoré sa exprimujú v prekrývajúcich sa oblastiach pozdĺž prednej a zadnej osi. 5′ gény v tomto zoskupení a exprimujú sa najviac vzadu. Hoxb-1 je exprimovaný v rhombomere 4 a dáva vznik tvárovému nervu. Bez expresie tohto Hoxb-1 vzniká nerv, ktorý je podobný trojklannému nervu.

Kortikogenéza: mladšie neuróny migrujú za staršími pomocou radiálnych glií ako lešenia. Cajalove-Retziove bunky (červené) uvoľňujú reelín (oranžový).

Migrácia neurónov je spôsob, akým sa neuróny presúvajú z miesta svojho vzniku alebo zrodu na konečné miesto v mozgu. Existuje niekoľko spôsobov, ako to môžu robiť, napr. radiálnou migráciou alebo tangenciálnou migráciou. (pozri časozberné sekvencie radiálnej migrácie (známej aj ako gliové vedenie) a somálnej translokácie).

Tangenciálna migrácia interneurónov z gangliovej eminencie.

Radiálna migrácia
Neuronálne prekurzorové bunky sa množia vo ventrikulárnej zóne vyvíjajúceho sa neokortexu. Prvé postmitotické bunky, ktoré migrujú, tvoria preplát, ktorý je určený na to, aby sa stal Cajal-Retziovými bunkami a subplátovými neurónmi. Tieto bunky tak robia somálnou translokáciou. Neuróny migrujúce týmto spôsobom lokomócie sú bipolárne a pripájajú sa predným okrajom procesu k pia. Soma sa potom transportuje na povrch pionu nukleokinézou, čo je proces, pri ktorom sa mikrotubulárna „klietka“ okolo jadra predlžuje a kontrahuje v spojení s centrozómom, aby viedla jadro na konečné miesto určenia. Radiálna glia, ktorej vlákna slúžia ako lešenie pre migrujúce bunky, sa môže sama deliť alebo premiestniť na kortikálnu platničku a diferencovať sa buď na astrocyty, alebo na neuróny. K somálnej translokácii môže dôjsť kedykoľvek počas vývoja.

Následné vlny neurónov rozdeľujú preplatňu migráciou pozdĺž radiálnych gliových vlákien a vytvárajú kortikálnu platňu. Každá vlna migrujúcich buniek sa pohybuje okolo svojich predchodcov a vytvára vrstvy smerom dovnútra, čo znamená, že najmladšie neuróny sú najbližšie k povrchu. Odhaduje sa, že migrácia vedená gliou predstavuje 90 % migrujúcich neurónov u ľudí a približne 75 % u hlodavcov.

Tangenciálna migrácia
Väčšina interneurónov migruje tangenciálne prostredníctvom viacerých spôsobov migrácie, aby sa dostali na príslušné miesto v kôre. Príkladom tangenciálnej migrácie je pohyb interneurónov z gangliovej eminencie do mozgovej kôry. Jedným z príkladov prebiehajúcej tangenciálnej migrácie v zrelom organizme, pozorovanej u niektorých zvierat, je rostrálny migračný prúd spájajúci subventrikulárnu zónu a čuchový bulbus.

Iné spôsoby migrácie
Existuje aj spôsob migrácie neurónov nazývaný multipolárna migrácia. Tá sa prejavuje v multipolárnych bunkách, ktoré sú hojne zastúpené v kortikálnej intermediálnej zóne. Nepodobajú sa na bunky migrujúce lokomóciou alebo somálnou translokáciou. Namiesto toho tieto multipolárne bunky exprimujú neuronálne markery a vysúvajú početné tenké výbežky rôznymi smermi nezávisle od radiálnych gliových vlákien.

Nervový rastový faktor (NGF): Rita Levi Montalcini a Stanley Cohen purifikovali prvý trofický faktor, nervový rastový faktor (NGF), za čo dostali Nobelovu cenu. Existujú tri trofické faktory súvisiace s NGF: BDNF, NT3 a NT4, ktoré regulujú prežívanie rôznych populácií neurónov. Proteíny Trk fungujú ako receptory pre NGF a príbuzné faktory. Trk je receptorová tyrozínkináza. Dimerizácia a fosforylácia Trk vedie k aktivácii rôznych vnútrobunkových signálnych dráh vrátane dráh MAP kinázy, Akt a PKC.

CNTF: Ciliárny neurotrofický faktor je ďalší proteín, ktorý pôsobí ako faktor prežitia motorických neurónov. CNTF pôsobí prostredníctvom receptorového komplexu, ktorý zahŕňa CNTFRα, GP130 a LIFRβ. Aktivácia receptora vedie k fosforylácii a náboru kinázy JAK, ktorá následne fosforyluje LIFRβ. LIFRβ pôsobí ako dokovacie miesto pre transkripčné faktory STAT. Kináza JAK fosforyluje proteíny STAT, ktoré sa oddeľujú od receptora a premiestňujú sa do jadra, aby regulovali expresiu génov.

GDNF: Gliálny neurotrofický faktor je členom rodiny proteínov TGFb a je silným trofickým faktorom pre striatálne neuróny. Funkčný receptor je heterodimér, ktorý sa skladá z receptorov typu 1 a typu 2. Aktivácia receptora typu 1 vedie k fosforylácii proteínov Smad, ktoré sa premiestňujú do jadra a aktivujú expresiu génov.

Neuromuskulárne spojenie
Veľká časť našich poznatkov o tvorbe synapsií pochádza zo štúdií na neuromuskulárnom spojení. Vysielačom v tejto synapsii je acetylcholín. Acetylcholínový receptor (AchR) je prítomný na povrchu svalových buniek pred vytvorením synapsy. Príchod nervu vyvolá zoskupenie receptorov v synapsii. McMahan a Sanes ukázali, že synaptogénny signál sa sústreďuje na bazálnej lamine. Ukázali tiež, že synaptogénny signál je produkovaný nervom, a tento faktor identifikovali ako agrín. Agrin vyvoláva zoskupenie AchRs na povrchu svalu a u myší s knockoutom agrinu je narušená tvorba synapsií. Agrin prenáša signál cez receptor MuSK na rapsyn. Fischbach a jeho kolegovia ukázali, že receptorové podjednotky sa selektívne prepisujú z jadier vedľa miesta synaptického výskytu. Je to sprostredkované neuregulínmi.

V zrelej synapsii je každé svalové vlákno inervované jedným motorickým neurónom. Počas vývoja sú však mnohé vlákna inervované viacerými axónmi. Lichtman a jeho kolegovia skúmali proces eliminácie synapsií. Ide o udalosť závislú od aktivity. Čiastočné zablokovanie receptora vedie k stiahnutiu príslušných presynaptických terminálov.

synapsie CNS
Agrín zrejme nie je centrálnym mediátorom tvorby synapsií CNS a o identifikáciu signálov, ktoré sprostredkúvajú synaptogenézu CNS, je aktívny záujem. Na neurónoch v kultúre sa vytvárajú synapsie, ktoré sú podobné tým, ktoré sa tvoria in vivo, čo naznačuje, že synaptogénne signály môžu správne fungovať in vitro. Štúdie synaptogenézy CNS sa zameriavajú najmä na glutamátergické synapsie. Zobrazovacie experimenty ukazujú, že dendrity sú počas vývoja veľmi dynamické a často iniciujú kontakt s axónmi. Nasleduje nábor postsynaptických proteínov do miesta kontaktu. Stephen Smith a jeho kolegovia ukázali, že kontakt iniciovaný dendritickými filopódiami sa môže vyvinúť do synapsií.

Indukcia tvorby synáps gliovými faktormi: Barres a jeho kolegovia zistili, že faktory v gliových podmienených médiách indukujú tvorbu synapsií v kultúrach gangliových buniek sietnice. Tvorba synapsií v CNS súvisí s diferenciáciou astrocytov, čo naznačuje, že astrocyty môžu poskytovať synaptogénny faktor. Identita astrocytárnych faktorov zatiaľ nie je známa.

Neuroligíny a SynCAM ako synaptogénne signály: Sudhof, Serafini, Scheiffele a ich kolegovia preukázali, že neuroligíny a SynCAM môžu pôsobiť ako faktory, ktoré indukujú presynaptickú diferenciáciu. Neuroligíny sú koncentrované v postsynaptickom mieste a pôsobia prostredníctvom neurexínov koncentrovaných v presynaptických axónoch. SynCAM je adhezívna bunková molekula, ktorá je prítomná v pre- aj postsynaptických membránach.

O každú nervovosvalovú križovatku súperí niekoľko motorneurónov, ale len jeden prežije do dospelosti. Ukázalo sa, že konkurencia in vitro zahŕňa obmedzenú neurotrofickú látku, ktorá sa uvoľňuje, alebo že nervová aktivita dáva výhodu silným postsynaptickým spojeniam tým, že dáva odolnosť toxínu, ktorý sa tiež uvoľňuje pri nervovej stimulácii. In vivo sa predpokladá, že svalové vlákna si vyberajú najsilnejší neurón prostredníctvom spätného signálu.

Vývoj neurónov/neurulácia – Neurula – Neurálne záhyby – Neurálna ryha – Neurálna trubica – Neurálny hrebeň – Neuroméra (Rhomboméra) – Notochord – Neurálna platnička

Vývoj oka – Zrakové mechúriky – Zraková stopka – Zrakový pohárik – Sluchový mechúrik – Sluchová jamka

Kategórie
Psychologický slovník

Metylfenyltetrahydropyridín

MPTP (1-metyl-4-fenyl-1,2,3,6-tetrahydropyridín) je neurotoxín, ktorý spôsobuje trvalé príznaky Parkinsonovej choroby tým, že ničí určité neuróny v substantia nigra mozgu. Používa sa na štúdium tejto choroby u opíc.

Hoci MPTP sám o sebe nemá opioidné účinky, je príbuzný MPPP, syntetickej opioidnej droge s účinkami podobnými účinkom heroínu a morfínu. MPTP sa môže náhodne vyrobiť pri nelegálnej výrobe MPPP, a tak sa prvýkrát zistili jeho účinky vyvolávajúce Parkinsona.

Injekcia MPTP spôsobuje rýchly nástup parkinsonizmu, preto sa u užívateľov MPPP kontaminovaného MPTP vyvinú tieto príznaky.

MPTP sám o sebe nie je toxický a ako lipofilná zlúčenina môže prechádzať cez hematoencefalickú bariéru. Po vstupe do mozgu sa MPTP metabolizuje na toxický katión 1-metyl-4-fenylpyridínium (MPP+) pomocou enzýmu MAO-B gliových buniek. MPP+ zabíja predovšetkým neuróny produkujúce dopamín v časti mozgu nazývanej pars compacta substantia nigra. MPP+ zasahuje do komplexu I elektrónového transportného reťazca, ktorý je súčasťou mitochondriálneho metabolizmu, čo vedie k bunkovej smrti a spôsobuje hromadenie voľných radikálov, toxických molekúl, ktoré ďalej prispievajú k ničeniu buniek.

Keďže samotný MPTP nie je priamo škodlivý, toxické účinky akútnej otravy MPTP možno zmierniť podávaním inhibítorov monoaminooxidázy (MAOI), ako je selegilín. MAOI zabraňujú metabolizmu MPTP na MPP+ tým, že inhibujú účinok MAO-B, čím minimalizujú toxicitu a zabraňujú nervovej smrti.

MPTP má pomerne selektívne schopnosti spôsobovať smrť neurónov v dopaminergných bunkách, zrejme prostredníctvom procesu vychytávania s vysokou afinitou v nervových zakončeniach, ktoré sa zvyčajne používajú na spätné vychytávanie dopamínu po jeho uvoľnení do synaptickej štrbiny. Dopamínový transportér premiestňuje MPP+ dovnútra bunky.

Výsledné hrubé vyčerpanie dopaminergných neurónov má závažné dôsledky na kortikálnu kontrolu komplexných pohybov. Smer komplexných pohybov vychádza zo substantia nigra do putamen a kaudátového jadra, ktoré potom prenášajú signály do zvyšku mozgu. Táto dráha je riadená prostredníctvom neurónov využívajúcich dopamín, ktoré MPTP selektívne ničí, čo časom vedie k parkinsonizmu.

MPTP spôsobuje parkinsonizmus u primátov vrátane ľudí. Hlodavce sú oveľa menej náchylné. Potkany sú voči nepriaznivým účinkom MPTP takmer imúnne. Myši trpia odumieraním buniek v substantia nigra (v rôznej miere podľa použitého kmeňa myší), ale nevykazujú parkinsonské príznaky. Predpokladá sa, že za to môže byť zodpovedná nižšia hladina MAO B v kapilárach mozgu hlodavcov.

Zistenie u užívateľov nelegálnych drog

Neurotoxicita MPTP bola naznačená v roku 1976 po tom, čo Barry Kidston, 23-ročný absolvent chémie v Marylande, nesprávne syntetizoval MPPP a výsledok si vstrekol. Bol kontaminovaný MPTP a do troch dní sa u neho začali prejavovať príznaky Parkinsonovej choroby. Národný inštitút duševného zdravia našiel v jeho laboratóriu stopy MPTP a iných analógov meperidínu. Látky testovali na potkanoch, ale vzhľadom na toleranciu hlodavcov na tento typ neurotoxínu sa nič nezistilo. Kidstonov parkinsonizmus bol úspešne liečený levo-dopou, ale o 18 mesiacov neskôr zomrel na predávkovanie kokaínom. Pri pitve sa zistila deštrukcia dopamínových neurónov v substantia nigra.

V roku 1982 bol v okrese Santa Clara v Kalifornii diagnostikovaný parkinsonizmus u siedmich ľudí po použití MPPP kontaminovaného MPTP. Neurológ J. William Langston v spolupráci s NIH vypátral príčinu vzniku MPTP a skúmal jeho účinky na primátoch. Nakoniec sa motorické symptómy dvoch zo siedmich pacientov úspešne liečili v Lundskej univerzitnej nemocnici vo Švédsku pomocou neurálnych transplantátov kmeňových buniek z potratených ľudských plodov.

Langston tento prípad zdokumentoval vo svojej knihe The Case of the Frozen Addicts (1995, ISBN 0-679-42465-2), ktorú neskôr uviedla televízia PBS v dvoch reláciách NOVA.

Prínos MPTP k výskumu Parkinsonovej choroby

Langston et al.(1984)
zistili, že injekcie MPTP opiciam veveričkám viedli k parkinsonizmu, ktorého príznaky sa následne znížili pomocou levo-dopy, prekurzora neurotransmitera dopamínu, ktorý je v súčasnosti liekom voľby pri liečbe Parkinsonovej choroby. Príznaky a mozgové štruktúry Parkinsonovej choroby vyvolanej MPTP sú pomerne nerozoznateľné do tej miery, že MPTP možno použiť na simuláciu choroby s cieľom študovať fyziológiu Parkinsonovej choroby a možné spôsoby liečby v laboratóriu. Štúdie na myšiach ukázali, že citlivosť na MPTP sa zvyšuje s vekom.

Poznatky o MPTP a jeho použití pri spoľahlivej rekonštrukcii Parkinsonovej choroby v experimentálnych modeloch inšpirovali vedcov k skúmaniu možností chirurgického nahradenia straty neurónov prostredníctvom implantátov fetálneho tkaniva, subtalamickej elektrickej stimulácie a výskumu kmeňových buniek, ktoré preukázali prvé, predbežné úspechy.

Predpokladá sa, že Parkinsonovu chorobu môžu spôsobovať nepatrné množstvá zlúčenín podobných MPP+ z požitia alebo exogénne prostredníctvom opakovanej expozície a že tieto látky sú príliš nepatrné na to, aby sa dali významne zistiť epidemiologickými štúdiami.

V roku 2000 bol objavený ďalší zvierací model Parkinsonovej choroby. Ukázalo sa, že pesticíd a insekticíd rotenón spôsobuje parkinsonizmus u potkanov tým, že ničí dopaminergné neuróny v substantia nigra. Podobne ako MPP+, aj rotenón zasahuje do komplexu I elektrónového transportného reťazca.

MPTP bol prvýkrát syntetizovaný ako analgetikum v roku 1947 Zieringom a spol. Môže vzniknúť zmiešaním formaldehydu, metylamínu a alfa-metylstyrénu.
Testoval sa ako liek na rôzne ochorenia, ale testy sa zastavili, keď sa u opíc objavili príznaky podobné Parkinsonovej chorobe. Pri jednom testovaní látky zomreli dvaja zo šiestich ľudských subjektov.

Kategórie
Psychologický slovník

Putamen

Putamen je okrúhla štruktúra nachádzajúca sa na báze predného mozgu (telencefala). Putamen a kaudátové jadro spolu tvoria dorzálne striatum. Je tiež jednou zo štruktúr bazálnych ganglií. Prostredníctvom rôznych dráh je prepojené najmä so substantia nigra a globus pallidus. Hlavnou funkciou putamen je regulácia pohybov a ovplyvňovanie rôznych typov učenia. Na plnenie svojich funkcií využíva dopamínové mechanizmy. Putamen zohráva úlohu aj pri degeneratívnych neurologických poruchách, ako je Parkinsonova choroba.

Slovo „putamen“ pochádza z latinčiny a označuje to, čo odpadáva pri prerezávaní, od „puto“, prerezávať. Vyslovuje sa pyu-ta´men.

V minulosti sa uskutočnilo len veľmi málo štúdií, ktoré sa zameriavali konkrétne na putamen. Bolo však vykonaných mnoho štúdií o bazálnych gangliách a o tom, ako na seba navzájom pôsobia mozgové štruktúry, ktoré ich tvoria. V 70. rokoch minulého storočia sa uskutočnili prvé záznamy jednotlivých jednotiek na opiciach, ktoré sledovali aktivitu pallidálnych neurónov súvisiacu s pohybom.

Putamen je štruktúra v prednom mozgu a spolu s kaudátovým jadrom tvorí dorzálne striatum. Kaudát a putamen obsahujú rovnaké typy neurónov a okruhov – mnohí neuroanatómovia považujú dorzálne striatum za jednu štruktúru, rozdelenú na dve časti veľkým vláknovým traktom, vnútornou kapsulou, ktorá prechádza stredom. Spolu s globus pallidus tvorí šošovkovité jadro. Putamen je tiež najvzdialenejšou časťou bazálnych ganglií. Ide o skupinu jadier v mozgu, ktoré sú prepojené s mozgovou kôrou, talamom a mozgovým kmeňom. Medzi ďalšie časti bazálnych ganglií patrí dorzálne striatum, substantia nigra, nucleus accumbens a subtalamické jadro. Bazálne gangliá u cicavcov súvisia s motorickou kontrolou, poznávaním, emóciami a učením. Bazálne gangliá sa nachádzajú na ľavej a pravej strane mozgu a majú rostrálne a kaudálne delenie. Putmen sa nachádza v rostrálnom delení ako súčasť striata. Bazálne gangliá dostávajú vstupy z mozgovej kôry prostredníctvom striata.

Kaudát spolupracuje s putamen a prijíma vstupné informácie z mozgovej kôry. Možno ich považovať za „vstup“ do bazálnych ganglií. Nucleus accumbens a mediálny kaudát prijímajú vstupy z frontálnej kôry a limbických oblastí. Putamen a caudate sú spoločne prepojené so substantia nigra, ale väčšina ich výstupu smeruje do globus pallidus.

Substantia nigra obsahuje dve časti: substantia nigra pars compacta (SNpc) a substantia nigra pars reticulata (SNpr). SNpc získava vstupné informácie z putamen a kaudátu a posiela ich späť. SNpr tiež získava vstupné informácie z putamen a caudate. Vstupné údaje však posiela mimo bazálnych ganglií na riadenie pohybov hlavy a očí. SNpc produkuje dopamín, ktorý je kľúčový pre pohyby. SNpc je časť, ktorá degeneruje počas Parkinsonovej choroby1.

Globus pallidus obsahuje dve časti: globus pallidus externa (GPe) a globus pallidus interna (GPi). Obe oblasti získavajú vstupné informácie z putamenu a kaudátu a komunikujú so subtalamickým jadrom. Väčšinou však GPi vysiela inhibičný výstup z bazálnych ganglií do talamu. GPi vysiela aj niekoľko projekcií do častí stredného mozgu, o ktorých sa predpokladá, že ovplyvňujú kontrolu postoja1.

Aby putamen mohol riadiť pohyby, musí spolupracovať s ostatnými štruktúrami, ktoré spolu s ním tvoria bazálne gangliá. Medzi ne patrí kaudátové jadro a globus pallidus. Tieto dve štruktúry a putamen na seba vzájomne pôsobia prostredníctvom série priamych a nepriamych inhibičných dráh. Priama dráha pozostáva z dvoch inhibičných dráh, ktoré vedú z putamen do substantia nigra a vnútorného globus pallidus. Táto dráha využíva neurotransmitery dopamín, GABA a substanciu P. Nepriama dráha pozostáva z troch inhibičných dráh, ktoré idú z putamen a caudate nucleus do vonkajšej oblasti globus pallidus. Táto dráha využíva dopamín, GABA a enkefalín. Keď dôjde k vzájomnému ovplyvňovaniu a prepletaniu týchto dvoch typov dráh, dochádza k mimovoľným pohybom.

Jedným z hlavných neurotransmiterov, ktoré putamen reguluje, je dopamín. Keď bunkové telo vystrelí akčný potenciál, z presynaptických terminálov putamenu a kaudátového jadra sa uvoľní dopamín. Keďže projekcie z putamen a kaudátového jadra modulujú dendrity substantia nigra, dopamín ovplyvňuje substantia nigra, čo má vplyv na motorické plánovanie. Rovnaký mechanizmus sa podieľa na vzniku závislosti. S cieľom kontrolovať množstvo dopamínu v synaptickej medzere a množstvo dopamínu viažuceho sa na postsynaptické terminály dopaminergné terminály vychytávajú prebytočný dopamín.

Putamen zohráva úlohu aj pri regulácii iných neurotransmiterov. Uvoľňuje GABA, enkefalín, substanciu P, acetylcholín a prijíma serotonín a glutamát. Väčšina týchto neurotransmiterov zohráva úlohu pri kontrole motoriky2.

Hoci putamen má mnoho funkcií, dospelo sa k záveru, že nemá žiadnu špecifickú špecializáciu. Keďže je však putamen prepojený s mnohými ďalšími štruktúrami, funguje v spojení s nimi pri riadení mnohých typov motorických zručností. Patrí medzi ne kontrola motorického učenia, motorického výkonu a úloh3 , motorickej prípravy4 , špecifikácia amplitúd pohybu5 a pohybových sekvencií6. Niektorí neurológovia predpokladajú, že putamen zohráva úlohu aj pri výbere pohybu (ako pri Tourettovom syndróme) a automatickom vykonávaní predtým naučených pohybov (ako pri Parkinsonovej chorobe)7.

V jednej štúdii sa zistilo, že putamen riadi pohyb končatín. Cieľom tejto štúdie bolo zistiť, či konkrétna aktivita buniek v putamene primátov súvisí so smerom pohybu končatín alebo so základným vzorom svalovej aktivity. Dve opice boli trénované na vykonávanie úloh, ktoré zahŕňali pohyb bremien. Úlohy boli vytvorené tak, aby bolo možné odlíšiť pohyb od svalovej aktivity. Neuróny v putamene boli vybrané na monitorovanie len vtedy, ak súviseli s úlohou aj s pohybmi ruky mimo úlohy. Ukázalo sa, že 50 % monitorovaných neurónov súviselo so smerom pohybu nezávisle od záťaže8.

Ďalšia štúdia bola zameraná na skúmanie rozsahu a rýchlosti pohybu pomocou PET mapovania regionálneho mozgového prietoku krvi u 13 ľudí. Pohybové úlohy sa vykonávali pomocou kurzora ovládaného joystickom. Vykonali sa štatistické testy na výpočet rozsahu pohybov a toho, s akými oblasťami mozgu korešpondujú. Zistilo sa, že „zvyšujúci sa rozsah pohybu bol spojený s paralelným zvýšením rCBF v bilaterálnych bazálnych gangliách (BG; putamen a globus pallidus) a ipsilaterálnom mozočku“. To dokazuje nielen to, že putamen ovplyvňuje pohyb, ale aj to, že sa integruje s inými štruktúrami s cieľom vykonávať úlohy9.

Jedna štúdia bola vykonaná s cieľom konkrétne preskúmať, ako bazálne gangliá ovplyvňujú učenie sekvenčných pohybov. Dve opice boli naučené stláčať sériu tlačidiel v sekvencii. Použité metódy boli navrhnuté tak, aby bolo možné sledovať dobre naučené úlohy a nové úlohy. Muscimol sa vstrekoval do rôznych častí bazálnych ganglií a zistilo sa, že „učenie nových sekvencií sa stalo nedostatočným po injekciách do predného kaudátu a putamenu, ale nie do stredného zadného putamenu“. To ukazuje, že pri vykonávaní rôznych aspektov učenia sa sekvenčných pohybov sa využívajú rôzne oblasti striata10.

V mnohých štúdiách sa ukázalo, že putamen zohráva úlohu v mnohých typoch učenia. Niektoré príklady sú uvedené nižšie:

Posilňovanie a implicitné učenie

Popri rôznych typoch pohybu putamen ovplyvňuje aj učenie posilňovaním a implicitné učenie11. Posilňovacie učenie je interakcia s prostredím a stravovacie činnosti s cieľom maximalizovať výsledok. Implicitné učenie je pasívny proces, pri ktorom sú ľudia vystavení informáciám a získavajú vedomosti prostredníctvom expozície. Hoci presné mechanizmy nie sú známe, je jasné, že kľúčovú úlohu tu zohráva dopamín a tonicky aktívne neuróny. Tonicky aktívne neuróny sú cholinergné interneuróny, ktoré horia počas celého trvania podnetu a horia rýchlosťou približne 0,5 – 3 impulzy za sekundu. Tonicky aktívne neuróny sú opakom a vystrelia akčný potenciál len vtedy, keď dôjde k pohybu12.

V experimente bolo použitých sedem účastníkov s léziou bazálnych ganglií a deväť kontrolných účastníkov. Je dôležité poznamenať, že kaudát nebol postihnutý. Účastníci boli testovaní na každý typ učenia počas samostatných sedení, aby sa informačné procesy navzájom nerušili. Počas každého sedenia účastníci sedeli pred počítačovou obrazovkou a zobrazovali sa rôzne riadky. Tieto riadky boli vytvorené pomocou techniky náhodného výberu, pri ktorej sa náhodné vzorky vyberali z jednej zo štyroch kategórií. Pri testovaní na základe pravidiel sa tieto vzorky použili na vytvorenie čiar rôznej dĺžky a orientácie, ktoré patrili do týchto štyroch samostatných kategórií. Po zobrazení podnetu boli pokusné osoby požiadané, aby stlačili 1 zo 4 tlačidiel a označili, do ktorej kategórie daná čiara patrí. Rovnaký postup sa zopakoval pri úlohách zameraných na integráciu informácií a použili sa rovnaké podnety, len hranice kategórií boli otočené o 45°. Toto otočenie spôsobilo, že subjekt musel integrovať kvantitatívne informácie o čiare predtým, ako určil, do ktorej kategórie patrí.

Zistilo sa, že subjekty v experimentálnej skupine boli oslabené pri vykonávaní úloh založených na pravidlách, ale nie na integrácii informácií. Po štatistickom testovaní sa tiež predpokladalo, že mozog začal používať informačno-integračné techniky na riešenie úloh založených na pravidlách. Keďže úlohy založené na pravidlách využívajú systém testovania hypotéz v mozgu, možno konštatovať, že systém testovania hypotéz v mozgu bol poškodený/oslabený. Je známe, že kaudát a pracovné pamäte sú súčasťou tohto systému. Preto sa potvrdilo, že putamen je zapojený do kategórie učenia, súťaže medzi systémami, spätného spracovania v úlohách založených na pravidlách a podieľa sa na spracovaní prefrontálnych oblastí (ktoré súvisia s pracovnou pamäťou a výkonnými funkciami). Teraz je známe, že nielen bazálne gangliá a kaudát ovplyvňujú učenie sa kategórií13.

Nedávne predbežné štúdie naznačujú, že putamen môže zohrávať úlohu v „okruhu nenávisti“ mozgu. Nedávnu štúdiu uskutočnila londýnska katedra bunkovej a vývojovej biológie na University College London. Na pacientoch sa robila fMRI, pričom si pozerali obrázok ľudí, ktorých nenávideli, a ľudí, ktorí boli „neutrálni“. Počas experimentu sa pri všetkých obrázkoch zaznamenávalo skóre nenávisti. Aktivita v podkôrových oblastiach mozgu naznačuje, že okruh nenávisti zahŕňa putamen a insula. Predpokladá sa, že „putamen zohráva úlohu pri vnímaní pohŕdania a znechutenia a môže byť súčasťou motorického systému, ktorý je mobilizovaný na konanie.“ Títo vedci tiež zistili, že množstvo aktivity v okruhu nenávisti koreluje s množstvom nenávisti, ktorú človek deklaruje, čo by mohlo mať právne dôsledky týkajúce sa zlomyseľných trestných činov14.

Po objavení funkcie putamen sa neurológovia presvedčili, že putamen a bazálne gangliá zohrávajú dôležitú úlohu pri Parkinsonovej chorobe a iných ochoreniach, ktoré zahŕňajú degeneráciu neurónov15. Parkinsonova choroba je pomalá a trvalá strata dopaminergných neurónov v substantia nigra pars compacta. Pri Parkinsonovej chorobe hrá putamen kľúčovú úlohu, pretože jeho vstupy a výstupy sú prepojené so substantia nigra a globus pallidus. Pri Parkinsonovej chorobe sa znižuje aktivita v priamych dráhach do vnútorného globus pallidus a zvyšuje sa aktivita v nepriamych dráhach do vonkajšieho globus pallidus. Tieto činnosti spoločne spôsobujú nadmernú inhibíciu talamu. To je dôvod, prečo majú pacienti s Parkinsonovou chorobou tras a problémy s vykonávaním mimovoľných pohybov. Tiež sa zistilo, že pacienti s Parkinsonovou chorobou majú problémy s motorickým plánovaním. Musia myslieť na všetko, čo robia, a nedokážu vykonávať inštinktívne úlohy bez toho, aby sa sústredili na to, čo robia.

Iné choroby a poruchy

Putamen u iných živočíchov

Putamen u ľudí má podobnú štruktúru a funkciu ako u iných zvierat. Preto bolo vykonaných mnoho štúdií týkajúcich sa putamen na zvieratách (opice, potkany atď.), ako aj na ľuďoch.

1Alexander GE, Crutcher MD. Funkčná architektúra obvodov bazálnych ganglií: nervové substráty paralelného spracovania. Trends Neurosci. 1990 Jul;13(7):266-71. Recenzia.

2Crutcher, Michael D.Telefonický rozhovor. 19. novembra 2008.

3DeLong MR, Alexander GE, Georgopoulos AP, Crutcher MD, Mitchell SJ, Richardson RT. Úloha bazálnych ganglií pri pohyboch končatín. Hum Neurobiol. 1984;2(4):235-44.

4Alexander GE, Crutcher MD. Príprava na pohyb: nervové reprezentácie zamýšľaného smeru v troch motorických oblastiach opice. J Neurophysiol. 1990 Jul;64(1):133-50.

5Delong MR, Georgopoulos AP, Crutcher MD, Mitchell SJ, Richardson RT, Alexander GE. Funkčná organizácia bazálnych ganglií: prínos štúdií záznamu jednej bunky. Ciba Found Symp. 1984;107:64-82.

6Marchand, William R. a c d; Lee, James N. a c d; Thatcher, John W. b c; Hsu, Edward W. a c d; Rashkin, Esther c; Suchy, Yana c d; Chelune, Gordon c d; Starr, Jennifer a c; Barbera, Sharon Steadman c. Putamen coactivation during motor task execution. Neuroreport. 19(9):957-960, 11. júna 2008.

7Griffiths P. D.; Perry R. H.; Crossman A. R. Podrobná anatomická analýza neurotransmiterových receptorov v putamene a kaudáte pri Parkinsonovej a Alzheimerovej chorobe. Neuroscience Letters [0304-3940] GRIFFITHS yr:1994 vol:169 iss:1-2 pg:68

8Crutcher MD, DeLong MR. Štúdie jednotlivých buniek putamen primátov. II. Vzťahy k smeru pohybu a vzorcom svalovej aktivity. Exp Brain Res. 1984;53(2):244-58.

9Turner RS, Desmurget M, Grethe J, Crutcher MD, Grafton ST. Motorické podokruhy sprostredkujúce kontrolu rozsahu a rýchlosti pohybu. J Neurophysiol. 2003 Dec;90(6):3958-66. Epub 2003 Sep 3.

10Shigehiro Miyachi, Okihide Hikosaka, Kae Miyashita, Zoltán Kárádi, Miya Kato Rand. Diferenciálne úlohy opičieho striata pri učení sa sekvenčného pohybu ruky. Exp Brain Res (1997) 115:1-5.

11Mark G. Packard a ¬ Barbara J. Knowlton. Učenie a pamäťové funkcie bazálnych ganglií. Annual Review of Neuroscience. Roč. 25: 563-593, marec 2002.

12Hiroshi Yamada, Naoyuki Matsumoto a Minoru Kimura. Tonicky aktívne neuróny v Caudate Nucleus a Putamen primátov diferencovane kódujú motivačné výsledky konania. Journal of Neuroscience, 7. apríla 2004, 24(14):3500-3510.

13Ell SW, Marchant NL, Ivry RB. 2006. Fokálne lézie putamenu zhoršujú učenie v úlohách kategorizácie založených na pravidlách, ale nie na integrácii informácií. Neuropsychologia 44:1737-51

14Zeki S, Romaya JP. Neural Correlates of Hate. PLoS ONE 3(10): e3556. 29. októbra 2008.

15DeLong MR, Wichmann T. Obvody a poruchy obvodov bazálnych ganglií. Arch Neurol. 2007 Jan;64(1):20-4. Recenzia.

16de Jong LW, van der Hiele K, Veer IM, Houwing JJ, Westendorp RG, Bollen EL, de Bruin PW, Middelkoop HA, van Buchem MA, van der Grond J. Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study (Silne znížené objemy putamen a talamu pri Alzheimerovej chorobe: štúdia MRI). Brain (20. novembra 2008), awn278.

striatum: Putamen – Caudate nucleus

lentiformné jadro: Putamen – Globus pallidus (GPe, GPi)

Nucleus accumbens – Čuchový tuberkulus – Ostrovy Calleja

Vnútorné puzdro (predná končatina – Genu – zadná končatina, optické žiarenie)

Corona radiata – Vonkajšie kapsule – Extrémne kapsule

Pallidotalamické dráhy: Subtalamický fascikulus (Ansa lentikulis, Lenticular fasciculus) – Subtalamický fascikulus

Predné čuchové jadro – Predná perforovaná substancia – Čuchový bulbus

Čuchový trakt (mediálny čuchový pruh, laterálny čuchový pruh) – čuchový trigon

Substantia innominata (Bazálne optické jadro Meynertovo) – Jadro diagonálneho pásu

Diagonálny pás Broca – Stria terminalis

Vlastný hipokampus: CA1 – CA2 -CA3 – CA4

Zubatý gyrus: Zubatý pás

Alveus – Fimbria – Perforačná dráha – Schafferova kolaterála

anat (n/s/m/p/4/e/b/d/c/a/f/l/g)/phys/devp

noco (m/d/e/h/v/s)/cong/tumr, sysi/epon, injr

percent, iné (N1A/2AB/C/3/4/7A/B/C/D)

Kategórie
Psychologický slovník

Úloha hipokampu v pamäti

Kresba nervového obvodu hipokampu hlodavcov. S. Ramón y Cajal, 1911.

Psychológovia a neurológovia sa sporia o presnú úlohu hipokampu, ale vo všeobecnosti sa zhodujú, že má zásadnú úlohu pri vytváraní nových spomienok na osobne prežité udalosti (epizodická alebo autobiografická pamäť). Niektorí výskumníci uprednostňujú považovať hipokampus za súčasť väčšieho pamäťového systému mediálneho temporálneho laloku, ktorý je zodpovedný za všeobecnú deklaratívnu pamäť (spomienky, ktoré sa dajú explicitne verbalizovať – okrem epizodickej pamäte by sem patrila napríklad pamäť na fakty).

Existujú určité dôkazy o tom, že hoci tieto formy pamäte často pretrvávajú celý život, hipokampus po určitom období konsolidácie prestáva zohrávať kľúčovú úlohu pri uchovávaní pamäte. Poškodenie hipokampu má zvyčajne za následok hlboké ťažkosti pri vytváraní nových spomienok (anterográdna amnézia) a zvyčajne ovplyvňuje aj prístup k spomienkam pred poškodením (retrográdna amnézia). Hoci retrográdny účinok zvyčajne trvá niekoľko rokov pred poškodením mozgu, v niektorých prípadoch zostávajú staršie spomienky zachované – toto šetrenie starších spomienok vedie k myšlienke, že konsolidácia v priebehu času zahŕňa prenos spomienok z hipokampu do iných častí mozgu. Experimentálne sa však ťažko testuje šetrenie starších spomienok a v niektorých prípadoch retrográdnej amnézie šetrenie zjavne postihuje spomienky vytvorené desaťročia pred poškodením hipokampu, takže jeho úloha pri zachovaní týchto starších spomienok zostáva kontroverzná.

Poškodenie hipokampu nemá vplyv na niektoré aspekty pamäti, ako je napríklad schopnosť naučiť sa nové zručnosti (napríklad hru na hudobný nástroj), čo naznačuje, že tieto schopnosti závisia od iného typu pamäte (procedurálna pamäť) a iných oblastí mozgu. A existujú dôkazy (napr. O’Kane et al. 2004), že pacient HM (ktorému boli obojstranne odstránené mediálne temporálne laloky ako liečba epilepsie) si dokáže vytvárať nové sémantické spomienky.

Úloha v priestorovej pamäti a navigácii

Podľa niektorých dôkazov sa hipokampus podieľa na ukladaní a spracovaní priestorových informácií. Štúdie na potkanoch ukázali, že neuróny v hipokampe majú priestorové vypaľovacie polia. Tieto bunky sa nazývajú place bunky. Niektoré bunky sa zapália, keď sa zviera ocitne na určitom mieste bez ohľadu na smer pohybu, zatiaľ čo väčšina je aspoň čiastočne citlivá na smer hlavy a smer pohybu. U potkanov môžu niektoré bunky, označované ako rozdeľovacie bunky, meniť svoju činnosť v závislosti od nedávnej minulosti zvieraťa (retrospektívne) alebo očakávanej budúcnosti (prospektívne). Rôzne bunky sa spúšťajú na rôznych miestach, takže len na základe ich spúšťania je možné určiť, kde sa zviera nachádza. Miesta buniek boli teraz pozorované u ľudí, ktorí sa podieľajú na hľadaní cesty v meste vo virtuálnej realite. Zistenia vyplynuli z výskumu na osobách, ktorým boli do mozgu implantované elektródy ako diagnostická súčasť chirurgickej liečby závažnej epilepsie.

Objavenie buniek miesta viedlo k myšlienke, že hipokampus môže fungovať ako kognitívna mapa – nervová reprezentácia usporiadania prostredia. Nedávne dôkazy spochybnili tento pohľad a naznačili, že hipokampus môže byť kľúčový pre základnejšie procesy v rámci navigácie [Ako odkazovať a prepojiť na zhrnutie alebo text]. Bez ohľadu na to štúdie so zvieratami ukázali, že neporušený hipokampus je potrebný na jednoduché úlohy priestorovej pamäte (napríklad nájdenie cesty späť k skrytému cieľu).

Bez plne funkčného hipokampu si ľudia nemusia úspešne pamätať miesta, na ktorých boli, a spôsob, ako sa dostať tam, kam idú. Vedci sa domnievajú, že hipokampus zohráva obzvlášť dôležitú úlohu pri hľadaní skratiek a nových ciest medzi známymi miestami. Niektorí ľudia vykazujú v tomto druhu navigácie väčšiu zručnosť ako iní a zobrazovanie mozgu ukazuje, že títo ľudia majú pri navigácii aktívnejší hipokampus.

Londýnski taxikári sa musia naučiť veľké množstvo miest a poznať najpriamejšie trasy medzi nimi (pred získaním licencie na riadenie slávnych čiernych taxíkov musia absolvovať prísny test The Knowledge). Štúdia na University College London ukázala, že časť hipokampu je u taxikárov väčšia ako u bežnej verejnosti a že skúsenejší vodiči majú väčší hipokampus. Je možné, že väčší hipokampus vám pomôže stať sa taxikárom. Zdá sa tiež, že hľadanie skratiek na živobytie môže zväčšiť váš hipokampus.

Štúdia na potkanoch na univerzite v Indiane naznačila, že pohlavný dimorfizmus v morfológii hipokampu súvisí s pohlavným dimorfizmom vo výkonnosti opakovaného bludiska. Zdá sa, že samce si lepšie uvedomujú, kde sa nachádzajú, pretože majú k dispozícii viac hipokampu.

učenie , Proceedings, National Academy of Sciences, USA 96, 12881-6.

Kategórie
Psychologický slovník

Hematoencefalická bariéra

Časť siete kapilár zásobujúcich mozgové bunky

Astrocyty typu 1 obklopujúce kapiláry v mozgu

Kortikálne mikrovesely farbené na prítomnosť proteínu ZO-1, ktorý tvorí hematoencefalickú bariéru

Hematoencefalická bariéra (BBB) je oddelenie cirkulujúcej krvi od extracelulárnej tekutiny v mozgu (BECF) v centrálnom nervovom systéme (CNS). Vyskytuje sa pozdĺž všetkých kapilár a pozostáva z tesných spojov okolo kapilár, ktoré v normálnom krvnom obehu neexistujú. Endotelové bunky obmedzujú difúziu mikroskopických objektov (napr. baktérií) a veľkých alebo hydrofilných molekúl do mozgovomiechového moku (CSF), pričom umožňujú difúziu malých hydrofóbnych molekúl (O2, CO2, hormóny). Bunky bariéry aktívne transportujú metabolické produkty, ako je glukóza, cez bariéru pomocou špecifických proteínov [potrebná citácia] Táto bariéra zahŕňa aj hrubú bazálnu membránu a astrocytárne koncové plôšky.

Paul Ehrlich bol bakteriológ, ktorý skúmal farbenie, postup, ktorý sa používa v mnohých mikroskopických štúdiách na zviditeľnenie jemných biologických štruktúr pomocou chemických farbív. Keď Ehrlich vstrekol niektoré z týchto farbív (najmä anilínové farbivá, ktoré sa vtedy bežne používali), farbivo zafarbilo všetky orgány niektorých druhov zvierat okrem ich mozgu. V tom čase Ehrlich pripisoval tento nedostatok farbenia tomu, že mozog jednoducho nezachytáva toľko farbiva [potrebná citácia].

V neskoršom experimente v roku 1913 však Edwin Goldmann (jeden z Ehrlichových študentov) vstrekol farbivo priamo do mozgovomiechových tekutín zvierat. Zistil, že v tomto prípade sa mozog skutočne zafarbil, ale zvyšok tela nie. To jasne dokázalo existenciu určitého rozdelenia medzi nimi. V tom čase sa predpokladalo, že za bariéru sú zodpovedné samotné cievy, pretože sa nenašla žiadna zjavná membrána. Koncept hematoencefalickej bariéry (vtedy nazývaný hematoencefalická bariéra) navrhol v roku 1900 berlínsky lekár Lewandowsky. Skutočnú membránu bolo možné pozorovať a dokázať jej existenciu až po zavedení skenovacieho elektrónového mikroskopu do medicínskeho výskumu v 60. rokoch 20. storočia.

Schematický náčrt zobrazujúci zloženie ciev v mozgu

Táto „bariéra“ je výsledkom selektivity tesných spojov medzi endotelovými bunkami v cievach CNS, ktoré obmedzujú prestup rozpustených látok [potrebná citácia] Na rozhraní medzi krvou a mozgom sú endotelové bunky zošité týmito tesnými spojmi, ktoré sa skladajú z menších podjednotiek, často biochemických dimérov, ktoré sú transmembránovými proteínmi, ako sú napríklad okludín, klaudíny, junkčná adhézna molekula (JAM) alebo ESAM.[potrebná citácia] Každý z týchto transmembránových proteínov je ukotvený v endotelových bunkách ďalším proteínovým komplexom, ktorý zahŕňa zo-1 a pridružené proteíny [potrebná citácia].

Hematoencefalická bariéra je zložená z buniek s vysokou hustotou, ktoré obmedzujú prestup látok z krvného obehu oveľa viac ako endotelové bunky v kapilárach inde v tele.[potrebná citácia] Výstupky buniek astrocytov nazývané astrocytové nožičky (známe aj ako „glia limitans“) obklopujú endotelové bunky BBB a poskytujú týmto bunkám biochemickú podporu.[Potrebná citácia] BBB sa líši od celkom podobnej bariéry krv – cerebrospinálna tekutina, ktorá je funkciou buniek cievnatky choroidálneho plexu, a od bariéry krv – sietnica, ktorú možno považovať za súčasť celej sféry takýchto bariér.

Pôvodne experimenty v 20. rokoch 20. storočia ukázali, že hematoencefalická bariéra (BBB) je u novorodencov ešte nezrelá. Dôvodom tohto omylu bola chyba v metodike (osmotický tlak bol príliš vysoký a jemné embryonálne kapilárne cievy boli čiastočne poškodené). Neskôr sa v experimentoch so zníženým objemom vstrekovaných tekutín ukázalo, že skúmané markery nemôžu prejsť cez BBB. Uviedlo sa, že tie prirodzené látky, ako je albumín, α-1-fetoproteín alebo transferín so zvýšenou koncentráciou v plazme novorodenca, sa nedajú zistiť mimo buniek v mozgu. Transportér P-glykoproteín existuje už v embryonálnom endoteli [potrebná citácia].

Meranie absorpcie acetamidu, antipyrínu, benzylalkoholu, butanolu, kofeínu, cytosínu, difenylhydantoínu, etanolu, etylénglykolu, heroínu, manitolu, metanolu, fenobarbitalu, propylénglykolu, tiomočoviny a močoviny v mozgu u novorodencov anestézovaných éterom vs. dospelých králikov ukazuje, že mozgové endotelie novorodencov a dospelých králikov sú funkčne podobné, pokiaľ ide o permeabilitu sprostredkovanú lipidmi [potrebná citácia] Tieto údaje potvrdili, že medzi kapilárami BBB novorodencov a dospelých králikov nemožno zistiť žiadne rozdiely v permeabilite. Medzi dospelými a novorodenými králikmi sa nepozoroval žiadny rozdiel v absorpcii glukózy, aminokyselín, organických kyselín, purínov, nukleozidov alebo cholínu v mozgu.“ [potrebná citácia] Tieto experimenty naznačujú, že novorodenecká BBB má podobné reštrikčné vlastnosti ako BBB dospelých. V protiklade k predpokladom o nezrelej bariére u mladých zvierat tieto štúdie naznačujú, že pri narodení funguje sofistikovaná, selektívna BBB.

Hematoencefalická bariéra veľmi účinne chráni mozog pred mnohými bežnými bakteriálnymi infekciami. Preto sú infekcie mozgu veľmi zriedkavé. Infekcie mozgu, ktoré sa vyskytnú, sú často veľmi závažné a ťažko liečiteľné. Protilátky sú príliš veľké na to, aby prešli cez hematoencefalickú bariéru, a len niektoré antibiotiká sú schopné prejsť. V niektorých prípadoch je potrebné podať farmaká priamo do mozgovomiechového moku [potrebná citácia] Lieky podané priamo do mozgovomiechového moku však účinne nepreniknú do samotného mozgového tkaniva, pravdepodobne kvôli torzovitosti intersticiálneho priestoru v mozgu. Hematoencefalická bariéra sa stáva priepustnejšou počas zápalu. To umožňuje niektorým antibiotikám a fagocytom prechádzať cez BBB. To však umožňuje aj prienik baktérií a vírusov do BBB. Výnimkou z vylúčenia baktérií sú ochorenia spôsobené spirochétami, ako sú borélie, ktoré spôsobujú boreliózu, a Treponema pallidum, ktorá spôsobuje syfilis. Zdá sa, že tieto škodlivé baktérie prekonávajú hematoencefalickú bariéru fyzickým tunelovaním cez steny ciev [potrebná citácia].

Existujú aj niektoré biochemické jedy, ktoré sa skladajú z veľkých molekúl, ktoré sú príliš veľké na to, aby prešli cez hematoencefalickú bariéru. To bolo dôležité najmä v primitívnych alebo stredovekých časoch, keď ľudia často jedli kontaminované potraviny. Neurotoxíny, ako napríklad botulín, v potravinách by mohli ovplyvniť periférne nervy, ale hematoencefalická bariéra často dokáže zabrániť tomu, aby sa takéto toxíny dostali do centrálneho nervového systému, kde by mohli spôsobiť vážne alebo smrteľné poškodenie.

Prekonanie ťažkostí s dodávaním terapeutických látok do špecifických oblastí mozgu predstavuje veľkú výzvu pri liečbe väčšiny mozgových porúch. Hematoencefalická bariéra, ktorá plní svoju neuroprotektívnu úlohu, bráni prísunu mnohých potenciálne dôležitých diagnostických a terapeutických látok do mozgu. Terapeutické molekuly a protilátky, ktoré by inak mohli byť účinné pri diagnostike a terapii, neprechádzajú cez BBB v primeranom množstve. Penetrácia do mozgovomiechového moku je podiel liečiva, ktoré prechádza cez hematoencefalickú bariéru a dostáva sa do mozgovomiechového moku

Mechanizmy cielenia liečiv v mozgu zahŕňajú prechod buď „cez“, alebo „za“ BBB. Spôsoby podávania liekov cez BBB zahŕňajú jej narušenie osmotickými prostriedkami, biochemicky pomocou vazoaktívnych látok, ako je bradykinín, alebo dokonca lokalizovaným pôsobením vysoko intenzívneho fokusovaného ultrazvuku (HIFU). Ďalšie metódy používané na prekonanie BBB môžu zahŕňať použitie endogénnych transportných systémov vrátane transportérov sprostredkovaných nosičmi, ako sú nosiče glukózy a aminokyselín; transcytózu sprostredkovanú receptormi pre inzulín alebo transferín; a blokovanie aktívnych efluxných transportérov, ako je p-glykoproteín. Metódy podávania liekov za BBB zahŕňajú intracerebrálnu implantáciu (napríklad pomocou ihiel) a konvekciou posilnenú distribúciu. Manitol sa môže použiť pri obchádzaní BBB.

Nanotechnológia môže pomôcť aj pri prenose liekov cez BBB. Nedávno sa výskumníci pokúšali vytvoriť lipozómy naplnené nanočasticami, aby získali prístup cez BBB. Je potrebný ďalší výskum, aby sa určilo, ktoré stratégie budú najúčinnejšie a ako ich možno zlepšiť pre pacientov s nádormi mozgu. Potenciál využitia otvorenia BBB na zacielenie špecifických látok na nádory mozgu sa práve začal skúmať.

Dodávanie liekov cez hematoencefalickú bariéru je jednou z najsľubnejších aplikácií nanotechnológií v klinickej neurovede. Nanočastice by potenciálne mohli vykonávať viacero úloh vo vopred stanovenom poradí, čo je veľmi dôležité pri dodávaní liečiv cez hematoencefalickú bariéru.

Významný objem výskumu v tejto oblasti sa venoval skúmaniu metód sprostredkovaného dodávania nanočastíc antineoplastických liečiv do nádorov v centrálnom nervovom systéme. Napríklad rádioaktívne značené polyetylénglykolom potiahnuté hexadecylcyanoakrylátové nanosféry sa zamerali na gliosarkóm potkana a akumulovali sa v ňom. Táto metóda však ešte nie je pripravená na klinické skúšky z dôvodu akumulácie nanosfér v okolitom zdravom tkanive.

Treba poznamenať, že cievne endotelové bunky a pridružené pericyty sú v nádoroch často abnormálne a že hematoencefalická bariéra nemusí byť v mozgových nádoroch vždy neporušená. Bazálna membrána je tiež niekedy neúplná. K rezistencii nádorov mozgu na liečbu môžu prispievať aj iné faktory, napríklad astrocyty.

Peptidy sú schopné prekonávať hematoencefalickú bariéru (BBB) rôznymi mechanizmami, čo otvára nové diagnostické a terapeutické možnosti. Údaje o ich transporte cez BBB sú však v literatúre roztrúsené v rôznych odboroch, pričom sa používajú rôzne metodiky uvádzajúce rôzne aspekty influxu alebo efluxu. Preto bola vytvorená komplexná databáza peptidov BBB (Brainpeps) s cieľom zhromaždiť údaje o BBB dostupné v literatúre. Brainpeps v súčasnosti obsahuje informácie o transporte cez BBB s pozitívnymi aj negatívnymi výsledkami. Databáza je užitočným nástrojom na stanovenie priorít pri výbere peptidov na hodnotenie rôznych reakcií BBB alebo na štúdium kvantitatívnych vzťahov medzi štruktúrou a vlastnosťami (správanie sa v BBB) peptidov. Keďže na hodnotenie správania sa zlúčenín v BBB sa používa množstvo metód, klasifikovali sme tieto metódy a ich odpovede. Okrem toho sme objasnili a vizualizovali vzťahy medzi rôznymi metódami transportu v BBB [potrebná citácia].

Casomorphin je heptapeptid a mohol by byť schopný prechádzať cez BBB.[potrebná citácia]

Choroby zahŕňajúce hematoencefalickú bariéru

Meningitída je zápal blán, ktoré obklopujú mozog a miechu (tieto blany sa nazývajú meningy). Meningitídu najčastejšie spôsobujú infekcie rôznymi patogénmi, ako sú napríklad Streptococcus pneumoniae a Haemophilus influenzae. Pri zápale mozgových blán môže dôjsť k narušeniu hematoencefalickej bariéry. Toto narušenie môže zvýšiť prenikanie rôznych látok (vrátane toxínov alebo antibiotík) do mozgu. Antibiotiká používané na liečbu meningitídy môžu zhoršiť zápalovú reakciu centrálneho nervového systému uvoľnením neurotoxínov z bunkových stien baktérií – ako je lipopolysacharid (LPS). V závislosti od pôvodcu ochorenia, či už ide o baktériu, hubu alebo prvoka, sa zvyčajne predpisuje liečba cefalosporínom tretej alebo štvrtej generácie alebo amfotericínom B.

Epilepsia je bežné neurologické ochorenie, ktoré sa vyznačuje opakujúcimi sa a niekedy neliečiteľnými záchvatmi. Viaceré klinické a experimentálne údaje poukazujú na zlyhanie funkcie hematoencefalickej bariéry pri vyvolávaní chronických alebo akútnych záchvatov. Niektoré štúdie poukazujú na interakcie medzi bežným krvným proteínom (albumínom) a astrocytmi. Tieto zistenia naznačujú, že akútne záchvaty sú predvídateľným dôsledkom narušenia BBB buď umelými, alebo zápalovými mechanizmami. Okrem toho expresia molekúl a transportérov rezistencie na lieky v BBB je významným mechanizmom rezistencie na bežne používané antiepileptické lieky.

Skleróza multiplex (SM) sa považuje za autoimunitné a neurodegeneratívne ochorenie, pri ktorom imunitný systém napáda myelín, ktorý chráni a elektricky izoluje neuróny centrálneho a periférneho nervového systému. Za normálnych okolností je nervový systém človeka neprístupný pre biele krvinky kvôli hematoencefalickej bariére. Magnetická rezonancia však ukázala, že keď človek prechádza „útokom“ SM, hematoencefalická bariéra sa v časti mozgu alebo miechy porušila, čo umožnilo bielym krvinkám nazývaným T-lymfocyty prejsť cez ňu a napadnúť myelín. Niekedy sa predpokladá, že SM nie je ochorenie imunitného systému, ale ochorenie hematoencefalickej bariéry. Nedávna štúdia naznačuje, že oslabenie hematoencefalickej bariéry je dôsledkom poruchy endotelových buniek na vnútornej strane cievy, kvôli ktorej nefunguje dobre produkcia proteínu P-glykoproteínu [potrebná citácia].

V súčasnosti sa aktívne skúma liečba narušenej hematoencefalickej bariéry. Predpokladá sa, že oxidačný stres zohráva dôležitú úlohu pri poruche bariéry. Antioxidanty, ako napríklad kyselina lipoová, môžu byť schopné stabilizovať oslabenú hematoencefalickú bariéru.

Neuromyelitis optica, známa aj ako Devicova choroba, je podobná a často sa zamieňa so sklerózou multiplex. Okrem iných odlišností od SM bol identifikovaný iný cieľ autoimunitnej odpovede. Pacienti s neuromyelitídou optica majú vysoké hladiny protilátok proti proteínu nazývanému aquaporín 4 (súčasť astrocytárnych procesov na nohách v hematoencefalickej bariére).

Neskoré štádium neurologickej trypanozomózy (spavej choroby)

Neskoré štádium neurologickej trypanozomózy alebo spavej choroby je stav, pri ktorom sa v mozgovom tkanive nachádzajú prvoky trypanozómy. Zatiaľ nie je známe, ako parazity infikujú mozog z krvi, ale predpokladá sa, že prechádzajú cez choroidálny plexus, obvodový orgán.

Progresívna multifokálna leukoencefalopatia (PML)

Progresívna multifokálna leukoencefalopatia (PML) je demyelinizačné ochorenie centrálneho nervového systému, ktoré je spôsobené reaktiváciou latentnej infekcie papovírusom (polyomavírus JC), ktorý môže prechádzať cez BBB. Postihuje pacientov so zníženou imunitou a zvyčajne sa vyskytuje u pacientov trpiacich AIDS.

Ochorenie de Vivo (známe aj ako syndróm nedostatku GLUT1) je zriedkavé ochorenie spôsobené nedostatočným prenosom cukru, glukózy, cez hematoencefalickú bariéru, čo vedie k oneskoreniu vývoja a iným neurologickým problémom. Zdá sa, že hlavnou príčinou ochorenia De Vivo sú genetické defekty transportéra glukózy typu 1 (GLUT1).

Niektoré nové dôkazy naznačujú, že narušenie hematoencefalickej bariéry u pacientov s Alzheimerovou chorobou umožňuje krvnej plazme obsahujúcej amyloid beta (Aβ) preniknúť do mozgu, kde sa Aβ prednostne prichytáva na povrch astrocytov. Tieto zistenia viedli k hypotézam, že (1) porušenie hematoencefalickej bariéry umožňuje prístup autoprotilátok viažucich sa na neuróny a rozpustného exogénneho Aβ42 k mozgovým neurónom a (2) väzba týchto autoprotilátok na neuróny spúšťa a/alebo uľahčuje internalizáciu a akumuláciu Aβ42 viazaného na povrch buniek v zraniteľných neurónoch prostredníctvom ich prirodzenej tendencie odstraňovať autoprotilátky viazané na povrch prostredníctvom endocytózy. Nakoniec je astrocyt preťažený, odumrie, praskne a rozpadne sa, pričom po sebe zanechá nerozpustný plak Aβ42. U niektorých pacientov teda môže byť Alzheimerova choroba spôsobená (alebo skôr zhoršená) poruchou hematoencefalickej bariéry.

Predpokladá sa, že latentný vírus HIV môže prekročiť hematoencefalickú bariéru vo vnútri cirkulujúcich monocytov v krvnom riečisku (teória „trójskeho koňa“) počas prvých 14 dní infekcie. Keď sa tieto monocyty dostanú dovnútra, aktivujú sa a premenia sa na makrofágy. Aktivované makrofágy uvoľňujú virióny do mozgového tkaniva v blízkosti mozgových mikrovaskulárnych ciev. Tieto vírusové častice pravdepodobne priťahujú pozornosť sentinelových mozgových mikroglií a perivaskulárnych makrofágov, ktoré iniciujú zápalovú kaskádu, ktorá môže spôsobiť sériu intracelulárnych signálov v endotelových bunkách mozgových mikrovaskulárnych ciev a poškodiť funkčnú a štrukturálnu integritu BBB. Tento zápal predstavuje HIV encefalitídu (HIVE). Prípady HIVE sa pravdepodobne vyskytujú počas celého priebehu AIDS a sú predzvesťou demencie súvisiacej s HIV (HAD). Hlavným modelom na štúdium HIV a HIVE je model opice.

Počas smrteľnej infekcie myší besnotou hematoencefalická bariéra (BBB) neumožňuje antivírusovým imunitným bunkám vstup do mozgu, primárneho miesta replikácie vírusu besnoty. Tento aspekt prispieva k patogenite vírusu a umelé zvýšenie priepustnosti BBB podporuje klírens vírusu. Otvorenie BBB počas infekcie besnoty sa navrhlo ako možný nový prístup k liečbe ochorenia, hoci sa zatiaľ neurobili žiadne pokusy o určenie, či by táto liečba mohla byť úspešná.

Kategórie
Psychologický slovník

Jadro solitárneho traktu

V ľudskom mozgu je solitárne jadro (jadro solitárneho traktu, nucleus solitarius, nucleus tractus solitarii, NTS) rad jadier (zhlukov tiel nervových buniek) tvoriacich vertikálny stĺpec sivej hmoty uložený v predĺženej mieche. Stredom NTS prechádza solitárny trakt, biely zväzok nervových vlákien vrátane vlákien z tvárového, glosofaryngeálneho a blúdivého nervu, ktoré synaptujú na neuróny NTS. NTS sa okrem iných oblastí premieta do retikulárnej formácie, parasympatických pregangliových neurónov, hypotalamu a talamu, čím vytvára okruhy, ktoré prispievajú k autonómnej regulácii. Bunky v NTS sú usporiadané podľa funkcie; napríklad bunky, ktoré sa podieľajú na chuti, sa nachádzajú vo vyššej, prednejšej („rostrálnej“) časti, zatiaľ čo bunky regulujúce kardiorespiračné procesy sa nachádzajú v nižšej, zadnej („kaudálnej“) časti.

Jadro sa nachádza po celej dĺžke miechy (s malou časťou v dolnej časti ponsu). Samotný trakt prebieha v strede jadra a vytvára škvrnu bielej hmoty (axóny traktu) obklopenú sivou hmotou (jadro). Toto vynikne na zafarbenom reze, odkiaľ pochádza názov solitárny.

Solitárne jadro sa delí na rostrálne (smerom hore) chuťové jadro a kaudálne (smerom dole) kardiorespiračné jadro. Kardiorespiračné jadro možno ďalej rozdeliť na kardiovaskulárne centrum, ktoré sa nachádza v strednej línii jadra, a respiračné centrum, ktoré je umiestnené laterálne.

Vstupy do solitárneho jadra

Okrem aferentných chuťových informácií z nervov VII, IX a X spracúva solitárne jadro aj primárne aferentné signály z rôznych viscerálnych oblastí a orgánov. Tieto aferenty zahŕňajú chemoreceptory v karotíde (prostredníctvom IX) a aortálnom telese (prostredníctvom X), ako aj receptory na rozťahovanie z aorty a krčných tepien nazývané arteriálne baroreceptory. Okrem toho chemicky a mechanicky citlivé neuróny so zakončeniami nachádzajúcimi sa v srdci, pľúcach, dýchacích cestách, gastrointestinálnom systéme, pečeni a iných vnútornostiach vysielajú axóny najmä prostredníctvom kraniálnych nervov (IX a X), ktoré priamo vstupujú do mozgového kmeňa a vytvárajú synapsie v kaudálnej tretine solitárneho jadra. Neuróny, ktoré sa v tomto jadre synaptizujú, sprostredkúvajú dávivý reflex, reflex karotického sínusu, aortálny reflex, kašľový reflex, baroreceptorový a chemoreceptorový reflex, niekoľko dýchacích reflexov a reflexy v rámci gastrointestinálneho systému regulujúce motilitu a sekréciu. Informácie o črevnej stene, ako aj o rozťahovaní pľúc a suchosti slizníc sa tiež synapsujú v solitárnom jadre. Tieto prvé centrálne neuróny v rámci solitárneho jadra sa môžu podieľať na autonómnych reflexoch, ktoré môžu byť len dva centrálne neuróny, pričom druhý neurón je eferentný alebo motorický neurón, ktorý sa premieta späť priamo do orgánu, napríklad do srdca, a vytvára tak jedny z najjednoduchších reflexných dráh v mozgu.

Výstupy zo solitárneho jadra

Informácie z NTS smerujú do mnohých ďalších oblastí mozgu vrátane paraventrikulárneho jadra hypotalamu a centrálneho jadra amygdaly, ako aj do iných jadier v mozgovom kmeni (napríklad do parabrachiálnej oblasti a iných viscerálnych motorických alebo respiračných sietí). Signály premietané z NTS do parabrachiálnej oblasti pochádzajú z ústnej dutiny a gastrointestinálneho traktu. Predpokladá sa, že dráhy pre žalúdočné a chuťové (chuťové) procesy končia v rôznych pododdieloch parabrachiálnej oblasti, ale stále interagujú v NTS. Niektoré subpopulácie neurónov v NTS, ako napríklad noradrenergné neuróny A2 a neuróny HSD2 citlivé na aldosterón, sa premietajú až do rostrálneho jadra lôžka stria terminalis.

Trigeminálny lemniscus (dorzálny trigeminálny trakt, ventrálny trigeminálny trakt)

kraniálne jadrá: GSA: Principal V/Spinal V – VIII-c (Dorsal, Anterior)/VIII-v (Lateral, Superior, Medial, Inferior) – SVE: Motor V – VII – GSE: VI – GVE: VII: Superior salivary nucleus

MLF, III, IV a VI (vestibulo-okulomotorické vlákna, mediálny vestibulospinálny trakt)

zmyslové/vzostupné: Trapézové telo/VIII – horné olivové jadro

Dolný mozoček (Vestibulocerebelárny trakt)

motorické/spádové: Apneustické centrum – Pneumotaxické centrum (mediálne parabrachiálne jadro) – Laterálne parabrachiálne jadro

Stredné mozočkové stopky (pontocerebelárne vlákna) – Pontínové nukleimotorické/descendentné: Kortikospinálny trakt – Kortikobulbárny trakt – Kortikopontínne vlákna

Retikulárna formácia (kaudálna, orálna, tegmentálna, paramediálna) – Raphe nuclei (mediálna)

povrch: Posterior median sulcus – Postero-lateral sulcus – Postrema area

kraniálne jadrá: GVA: VII,IX,X: Solitárne/traktálne – SVA: Gustatórne jadro – GSE: XII – GVE: IX,X,XI: Ambiguus – SVE: X: Dorzálne – IX: Dolné slinné jadro – MLF, III, IV a VI

zmyslové/vzostupné: Senzorické rozpojenie – Mediálny lemniscus

motorické/spádové: Dorzálna respiračná skupina

motorické/spádové: (Motorická dekurzia) – dolné olivové jadro (Olivocerebelárny trakt, Rubro-olivárny trakt) povrch: Predná stredná štrbina – Predo-laterálna ryha – Arcuate nucleus of medulla – Olivary body

Retikulárna formácia (gigantocelulárna, parvocelulárna, ventrálna, laterálna, paramediálna) – Raphe nuclei (Obscurus, Magnus, Pallidus)

Kategórie
Psychologický slovník

Spánok REM

Spánok REM u dospelých ľudí zvyčajne zaberá 20-25 % celkového spánku a trvá približne 90-120 minút. Počas normálneho spánku ľudia zvyčajne zažívajú približne 4 alebo 5 období spánku REM; na začiatku noci sú pomerne krátke a ku koncu noci dlhšie. Je bežné, že sa človek na konci fázy REM na krátky čas prebudí. Relatívne množstvo spánku REM sa výrazne líši v závislosti od veku. Novorodenec strávi viac ako 80 % celkového času spánku vo fáze REM (pozri tiež Aktívny spánok). Počas REM je sumárna aktivita mozgových neurónov celkom podobná aktivite počas bdenia; z tohto dôvodu sa tento jav často nazýva paradoxný spánok. To znamená, že počas spánku REM nedochádza k dominancii mozgových vĺn.
Spánok REM sa fyziologicky líši od ostatných fáz spánku, ktoré sa súhrnne označujú ako spánok non-REM. Väčšina našich živo spomínaných snov sa vyskytuje počas spánku REM.

Polysomnografický záznam REM spánku. EEG zvýraznené červeným rámčekom. Pohyby očí zvýraznené červenou čiarou.

Z fyziologického hľadiska sú niektoré neuróny v mozgovom kmeni, známe ako bunky spánku REM (nachádzajúce sa v pontinnom tegmente), počas spánku REM mimoriadne aktívne a pravdepodobne sú zodpovedné za jeho výskyt. Uvoľňovanie určitých neurotransmiterov, monoamínov (noradrenalínu, serotonínu a histamínu), je počas REM úplne zastavené. To spôsobuje atóniu REM, stav, pri ktorom nie sú stimulované motorické neuróny, a teda sa svaly tela nehýbu. Nedostatok takejto atónie v REM spôsobuje poruchu správania v REM; osoby trpiace touto poruchou predvádzajú pohyby, ktoré sa vyskytujú v ich snoch.

Tepová frekvencia a frekvencia dýchania sú počas REM spánku nepravidelné, podobne ako počas bdenia. Telesná teplota nie je počas REM dobre regulovaná. Erekcia penisu (nočná penilná tumescencia alebo NPT) je uznávaným sprievodným javom spánku REM a používa sa na diagnostiku, aby sa určilo, či je mužská erektilná dysfunkcia organického alebo psychologického pôvodu. Počas REM je prítomné aj zväčšenie klitorisu so sprievodným vaginálnym prietokom krvi a transudáciou (t. j. lubrikáciou).

Pohyby očí spojené s REM sú generované jadrom pontu s projekciami do horného kolikulu a sú spojené s vlnami PGO (pons, geniculate, occipital).

Spánok REM môže nastať v priebehu približne 90 minút, ale u ľudí s nástupom spánku REM to môže byť len 15-25 minút. To sa považuje za príznak narkolepsie.

Teórie o funkciách spánku REM

Funkcia spánku REM nie je dostatočne objasnená; existuje niekoľko teórií.

Podľa jednej z teórií sa určité spomienky upevňujú počas spánku REM. Mnohé štúdie naznačujú, že spánok REM je dôležitý pre konsolidáciu procedurálnej a priestorovej pamäte. (Zdá sa, že pomalé vlny, ktoré sú súčasťou spánku mimo REM, sú dôležité pre deklaratívnu pamäť.) Nedávna štúdia ukázala, že umelé zosilnenie spánku REM zlepšuje zapamätané dvojice slov na druhý deň. Tucker a kol. preukázali, že denný spánok obsahujúci výlučne spánok non REM zlepšuje deklaratívnu pamäť, ale nie procedurálnu pamäť. U ľudí, ktorí nemajú spánok REM (z dôvodu poškodenia mozgu), však nie sú pamäťové funkcie merateľne ovplyvnené.

Mitchison a Crick navrhli, že funkciou spánku REM je na základe jeho prirodzenej spontánnej aktivity „odstrániť určité nežiaduce spôsoby interakcie v sieťach buniek v mozgovej kôre“, pričom tento proces charakterizovali ako „odnaučenie“. Výsledkom je, že tie spomienky, ktoré sú relevantné (ktorých základný neurónový substrát je dostatočne silný na to, aby vydržal takúto spontánnu, chaotickú aktiváciu), sa ďalej posilňujú, zatiaľ čo slabšie, prechodné, „hlukové“ pamäťové stopy sa rozpadajú.

Stimulácia vo vývoji CNS ako primárna funkcia

Podľa inej teórie, známej ako ontogenetická hypotéza spánku REM, je táto fáza spánku (u novorodencov známa aj ako aktívny spánok) pre vyvíjajúci sa mozog mimoriadne dôležitá, pravdepodobne preto, že poskytuje nervovú stimuláciu, ktorú novorodenci potrebujú na vytvorenie zrelých nervových spojení a na správny vývoj nervového systému. Štúdie skúmajúce účinky deprivácie aktívneho spánku ukázali, že deprivácia na začiatku života môže viesť k problémom so správaním, trvalému narušeniu spánku, zníženiu hmotnosti mozgu a má za následok abnormálne množstvo odumierania neurónových buniek. Spánok REM je nevyhnutný pre správny vývoj centrálnej nervovej sústavy. Túto teóriu podporuje aj skutočnosť, že množstvo spánku REM sa s vekom znižuje, ako aj údaje od iných živočíšnych druhov (pozri nižšie).

Iná teória predpokladá, že vypnutie monoamínov je potrebné na to, aby sa monoamínové receptory v mozgu mohli obnoviť a znovu získať plnú citlivosť. Ak sa totiž spánok REM opakovane preruší, človek si to pri najbližšej príležitosti „vynahradí“ dlhším spánkom REM. Akútna deprivácia spánku REM môže zlepšiť niektoré typy depresie a zdá sa, že depresia súvisí s nerovnováhou určitých neurotransmiterov. Väčšina antidepresív selektívne inhibuje REM spánok v dôsledku ich účinkov na monoamíny. Tento účinok sa však po dlhodobom užívaní znižuje.

Niektorí vedci tvrdia, že pretrvávanie takého zložitého mozgového procesu, akým je spánok REM, naznačuje, že plní dôležitú funkciu pre prežitie druhov cicavcov. Spĺňa dôležité fyziologické potreby nevyhnutné na prežitie do takej miery, že dlhodobá deprivácia spánku REM vedie u pokusných zvierat k smrti. U ľudí aj pokusných zvierat vedie strata REM spánku k viacerým behaviorálnym a fyziologickým abnormalitám. Strata spánku REM bola zaznamenaná počas rôznych prirodzených a experimentálnych infekcií. Prežívanie pokusných zvierat sa znižuje, keď je REM spánok počas infekcie úplne oslabený. To vedie k možnosti, že kvalita a kvantita spánku REM je vo všeobecnosti nevyhnutná pre normálnu fyziológiu organizmu.

Hypotézu o spánku REM predložil Frederic Snyder v roku 1966. Vychádza z pozorovania, že po spánku REM u viacerých cicavcov (potkana, ježka, králika a opice druhu rhesus) nasleduje krátke prebudenie. (U mačiek ani u ľudí k tomu nedochádza, hoci ľudia sa častejšie prebúdzajú zo spánku REM ako zo spánku mimo REM). Snyder predpokladal, že REM spánok zviera pravidelne aktivuje, aby prehľadalo prostredie a hľadalo prípadných predátorov. Táto hypotéza nevysvetľuje svalovú paralýzu pri spánku REM.

REM spánok sa vyskytuje u všetkých cicavcov a vtákov. Zdá sa, že množstvo spánku REM za noc u jednotlivých druhov úzko súvisí s vývojovým štádiom novorodencov. Napríklad ploskolebec, ktorého novorodenci sú úplne bezmocní a nevyvinutí, má viac ako sedem hodín spánku REM za noc [Ako odkazovať a odkazovať na zhrnutie alebo text].

Fenomén spánku REM a jeho spojenie so snívaním objavili Eugene Aserinsky a Nathaniel Kleitman s pomocou Williama C. Dementa, vtedajšieho študenta medicíny, v roku 1952 počas svojho pôsobenia na Chicagskej univerzite.

Spánok s rýchlymi pohybmi očí – Spánok bez rýchlych pohybov očí – Spánok s pomalými vlnami – Spánok s vlnami beta – Spánok s vlnami delta – Spánok s vlnami gama – Spánok s vlnami Theta

Syndróm rozšírenej spánkovej fázy – Automatické správanie – Porucha cirkadiánneho rytmu spánku – Syndróm oneskorenej spánkovej fázy – Dyssomnia – Hypersomnia – Insomnia – Narkolepsia – Nočný teror – Noktúria – Nočný myoklonus – Syndróm nepretržitého spánku a bdenia – Ondinova kliatba – Parasomnia – Spánková apnoe – Spánková deprivácia – Spánková choroba – Námesačnosť – Námesačnosť

Stavy vedomia -Snívanie – Obsah sna – Syndróm explodujúcej hlavy – Falošné prebudenie – Hypnagogia – Hypnický zášklb – Lucidný sen – Nočná mora – Nočná emisia – Spánková paralýza – Somnolencia –

Chronotyp – Liečba elektrospánku – Hypnotiká – Zdriemnutie – Jet lag – Uspávanie – Polyfázový spánok – Segmentovaný spánok – Siesta – Spánok a učenie – Spánkový dlh – Spánková zotrvačnosť – Nástup spánku – Liečba spánku – Cyklus bdenia – Chrápanie

Kategórie
Psychologický slovník

Lieky na uvoľnenie svalov

Svalový relaxant je liek, ktorý ovplyvňuje funkciu kostrového svalstva a znižuje svalový tonus. Môže sa použiť na zmiernenie príznakov, ako sú svalové kŕče, bolesť a hyperreflexia. Termín „svalové relaxancium“ sa používa na označenie dvoch hlavných terapeutických skupín: neuromuskulárnych blokátorov a spazmolytík. Neuromuskulárne blokátory pôsobia tak, že zasahujú do prenosu na nervovosvalovej koncovej platničke a nemajú žiadnu aktivitu v CNS. Často sa používajú počas chirurgických zákrokov a v intenzívnej starostlivosti a urgentnej medicíne na vyvolanie paralýzy. Spazmolytiká, známe aj ako „centrálne pôsobiace“ svalové relaxanciá, sa používajú na zmiernenie muskuloskeletálnej bolesti a kŕčov a na zníženie spasticity pri rôznych neurologických stavoch. Hoci sa nervovosvalové blokátory aj spazmolytiká často zaraďujú do jednej skupiny ako svalové relaxanciá, tento termín sa bežne používa len na označenie spazmolytík.

Prvé známe použitie liekov na uvoľnenie svalov sa datuje do 16. storočia, keď sa európski prieskumníci stretli s domorodcami v povodí Amazonky v Južnej Amerike, ktorí používali šípy s jedovatým hrotom, ktoré spôsobili smrť ochrnutím kostrového svalstva. Tento jed, dnes známy ako kurare, viedol k jednému z prvých vedeckých výskumov v oblasti farmakológie. Jeho účinná látka tubokurarín, ako aj mnohé syntetické deriváty, zohrali významnú úlohu pri vedeckých experimentoch zameraných na určenie funkcie acetylcholínu v nervovosvalovom prenose. Do roku 1943 sa nervovosvalové blokátory presadili ako svalové relaxanciá v anesteziologickej a chirurgickej praxi.
f

Lieky blokujúce nervovosvalový systém

Detailný pohľad na nervovosvalové spojenie:1. Presynaptický terminál2. Sarkolemma3. Synaptické vezikuly4. Nikotínový acetylcholínový receptor5. Mitochondria

K svalovej relaxácii a paralýze môže teoreticky dôjsť prerušením funkcie na viacerých miestach vrátane centrálneho nervového systému, myelinizovaných somatických nervov, nemyelinizovaných motorických nervových zakončení, nikotínových acetylcholínových receptorov, motorickej koncovej platničky a svalovej membrány alebo kontraktilného aparátu. Väčšina nervosvalových blokátorov funguje tak, že blokuje prenos na koncovej platničke nervosvalového spojenia. Za normálnych okolností dorazí nervový impulz na motorický nervový terminál, čím sa iniciuje prílev vápnikových iónov, ktorý spôsobí exocytózu synaptických vezikúl obsahujúcich acetylcholín. Acetylcholín potom difunduje cez synaptickú štrbinu. Môže byť hydrolyzovaný acetylcholínesterázou (AchE) alebo sa viaže na nikotínové receptory umiestnené na motorickej koncovej platničke. Väzba dvoch molekúl acetylcholínu vedie ku konformačnej zmene v receptore, ktorá otvorí sodíkovo-draslíkový kanál nikotínového receptora. To umožňuje vstup iónov Na+ a Ca2+ do bunky a odchod iónov K+ z bunky, čo spôsobí depolarizáciu koncovej platničky, čo vedie k svalovej kontrakcii. Po depolarizácii sa molekuly acetylcholínu odstránia z oblasti koncovej platničky a enzymaticky sa hydrolyzujú acetylcholínesterázou.

Normálna funkcia koncovej dosky môže byť blokovaná dvoma mechanizmami. Nedepolarizujúce látky ako tubokurarín blokujú väzbu agonistu, acetylcholínu, na nikotínové receptory a ich aktiváciu, čím zabraňujú depolarizácii. Prípadne depolarizujúce látky, ako je sukcinylcholín, sú agonistami nikotínových receptorov, ktoré napodobňujú Ach, blokujú svalovú kontrakciu tým, že depolarizujú do takej miery, že desenzibilizujú receptor a ten už nemôže iniciovať akčný potenciál a spôsobiť svalovú kontrakciu. Tieto nervovosvalové blokátory sú štrukturálne podobné acetylcholínu, endogénnemu ligandu, v mnohých prípadoch obsahujú dve molekuly acetylcholínu spojené na konci pevným systémom uhlíkových kruhov, ako je to v prípade pankuronia.

Chemická schéma pankuronia s červenými čiarami označujúcimi dve „molekuly“ acetylcholínu v štruktúre.

Pohľad na miechu a kostrové svalstvo zobrazujúci pôsobenie rôznych svalových relaxantov. Čierne čiary zakončené šípkami predstavujú chemické látky alebo pôsobenie, ktoré posilňujú cieľ čiar. Modré čiary zakončené štvorčekmi predstavujú chemické látky alebo účinky, ktoré inhibujú cieľ čiary. Kliknutím na obrázok zväčšíte diagram.

Generovanie neuronálnych signálov v motorických neurónoch, ktoré spôsobujú svalové kontrakcie, závisí od rovnováhy synaptickej excitácie a inhibície, ktorú motorický neurón prijíma. Spazmolytické látky vo všeobecnosti pôsobia buď zvýšením úrovne inhibície, alebo znížením úrovne excitácie. Inhibícia sa zvyšuje napodobňovaním alebo posilňovaním účinku endogénnych inhibičných látok, ako je GABA.

Keďže môžu pôsobiť na úrovni mozgovej kôry, mozgového kmeňa alebo miechy, prípadne vo všetkých troch oblastiach, tradične sa označujú ako „centrálne pôsobiace“ svalové relaxanciá. V súčasnosti je však známe, že nie každá látka z tejto triedy má aktivitu na CNS (napr. dantrolén), takže tento názov je nepresný.

Termín „spazmolytikum“ sa tiež považuje za synonymum pre antispazmodikum.

Spazmolytiká ako karizoprodol, cyklobenzaprín, metaxalón a metokarbamol sa bežne predpisujú pri bolestiach chrbta alebo krku, fibromyalgii, tenzných bolestiach hlavy a syndróme myofasciálnej bolesti. Neodporúčajú sa však ako lieky prvej voľby; pri akútnej bolesti chrbta nie sú účinnejšie ako paracetamol alebo nesteroidné protizápalové lieky (NSAID) a pri fibromyalgii nie sú účinnejšie ako antidepresíva. Napriek tomu existujú určité dôkazy (nízkej kvality), ktoré naznačujú, že svalové relaxanciá môžu zvýšiť prínos liečby NSAID. Vo všeobecnosti neexistujú žiadne vysokokvalitné dôkazy na podporu ich používania. Nepreukázalo sa, že by bol niektorý liek lepší ako iný, a všetky majú nežiaduce účinky, najmä závraty a ospalosť. Obavy z možného zneužívania a interakcie s inými liekmi, najmä ak je rizikom zvýšená sedácia, ďalej obmedzujú ich používanie.

Látky ako dantrolén a baklofén sa neodporúčajú pri ortopedických stavoch, ale skôr pri neurologických stavoch, ako je spasticita pri detskej mozgovej obrne a skleróze multiplex. Dantrolén, hoci je považovaný predovšetkým za periférne pôsobiaci prostriedok, je spojený s účinkami na CNS, zatiaľ čo aktivita baklofénu je striktne spojená s CNS.

Svalové relaxanciá sa považujú za užitočné pri bolestivých poruchách na základe teórie, že bolesť vyvoláva kŕč a kŕč spôsobuje bolesť. Existuje však veľa dôkazov, ktoré túto teóriu popierajú.

Z dôvodu zosilnenia inhibície v CNS má väčšina spazmolytík vedľajšie účinky sedácie, ospalosti a pri dlhodobom užívaní môže spôsobiť závislosť. Niektoré z týchto látok majú aj potenciál zneužívania a ich predpisovanie je prísne kontrolované.

Benzodiazepíny, ako je diazepam, interagujú s GABAA receptorom v centrálnom nervovom systéme. Hoci sa môže používať u pacientov so svalovými kŕčmi takmer akéhokoľvek pôvodu, pri dávkach potrebných na zníženie svalového napätia vyvoláva u väčšiny jedincov sedáciu.

Baklofén sa považuje za minimálne rovnako účinný ako diazepam pri znižovaní spasticity a spôsobuje oveľa menšiu sedáciu. Pôsobí ako agonista GABA na receptoroch GABAB v mozgu a mieche, čo vedie k hyperpolarizácii neurónov exprimujúcich tento receptor, pravdepodobne v dôsledku zvýšenia vodivosti draslíkových iónov. Baklofén tiež inhibuje nervové funkcie presynapticky, a to znížením prítoku vápnikových iónov, a tým znížením uvoľňovania excitačných neurotransmiterov v mozgu aj mieche. Môže tiež znížiť bolesť u pacientov tým, že inhibuje uvoľňovanie látky P aj v mieche.

Bolo tiež preukázané, že klonidín a iné imidazolínové zlúčeniny svojou aktivitou v centrálnom nervovom systéme znižujú svalové kŕče. Tizanidín je pravdepodobne najdôkladnejšie preskúmaný analóg klonidínu a je agonistom na α2-adrenergných receptoroch, ale znižuje spasticitu v dávkach, ktoré vedú k výrazne menšej hypotenzii ako klonidín. Neurofyziologické štúdie ukazujú, že potláča excitačnú spätnú väzbu zo svalov, ktorá by za normálnych okolností zvyšovala svalový tonus, a preto minimalizuje spasticitu. Okrem toho viaceré klinické štúdie naznačujú, že tizanidín má podobnú účinnosť ako iné spazmolytické látky, ako sú diazepam a baklofén, s iným spektrom nežiaducich účinkov.

Hydantoínový derivát dantrolén je spazmolytická látka s jedinečným mechanizmom účinku mimo CNS. Dantrolén znižuje silu kostrového svalstva inhibíciou väzby vzruch – kontrakcia vo svalovom vlákne. Pri normálnej svalovej kontrakcii sa vápnik uvoľňuje zo sarkoplazmatického retikula cez kanál ryanodínového receptora, čo spôsobuje interakciu aktínu a myozínu, ktorá vytvára napätie. Dantrolén zasahuje do uvoľňovania vápnika tým, že sa viaže na ryanodínový receptor a kompetitívnou inhibíciou blokuje endogénny ligand ryanodín. Sval, ktorý sa kontrahuje rýchlejšie, je citlivejší na dantrolén ako sval, ktorý sa kontrahuje pomaly, hoci srdcový sval a hladký sval sú oslabené len mierne, pravdepodobne preto, že uvoľňovanie vápnika ich sarkoplazmatickým retikulom zahŕňa trochu odlišný proces. Medzi hlavné nežiaduce účinky dantrolénu patrí celková svalová slabosť, sedácia a príležitostne hepatitída.

Centrálne pôsobiace svalové relaxanciá

Na liečbu spasticity sa používajú aj lieky z iných skupín ako svalové relaxanciá:

anat (h/n, u, t/d, a/p, l)/phys/devp/hist

noco (m, s, c)/cong (d)/tumr, sysi/epon, injr

Antacidá – antiemetiká – antagonisty H₂-receptorov – inhibítory protónovej pumpy – laxatíva – antidiarrhoiká

Antikoagulanciá – protidoštičky – trombolytiká

Antiarytmiká – Antihypertenzíva – Diuretiká – Vazodilatanciá – Antianginiká – Beta-blokátory – Inhibítory enzýmu konvertujúceho angiotenzín – Antihyperlipidemiká

Hormonálna antikoncepcia – Prostriedky na zníženie plodnosti – Selektívne modulátory estrogénových receptorov – Pohlavné hormóny

Kortikosteroidy – Pohlavné hormóny – Hormóny štítnej žľazy

Antibiotiká – Antivirotiká – Vakcíny – Antimykotiká – Antiprotozoiká – Anthelmintiká

Protinádorové látky – Imunosupresíva

Anabolické steroidy – Protizápalové lieky – Antireumatiká – Kortikosteroidy – Svalové relaxanciá

Anestetiká – analgetiká – antikonvulzíva – stabilizátory nálady – anxiolytiká – antipsychotiká – antidepresíva – stimulanciá nervového systému

Bronchodilatanciá – dekongestíva – antihistaminiká

Kategórie
Psychologický slovník

Neurochirurgovia

Neurochirurgovia sú [[[chirurgovia]], ktorí sa venujú neurochirurgii (alebo neurologickej chirurgii), lekárskej špecializácii zaoberajúcej sa prevenciou, diagnostikou, liečbou a rehabilitáciou porúch, ktoré postihujú ktorúkoľvek časť nervového systému vrátane mozgu, chrbtice, miechy, periférnych nervov a mimokraniálneho mozgovo-cievneho systému.

V Spojených štátoch musí neurochirurg spravidla absolvovať štyri roky vysokej školy, štyri roky lekárskej fakulty, ročnú stáž (PGY-1), ktorá je zvyčajne spojená s rezidentským programom, a päť až šesť rokov neurochirurgickej praxe (PGY-2-7). Väčšina rezidentských programov, ale nie všetky, má určitú zložku základného vedeckého alebo klinického výskumu. Neurochirurgovia môžu pokračovať v ďalšom vzdelávaní v rámci štipendijného programu, po ukončení rezidentúry alebo v niektorých prípadoch ako starší rezident. Tieto štipendiá zahŕňajú detskú neurochirurgiu, traumatológiu/neurokritickú starostlivosť, funkčnú a stereotaktickú chirurgiu, chirurgickú neuroonkológiu, rádiochirurgiu, neurovaskulárnu chirurgiu, intervenčnú neurorádiológiu, chirurgiu periférnych nervov, chirurgiu chrbtice a chirurgiu lebkovej bázy. Neurochirurgovia môžu absolvovať aj odbornú prípravu v oblasti neuropatológie a neurooftalmológie.

V Spojenom kráľovstve sa študenti musia dostať na lekársku fakultu. Získanie kvalifikácie MBBS (Bachelor of Medicine, Bachelor of Surgery) trvá 4-6 rokov v závislosti od smeru štúdia. Novokvalifikovaný lekár potom musí absolvovať dvojročnú základnú odbornú prípravu, čo je platený program odbornej prípravy v nemocnici alebo v klinickom prostredí, ktorý zahŕňa celý rad lekárskych špecializácií vrátane chirurgie. Mladí lekári sa potom uchádzajú o vstup na neurochirurgickú dráhu. Na rozdiel od iných chirurgických špecializácií má v súčasnosti svoju vlastnú nezávislú cestu odbornej prípravy, ktorá trvá približne osem rokov (ST1-8), kým je možné vykonať konzultantské skúšky.

Ošetrovateľstvo – Audiológia – Stomatológia – Dietológia – Záchranná zdravotná služba – Epidemiológia – Zdravotnícka technika – Pôrodná asistencia – Ošetrovateľstvo – Pracovná terapia – Optometria – Osteopatická medicína – Farmácia – Fyzioterapia – Lekár – Asistent lekára – Podiatria – Psychológia – Verejné zdravotníctvo – Respiračná terapia – Rečová a jazyková patológia

Kraniotómia – kraniektómia (dekompresívna kraniektómia) – kranioplastika

talamus a globus pallidus: Thalamotómia -Talamický stimulátor – Pallidotómia

komorový systém: Ventrikulostómia – Subokcipitálna punkcia – Monitorovanie intrakraniálneho tlaku

mozgu: Psychochirurgia (lobotómia, bilaterálna cingulotómia) – hemisférektómia – predná temporálna lobektómia

hypofýza: Hypofyzektómia

hipokampus: Amygdalohipokampectomy

Miecha a korene (kordotómia, rizotómia)

CT hlavy – Cerebrálna angiografia – Pneumoencefalografia – Echoencefalografia/Transkraniálny doppler – MRI mozgu a mozgového kmeňa – PET mozgu – SPECT mozgu – Myelografia

Elektroencefalografia – Lumbálna punkcia – Polysomnografia

Glasgow Coma Scale – Mini-mental state examination – NIH stroke scale – CHADS score

Ganglionektómia – Sympatektómia (endoskopická hrudná sympatektómia)

Axotómia – Neurektómia – Nervová biopsia

Štúdia vedenia nervov – elektromyografia

Magnetická rezonančná neurografia

anat (n/s/m/p/4/e/b/d/c/a/f/l/g)/phys/devp

noco (m/d/e/h/v/s)/cong/tumr, sysi/epon, injr

percent, iné (N1A/2AB/C/3/4/7A/B/C/D)

anat(h/r/t/c/b/l/s/a)/phys(r)/devp/prot/nttr/nttm/ntrp

noco/auto/cong/tumr, sysi/epon, injr

Afektívna neuroveda –
Behaviorálna neurológia –
behaviorálna genetika –
Behaviorálna neuroveda –
Rozhranie mozog-počítač –
Chronobiológia –
klinická neurofyziológia –
klinická neuroveda –
Kognitívna neuroveda –
výpočtová neuroveda –
konekomika –
vzdelávacia neuroveda –
Vývoj nervových systémov –
Zobrazovacia genetika –
Integratívna neuroveda –
Molekulárne bunkové poznávanie –
Vývoj neurónov –
Neurónové inžinierstvo –
Neurónové siete (umelé aj biologické) –
Neuroanatómia –
Neurobioinžinierstvo –
Neurobiológia –
Neurobiotika –
neurokardiológia –
neurochémia –
Neurochip –
Neurodegenerácia –
Neurovývojové poruchy –
Neurodiverzita –
Neuroekonomika –
Neuroembryológia –
Neuroendokrinológia –
neuroepidemiológia –
Neuroetika –
Neuroetológia –
Neurogastroenterológia –
Neurogenetika –
Neurozobrazovanie –
Neuroimunológia –
Neuroinformatika –
Neurointenzívna starostlivosť –
Neurolingvistika –
Neurológia –
Neurometria –
Neuromodulácia –
Neuromonitoring –
Neuroonkológia –
Neurooftalmológia –
Neuropatológia –
neurofarmakológia –
Neurofilozofia –
neurofyzika –
neurofyziológia –
Neuroplasticita –
Neuroprotetika –
Neuropsychiatria –
Neuropsychológia –
neurorádiológia –
Neuroregenerácia –
Neurorehabilitácia –
neurorobotika –
neurochirurgia –
Neurotechnológie –
neurológia –
Neurotoxín –
Neurotransmiter –
neurológia –
psychiatria –
Zmyslové neurovedy –
Sociálna neuroveda –
systémové neurovedy

Kategórie
Psychologický slovník

Brocovej oblasti

Brocovej oblasť je oblasť mozgu s funkciami spojenými s tvorbou reči.

Tvorba jazyka sa spája s Brocovou oblasťou od čias, keď Paul Pierre Broca zaznamenal poruchy u dvoch pacientov. Tí stratili schopnosť hovoriť po poranení zadného dolného čelného gyrusu mozgu. Odvtedy sa približná oblasť, ktorú identifikoval, stala známou ako Brocova oblasť a deficit v produkcii jazyka ako Brocova afázia. Brocovu oblasť dnes zvyčajne definujeme ako pars opercularis a pars triangularis dolného frontálneho gyrusu, ktoré sú na Brodmannovej cytoarchitektonickej mape znázornené ako oblasti 44 a 45. Štúdie chronickej afázie poukázali na zásadnú úlohu Brocovej oblasti v rôznych rečových a jazykových funkciách. Funkčné štúdie MRI ďalej identifikovali aj aktivačné vzorce v Brocovej oblasti spojené s rôznymi jazykovými úlohami. Pomalá deštrukcia Brocovej oblasti mozgovými nádormi však môže ponechať reč relatívne nedotknutú, čo naznačuje, že jej funkcie sa môžu presunúť do blízkych oblastí v mozgu.

Brocovu oblasť často identifikujeme vizuálnou kontrolou topografie mozgu buď podľa makroštruktúrnych orientačných bodov, ako sú sulky, alebo určením súradníc v určitom referenčnom priestore. V súčasnosti používaný Talairachov a Tournouxov atlas premieta Brodmannovu cytoarchitektonickú mapu na šablónu mozgu. Keďže Brodmannova parcelácia bola založená na subjektívnej vizuálnej kontrole cytoarchitektonických hraníc a Brodmann tiež analyzoval len jednu hemisféru jedného mozgu, výsledok je nepresný. Ďalej, vzhľadom na značnú variabilitu medzi mozgami z hľadiska tvaru, veľkosti a polohy vzhľadom na sulkalickú a gyrálnu štruktúru je výsledná presnosť lokalizácie obmedzená.

Napriek tomu sa Brocovej oblasti v ľavej hemisfére a jej homológu v pravej hemisfére zvyčajne hovorí o pars triangularis (PTr) a pars opercularis (POp) dolného frontálneho gyrusu. PTr a POp sú definované štrukturálnymi orientačnými bodmi, ktoré len pravdepodobne rozdeľujú dolný frontálny gyrus na prednú a zadnú cytoarchitektonickú oblasť 45 a 44 podľa Brodmannovej klasifikačnej schémy.

Oblasť 45 prijíma viac aferentných spojení z prefrontálnej kôry, horného temporálneho gyrusu a horného temporálneho sulku v porovnaní s oblasťou 44, ktorá má tendenciu prijímať viac aferentných spojení z motorických, somatosenzorických a dolných parietálnych oblastí.

Rozdiely medzi oblasťami 45 a 44 v cytoarchitektúre a v konektivite naznačujú, že tieto oblasti môžu plniť rôzne funkcie. Nedávne neurozobrazovacie štúdie skutočne ukázali, že PTr a Pop, ktoré zodpovedajú oblastiam 45 a 44, zohrávajú u človeka rôzne funkčné úlohy, pokiaľ ide o porozumenie jazyka a rozpoznávanie/porozumenie činnosti.

V nedávnej štúdii boli zachované mozgy Leborgnea a Lelonga (pacienti Paula Pierra Broca) znovu preskúmané pomocou objemovej magnetickej rezonancie s vysokým rozlíšením. Cieľom tejto štúdie bolo naskenovať mozgy v troch rozmeroch a podrobnejšie identifikovať rozsah kortikálnych aj subkortikálnych lézií. Štúdia sa tiež snažila lokalizovať presné miesto lézie vo frontálnom laloku vo vzťahu k tomu, čo sa teraz nazýva Brocovou oblasťou, s rozsahom subkortikálneho postihnutia.

Leborgne bol pacientom Paula Pierra Broca. Nebol schopný vytvoriť žiadne slová alebo vety. Jediné slovo, ktoré dokázal opakovane vysloviť, bolo „tan“. Po jeho smrti bola na povrchu ľavého čelného laloku objavená lézia.

Lelong bol ďalším pacientom Paula Pierra Broca. Aj on vykazoval zníženú produktívnu reč. Vedel povedať len päť slov: „áno“, „nie“, „tri“, „vždy“ a „lelo“ (nesprávna výslovnosť jeho vlastného mena). Pri pitve sa zistila lézia v rovnakej oblasti laterálneho frontálneho laloku ako u Leborgneho. Tieto dva prípady viedli Paula Pierra Brocu k presvedčeniu, že reč je lokalizovaná práve v tejto oblasti.

Vyšetrenie mozgov dvoch historických pacientov Paula Pierra Broca pomocou magnetickej rezonancie s vysokým rozlíšením prinieslo niekoľko zaujímavých zistení. Po prvé, výsledky MRI naznačujú, že k zníženej produktívnej reči pacientov mohli prispievať aj iné oblasti okrem Brocovej oblasti. Toto zistenie je významné, pretože sa zistilo, že hoci samotné lézie Brocovej oblasti môžu prípadne spôsobiť dočasné narušenie reči, nemajú za následok závažné zastavenie reči. Preto existuje možnosť, že afáziu označenú Broca ako absenciu produktívnej reči mohli ovplyvniť aj lézie v inej oblasti. Ďalším zaujímavým zistením je, že lézia, ktorú Broca kedysi považoval za rozhodujúcu pre reč, nie je presne tá istá oblasť, ktorá je dnes známa ako Brocova oblasť. Táto štúdia poskytuje ďalšie dôkazy o tom, že jazyk a poznávanie sú oveľa zložitejšie, ako sa kedysi predpokladalo, a zahŕňajú rôzne siete mozgových oblastí.

Hovorenie bez Brocovej oblasti

Zásadná úloha Brocovej oblasti pri tvorbe reči je spochybňovaná, pretože ju možno zničiť, pričom jazyk zostáva takmer nedotknutý. V jednom prípade počítačového inžiniera bol odstránený pomaly rastúci glióm. Nádor a operácia zničili ľavý dolný a stredný frontálny gyrus, hlavu kaudátového jadra, prednú končatinu vnútornej kapsuly a prednú inzulu. Tri mesiace po odstránení sa však vyskytli minimálne jazykové problémy a jedinec sa vrátil k svojej profesionálnej práci. Medzi tieto menšie problémy patrí neschopnosť tvoriť syntakticky zložité vety so zahrnutím viac ako dvoch subjektov, viacnásobných príčinných väzieb alebo hlásených rečí. Výskumníci ich vysvetlili ako dôsledok problémov s pracovnou pamäťou. Nedostatok jeho problémov pripísali aj rozsiahlym kompenzačným mechanizmom, ktoré umožnila nervová plasticita v blízkej mozgovej kôre a presun niektorých funkcií do homologickej oblasti v pravej hemisfére.

Dlho sa predpokladalo, že úloha Brocovej oblasti je viac venovaná produkcii jazyka ako jeho porozumeniu. Najnovšie dôkazy však ukazujú, že Brocovej oblasť zohráva významnú úlohu aj pri porozumení jazyka. Pacienti s léziou v Brocovej oblasti, ktorí vykazujú agramatickú rečovú produkciu, vykazujú aj neschopnosť používať syntaktické informácie na určenie významu viet. Aj viaceré neurozobrazovacie štúdie poukazujú na zapojenie Brocovej oblasti, najmä pars opercularis ľavého dolného frontálneho gyrusu, počas spracovania zložitých viet. Ďalej sa nedávno zistilo, že pri experimentoch s funkčnou magnetickou rezonanciou (fMRI) zahŕňajúcich veľmi dvojznačné vety dochádza k väčšej aktivácii dolného frontálneho gyrusu. Úroveň aktivity v dolnom frontálnom gyri a úroveň lexikálnej dvojznačnosti sú teda navzájom priamo úmerné, a to z dôvodu zvýšených požiadaviek na vyhľadávanie informácií spojených s vysoko dvojznačným obsahom.

Rozpoznávanie a výroba akcií

Nedávne experimenty ukázali, že Brocovej oblasť sa podieľa na rôznych kognitívnych a percepčných úlohách. Jeden z dôležitých príspevkov Brodmannovej oblasti 44 sa nachádza aj v procesoch súvisiacich s motorikou. Pozorovanie zmysluplných tieňov rúk pripomínajúcich pohybujúce sa zvieratá aktivuje frontálnu jazykovú oblasť, čo dokazuje, že Brocova oblasť skutočne zohráva úlohu pri interpretácii konania iných. Aktivácia BA 44 bola zaznamenaná aj počas vykonávania úchopu a manipulácie.

Gestá súvisiace s rečou

Predpokladá sa, že keďže gestá spojené s rečou by mohli znížiť lexikálnu alebo vetnú nejednoznačnosť, porozumenie by sa malo zlepšiť v prítomnosti gest spojených s rečou. V dôsledku zlepšenia porozumenia by sa malo znížiť zapojenie Brocovej oblasti.

Mnohé neurozobrazovacie štúdie tiež preukázali aktiváciu Brocovej oblasti pri znázorňovaní zmysluplných gest rukou. Nedávna štúdia ukázala dôkazy, že slovo a gesto súvisia na úrovni prekladu konkrétnych aspektov gesta, ako je cieľ a zámer. Toto zistenie, že aspekty gest sa v Brocovej oblasti prekladajú do slov, vysvetľuje aj vývoj jazyka z hľadiska evolúcie. Mnohí autori totiž navrhli, že reč sa vyvinula z primitívnej komunikácie, ktorá vznikla z gest., (pozri nižšie Vývoj jazyka).

Afázia je získaná jazyková porucha, ktorá postihuje všetky modality, ako je písanie, čítanie, hovorenie a počúvanie, a je dôsledkom poškodenia mozgu. Často ide o chronický stav, ktorý spôsobuje zmeny vo všetkých oblastiach života.

Brocova afázia vs. iné afázie

Pacienti s Brocovou afáziou sú jedinci, ktorí vedia, „čo chcú povedať, len to nevedia dostať von“. Zvyčajne sú schopní porozumieť tomu, čo sa im hovorí, ale nie sú schopní plynule hovoriť. Táto afázia sa tiež nazýva non-fluentná afázia. Medzi ďalšie príznaky môžu patriť problémy s plynulosťou, artikuláciou, hľadaním slov, opakovaním slov a tvorbou a chápaním zložitých gramatických viet, a to ústne aj písomne. Tieto charakteristiky ich odlišujú od ostatných osôb s inými typmi afázie. Iné typy afázie môžu mať väčšie ťažkosti s porozumením toho, čo sa im hovorí. Môžu mať tiež väčšie problémy s čítaním a písaním ako jedinci s Brocovou afáziou. Zatiaľ čo jedinci s Brocovou afáziou majú aj dobrú schopnosť sebakontroly svojho jazykového prejavu, iné typy afázie si môžu viac neuvedomovať svoj jazykový výkon. Aj miesto lézie (poškodená oblasť mozgu) sa medzi jednotlivými afáziami líši.

Na vysvetlenie vzniku ľudského jazyka bolo navrhnutých niekoľko modelov. Predpokladá sa, že ľudský jazyk sa vyvinul ako „evolučné zdokonalenie implicitného komunikačného systému, ktorý bol prítomný už u nižších primátov a ktorý je založený na súbore reprezentácií činností zameraných na cieľ rukou/ústami“. Túto myšlienku podporuje aj nedávne zistenie, že pri zmysluplnom pozorovaní činnosti je zapojená Brocovej oblasť. Predpokladalo sa, že predchodca Brocovej oblasti sa podieľa na vytváraní významov akcie prostredníctvom interpretácie motorických sekvencií z hľadiska cieľa. Ďalej sa tvrdilo, že táto schopnosť sa mohla zovšeobecniť počas evolúcie, ktorá dala tejto oblasti schopnosť zaoberať sa významami. Aktivované frontálne jazykové oblasti pri pozorovaní zmysluplných tieňov rúk pripomínajúcich pohybujúce sa zvieratá poskytujú dôkaz, že ľudský jazyk sa mohol vyvinúť z neurálnych substrátov, ktoré sa už podieľali na rozpoznávaní gest. Štúdia teda preukázala ľudskú Brocovu oblasť ako motorické centrum pre reč, zostavovanie a dekódovanie komunikačných gest. V súlade s touto myšlienkou je, že nervový substrát, ktorý reguloval motorickú kontrolu u spoločného predka opíc a ľudí, bol s najväčšou pravdepodobnosťou modifikovaný na zlepšenie kognitívnych a jazykových schopností.

Ďalšie nedávne zistenie ukázalo významné oblasti aktivácie v subkortikálnych a neokortikálnych oblastiach počas produkcie komunikačných manuálnych gest a hlasových signálov u šimpanzov. Údaje, ktoré naznačujú, že šimpanzy zámerne produkujú manuálne gestá, ako aj hlasové signály na komunikáciu s ľuďmi, ďalej naznačujú, že prekurzory ľudskej reči sú prítomné na behaviorálnej aj neuronanatomickej úrovni.

horný frontálny gyrus (4l, 6l, 8l) – stredný frontálny gyrus (9l, 10l, 46)

Dolný frontálny gyrus: 11l – 47-Pars orbitalis – Brocova oblasť (44-Pars opercularis, 45-Pars triangularis)

Horný frontálny sulcus – Dolný frontálny sulcus

Precentrálny gyrus – Precentrálny sulkus

Horný frontálny gyrus (4m, 6m) – Mediálny frontálny gyrus (8m, 9m)

Paraterminálny gyrus/Paraolfaktívna oblasť (12) – Priamy gyrus (11m) – Orbitálne gyry/Orbitofrontálna kôra (10m, 11m, 12) – Ventromediálna prefrontálna kôra (10m) – Subkallosálna oblasť (25)

Čuchový sulkus – Orbitálne sulky

Paracentrálny lalok (4) – Paracentrálny sulkus

Primárna motorická kôra (4) – Premotorická kôra (6) – Doplnková motorická oblasť (6) – Frontálne očné polia (8)

Horný temenný lalok (5l, 7l) – Dolný temenný lalok (40-Supramarginálny gyrus, 39-Angulárny gyrus) – Temenný operkulum (43)

Paracentrálny lalok (1m, 2m, 3m, 5m) – Precuneus (7m)

Postcentrálny gyrus/primárna somatosenzorická kôra (1 – 2 – 3) – Sekundárna somatosenzorická kôra (5) – Zadná parietálna kôra (7)

Okcipitálny pól mozgu – Laterálny okcipitálny gyrus (18, 19) – Lunátna brázda – Priečna okcipitálna brázda

Primárna zraková kôra (17) – Cuneus – Lingválny gyrusCalcarine fissure

Priečny spánkový gyrus/ primárna sluchová kôra (41, 42) – horný spánkový gyrus (38, 22/Wernickeho oblasť) – stredný spánkový gyrus (21) – dolný spánkový gyrus (20)

Horný spánkový sulkus – Dolný spánkový sulkus

Fusiformný gyrus (37) Mediálny temporálny lalok (27 – 28 – 34 – 35 – 36)

Centrálny (frontálny+parietálny) – Laterálny (frontálny+parietálny+temporálny) – Parieto-okcipitálny – Preokcipitálny zárez

Mediálny pozdĺžny – Cingulárny (frontálny+cingulárny) – Kolaterálny (temporálny+okcipitálny) – Kalosálny sulkus

predná časť (Entorhinálna kôra, Perirhinálna kôra) – Zadný parahipokampálny gyrus – Prepyriformná oblasť

Subgenuálna oblasť (25) – Predný cingulát (24, 32, 33) – Zadný cingulát (23, 31)

Istmus cingulárneho gyrusu: retrospleniálna kôra (26, 29, 30)

Hipokampálny sulkus – Fimbria hipokampu – Dentátny gyrus – Rhinálny sulkus

Suprakalózny gyrus – Uncus

Dlhý gyrus ostrovčeka – Krátke gyry ostrovčeka – Cirkulárny sulkus ostrovčeka

Operculum – Póly mozgových hemisfér

anat (n/s/m/p/4/e/b/d/c/a/f/l/g)/phys/devp

noco (m/d/e/h/v/s)/cong/tumr, sysi/epon, injr

percent, iné (N1A/2AB/C/3/4/7A/B/C/D)