Kategórie
Psychologický slovník

Para-metoxymetkatinón

Chemická štruktúra parametoxymetakatinónu
Para-metoxymetkatinón

Para-metoxymetakatinón (4-metoxymetakatinón, bk-PMMA, PMMC, methedrón) je stimulačná a entaktogénna droga z chemických tried fenetylamínu, amfetamínu a katinónu. Je úzko príbuzný para-metoxymetamfetamínu (PMMA) a pravdepodobne má podobný farmakologický profil. Vo väčšine krajín sveta je legálny, vo Švédsku je však klasifikovaný ako droga, v dôsledku čoho ho možno kúpiť online, čo vedie k rastúcemu užívaniu tejto drogy.

Subjektívne účinky boli hlásené podobne ako pri MDMA a amfetamínoch a vyvolávajú reakcie, ako je zvýšená spoločenskosť, eufória, disinhibícia, energia a stimulácia. Fyziologické reakcie zahŕňajú rozšírenie zreničiek, hypertermiu a zvýšené potenie.

Keďže 4-metoxymetkatinón je relatívne nová droga s malou expozíciou u ľudí, existuje mnoho obáv z možných škodlivých účinkov na zdravie, ktoré v súčasnosti nie sú známe. Treba poznamenať, že niektoré analógy amfetamínu obsahujúce parametoxy skupinu sú známe tým, že spôsobujú ťažkú hypertermiu a dokonca smrť v dôsledku súbežného pôsobenia MAOI a uvoľňovania monoamínov.

Adaphenoxate –
Adapromín –
Amantadín –
Bromantán –
Chlodantán –
Gludantan –
Memantín –
Midantane

8-chlórteofylín – 8-cyklopentylteofylín – 8-fenylteofylín – aminofylín – kofeín – CGS-15943 – dimetazín – paraxantín – SCH-58261 – teobromín – teofylín

Cyklopentamín – cypenamín
Cypenamín – cyprodenát
Cyprodenát –
Heptaminol –
Izometheptén –
Metylhexanamín –
Oktodrín –
Propylhexedrín –
Tuaminoheptán

Benocyklidín –
Dieticyklidín –
Esketamín –
Eticyklidín –
Gacyclidine –
Ketamín –
Fencyklamín –
Fencyklidín –
Rolicyklidín –
Tenocyklidín –
Tiletamín

6-Br-APB –
SKF-77434 –
SKF-81297 –
SKF-82958

A-84543 –
A-366,833 –
ABT-202 –
ABT-418 –
AR-R17779 –
Altiniklín –
Anabasín –
Arekolín –
Kotinín –
Cytisine –
Dianiklín –
Epibatidín –
Epiboxidín –
TSG-21 –
Ispronicline –
Nikotín –
PHA-543,613 –
PNU-120,596 –
PNU-282,987 –
Pozanicline –
Rivanicline –
Sazetidín A –
SIB-1553A –
SSR-180,711 –
TC-1698 –
TC-1827 –
TC-2216 –
TC-5619 –
Tebanicline –
UB-165 –
Vareniklín –
WAY-317 538

Anatoxín-a –
Bikukulín –
DMCM –
Flurothyl –
Gabazín –
Pentetrazol –
Pikrotoxín –
Strychnín –
Thujone

Adrafinil –
Armodafinil –
CRL-40941 –
Modafinil

4-metylaminorex – Aminorex
Aminorex –
Clominorex –
Cyklazodón –
Fenozolón –
Fluminorex –
Pemoline –
Thozalinon

1-(4-metylfenyl)-2-aminobután –
1-Phenyl-2-(piperidin-1-yl)pentan-3-one –
1-metylamino-1-(3,4-metyléndioxyfenyl)propán –
2-fluóramfetamín –
2-fluórmetamfetamín – – 2-OH-PEA
2-OH-PEA – – 2-FENYL
2-fenyl-3-aminobután – – 2-OH-PEA
2-fenyl-3-metylaminobután – – 2,3-MDA
2,3-MDA – – 3-FLUÓRAMFETAMÍN
3-fluóramfetamín – – 3-fluóretamfetamín
3-fluóretamfetamín – – 2,3-MDA
3-fluórmetkatinón – – 3-metoxyamfetamín
3-metoxyamfetamín – – 3-metylamfetamín
3-metylamfetamín – – 3,4-DMMC
3,4-DMMC – 4-BMC
4-BMC – 4-ETYLAMFETAMÍN
4-etyllamfetamín – – 4-FA
4-FA –
4-FMA –
4-MA –
4-MMA –
4-MTA –
6-FNE –
Alfetamín –
α-etylfenetylamín –
Amfecloral –
Amfepentorex –
Amfepramón –
Amidefrín – Amfetamín (dextroamfetamín, levoamfetamín)
Amfetamín (dextroamfetamín, levoamfetamín) – Amfetamín
Amfetamín – – Arbutamín
Arbutamín –
β-metylfenetylamín – β-fenylmetamfetamín
β-fenylmetamfetamín – – Benfluorex
Benfluorex – Benzedron
Benzedrón – Benzfetamín
Benzfetamín – Benzedron – Benzfetamín
BDB (J) –
BOH (Hydroxy-J) –
BPAP –
Buphedron –
Bupropión (amfebutamón) –
Butylón –
Cathine –
Katinón –
Chlórfentermín –
Cinnamedrine –
Klenbuterol –
Clobenzorex –
Cloforex –
Clortermine –
D-deprenyl –
Denopamín –
Dimetoxyamfetamín –
Dimetylamfetamín – dimetylkatinón (dimetylpropión, metamfepramón)
Dimetylkatinón (dimetylpropión, metamfepramón) – – Dobutamín
Dobutamín – – DOPA (dextrodopa)
DOPA (dextrodopa, levodopa) – dopamín
Dopamín – Dopexamín
Dopexamín –
Droxidopa –
EBDB (Ethyl-J) –
Efedrín –
Epinefrín (adrenalín) –
Epinín (deoxyepinefrín) – Etafedrín
Etafedrín – etkatinón
Etikatinón (etylpropión) – Etylamfetamín (etylpropión)
Etylamfetamín (etilamfetamín) – Etylnorepinefrín (adrenalín)
Etylnorepinefrín (butanefrín) – etylón
Etylón – etylefrín
Etylefrín – Etylpropión (Etylpropión)
Famprofazón – fenbutrazát
Fenbutrazát – – Fenbutrazát
Fencamín –
Fenetylín – fenetylamín
Fenfluramín (dexfenfluramín) – – Fenmetramid
Fenmetramid – Fenproporex
Fenproporex – Fenmetramid
Flefedrón – Fludorex
Fludorex – Furfenorex
Furfenorex – Gepefrín
Gepefrín –
HMMA –
Hordenine –
Ibopamín –
IMP –
Indanylamfetamín –
Isoetarine –
Izoetkatinón –
Izoprenalín (izoproterenol) – – L-deprenyl (selegilín)
L-deprenyl (selegilín) – lefetamín
Lefetamín – lisdexamfetamín
Lisdexamfetamín – Lophophine (Homomyrist)
Lophophine (Homomyristicillamine) – Manifaxine
Manifaxín – – Manifaxín (homomyristikamín)
MBDB (metyl-J; „Eden“) – – MDA (tenamfetamín)
MDA (tenamfetamín) – MDBU
MDBU – – MDEA („EVE“)
MDEA („Eve“) – – MDMA („Extáza“)
MDMA („Extáza“, „Adam“) – – MDMPEA (homarylamín)
MDMPEA (homarylamín) – MDOH
MDOH –
MDPR –
MDPEA (homopiperonylamín) – – Mefenorex
Mefenorex – Mefedron
Mefedrón –
Mefentermín –
Metanefrín –
Metaraminol – metamfetamín
Metamfetamín (desoxyefedrín, metedrín; dextrometamfetamín, levometamfetamín) – – Metoxamín
Metoxamín – – Metoxyfenamín
Metoxyfenamín – – Metoxyfenamín
MMA –
Metkatinón (metylpropión) – Methedron
Metedrón – Metoxyfenamín
Metoxyfenamín – – metylón
Metylón –
MMDA –
MMDMA –
MMMA –
Morazone –
N-benzyl-1-fenetilamin – – N
N,N-dimetylfenetylamín – – Naftylamfetamín
Nafylamfetamín – – Nisoxetín
Nisoxetín – noradrenalín (noradrenalín)
Norepinefrín (noradrenalín) – noradrenalín
Norfenefrín – noradrenalín (noradrenalín)
Norfenfluramín – noradrenalín (noradrenalín)
Normetanefrín – oktopamín
Oktopamín –
Orciprenalín –
Ortetamín –
Oxilofrin –
Paredrín (norfolydrín, oxamfetamín, mykadrín) –
PBA –
PCA –
PHA –
Pargyline –
Pentorex (Phenpentermine) – – Pentylone
Pentylón –
Fendimetrazín –
Fenmetrazín –
Fenprometamín –
Fentermín –
Fenylalanín –
Fenylefrín (neosynefrín) –
Fenylpropanolamín –
Pholedrine –
PIA –
PMA –
PMEA –
PMMA –
PPAP –
Prenylamín –
Propylamfetamín –
Pseudoefedrín –
Radafaxine –
Ropinirol – salbutamol (albuterol; levosalbutamol)
Salbutamol (albuterol; levosalbutamol) – – Sibutramín
Sibutramín – Synefrín (Oxedrine)
Synefrín (Oxedrine) – Teodrenalín
Teodrenalín – Tiflorex (Flután)
Tiflorex (Flutiorex) – Tranylcypromín
Tranylcypromín – tyramín
Tyramín – Tyrozín
Tyrozín –
Xamoterol – Xylopropamín
Xylopropamín – Zylofuramín
Zylofuramín

2C-B-BZP –
BZP –
CM156 –
DBL-583 – GBR
GBR-12783 –
GBR-12935 –
GBR-13069 –
GBR-13098 –
GBR-13119 –
MeOPP –
MBZP –
Vanoxerín

1-Benzyl-4-(2-(difenylmetoxy)etyl)piperidín –
1-(3,4-dichlórfenyl)-1-(piperidín-2-yl)bután –
2-benzylpiperidín –
2-metyl-3-fenylpiperidín –
3,4-dichlórmetylfenidát –
4-benzylpiperidín –
4-metylfenidát –
Deoxypipradrol –
Difemetorex –
Difenylpyralín –
Etylfenidát –
Metylnaftidát –
Metylfenidát (dexmetylfenidát) –
N-metyl-3β-propyl-4β-(4-chlórfenyl)piperidín –
Nocaine –
Phacetoperane –
Pipradrol –
SCH-5472

2-difenylmetylpyrolidín – α-PPP
α-PPP –
α-PBP –
α-PVP –
Difenylprolinol –
MDPPP –
MDPBP –
MDPV –
MPBP –
MPHP –
MPPP –
MOPPP –
Naphyrone –
PEP –
Prolintane –
Pyrovalerón

3-CPMT –
3′-chlór-3α-(difenylmetoxy)tropán –
3-pseudotropyl-4-fluorobenzoát –
4′-fluorokokaín –
AHN-1055 –
Altropán (IACFT) –
Brasofenzín –
CFT (WIN 35,428) –
β-CIT (RTI-55) – Kokaetylén
Kokaetylén –
Kokaín – dichlórpan (RTI-111)
Dichlórpan (RTI-111) – – Difluórpín
Difluoropín – FE-β-CPPIT
FE-β-CPPIT – FE-β-CPPIT
FP-β-CPPIT – Ioflupán (123I)
Ioflupán (123I) – Norkokaín
Norkokaín – PIT
PIT –
PTT –
RTI-31 –
RTI-32 –
RTI-51 –
RTI-105 –
RTI-112 –
RTI-113 –
RTI-117 –
RTI-120 – – RTI-120
RTI-121 (IPCIT) –
RTI-126 –
RTI-150 –
RTI-154 – – RTI-171
RTI-171 –
RTI-177 –
RTI-183 –
RTI-193 –
RTI-194 –
RTI-199 –
RTI-202 –
RTI-204 –
RTI-229 –
RTI-241 –
RTI-336 –
RTI-354 –
RTI-371 –
RTI-386 – – SALICYLMETYLEKGONÍN
Salicylmetylekgonín – – – Salicylmetylekgonín
Tesofenzín –
Troparil (β-CPT, WIN 35,065-2) – – Tropoxán
Tropoxán –
WF-23 – – WF-33
WF-33 –
WF-60

1-(tiofén-2-yl)-2-aminopropán – – 2-amino-1,2-dihydronaftalén
2-amino-1,2-dihydronaftalén – – 2-aminoindán
2-aminoindán – – 2-aminotetralín
2-aminotetralín –
2-MDP – – 2-FENYLCYKLOHEXÁN
2-fenylcyklohexylamín – – 2-aminoindán
2-fenyl-3,6-dimetylmorfolín – – 3-benzhydrylmorfolín
3-benzhydrylmorfolín – – 3,3-difenylcyklohexylamín
3,3-difenylcyklobutanamín – – 5-(2-amino-propyl)
5-(2-aminopropyl)indol – – 5-jodo-2-amino
5-jodo-2-aminoindán –
AL-1095 –
Kyselina amfonová –
Amineptín –
Amifenazoly –
Atipamezol –
Atomoxetín (tomoxetín) –
Bemegrid – Bemegrid (Tomoxetín) – Bemegrid
Benzydamín –
BTQ –
BTS 74,398 –
Carphedon –
Ciclazindol –
Cilobamín –
Klofencikán –
Cropropamid –
Krotetamid – – Cypenamín
Cypenamín –
D-161 –
Diklofenzín –
Dimetokaín –
Efaroxan –
Etamivan –
EXP-561 –
Fencamfamín –
Fenpentadiol –
Feprosidnine –
G-130 –
Gamfexine –
Gilutenzín –
GSK1360707F –
GYKI-52895 –
Hexakylonát –
Idazoxan –
Indanorex –
Indatralín –
JNJ-7925476 –
JZ-IV-10 –
Lazabemid –
Leptaklín –
Levopropylhexedrín –
Lomevactone –
LR-5182 –
Mazindol –
Mazindol – meklofenoxát
Medifoxamín –
Mefexamid –
Mesocarb –
Metastyridón –
Metiopropamín – – N-metyl-3-fenylnorbornan-2-amín
N-metyl-3-fenylnorbornan-2-amín – – Nefopam
Nefopam –
Niketamid –
Nomifenzín –
O-2172 –
Oxaprotiline –
Ftalimidopropiofenón –
PNU-99,194 – PROPYLHEXEDRÍN
Propylhexedrín –
PRC200-SS –
Rasagilín – Rauwolscine
Rauvolskín – – Chlorid rubídia
Chlorid rubídia –
Setazindol –
Tametraline –
Tandamín –
Trazium –
UH-232 –
Yohimbin

Agonisty: 5-FNE – 6-FNE – amidefrín – anizodamín – anizodín – cirazolín – dipivefrín – dopamín – efedrín – adrenalín – etilefrín – etylnorepinefrín – indanidín – levonordefrín – metaraminol – – Metoxamín – metyldopa – midodrín – nafazolín – noradrenalín – oktopamín – oxymetazolín – fenylefrín – fenylpropanolamín – pseudoefedrín – synefrín – tetrahydrozolínAntagonisty: Abanoquil – Adimolol – Ajmalicin – Alfuzosin – Amosulalol – Arotinolol – Atiprosin – Benoxathian – Buflomedil – Bunazosin – Carvedilol – CI-926 – Corynanthine – Dapiprazol – DL-017 – Domesticin – Doxazosin – Eugenodilol – Fenspirid – GYKI-12,743 – GYKI-16,084 – Indoramin – Ketanserin – L-765,314 – Labetalol – Mefendioxan – Metazosin – Monatepil – Moxisylyte (Thymoxamine) – Naftopidil – Nantenin – Neldazosin – Nicergoline – Niguldipine – Pelanserin – Phendioxan – Phenoxybenzamine – Phentolamine – Piperoxan – Prazosin – Quinazosin – Ritanserin – RS-97,078 – SGB-1,534 – Silodosin – SL-89.0591 – Spiperon – Talipexol – Tamsulozín – Terazosín – Tibalosín – Tiodazosín – Tipentosín – Tolazolín – Trimazosín – Upidosín – Urapidil – Zolertín* Všimnite si, že mnohé TCA, TeCA, antipsychotiká, ergolíny a niektoré piperazíny ako buspirón, trazodón, nefazodón, etoperidón a mepiprazol antagonizujú aj α1-adrenergné receptory, čo prispieva k ich vedľajším účinkom, ako je ortostatická hypotenzia.

Agonisty: (R)-3-nitrobifenylín – 4-NEMD – 6- Levonordefrín – Lofexidín – Medetomidín – Metyldopa – Mivazerol – Nafazolín – Norepinefrín (Noradrenalín) – Fenylpropanolamín – Piperoxan – Pseudoefedrín – Rilmenidín – Romifidín – Talipexol – Tetrahydrozolín – Tizanidín – Tolonidín – Urapidil – Xylazin – XylometazolínAntagonisti: 1-PP – Adimolol – Aptazapín – Atipamezol – BRL-44408 – Buflomedil – Cirazolín – Efaroxan – Smirtazapín – Fenmetozol – Fluparoxan – GYKI-12,743 – GYKI-16,084 – Idazoxan – Mianserín – Mirtazapín – MK-912 – NAN-190 – Olanzapín – Fentolamín – Fenoxybenzamín – Piperoxan – Piribedil – Rauvolskín – Rotigotín – SB-269,970 – setiptilín – spiroxatrín – sunepitrón – tolazolín – johimbín* Všimnite si, že mnohé atypické antipsychotiká a azapiróny, ako buspiron a gepiron (prostredníctvom metabolitu 1-PP), antagonizujú aj α2-adrenergné receptory.

Agonisty: 2-FNE – 5-FNE – Amibegron – Arbutamín – Arformoterol – Arotinolol – BAAM – Bambuterol – Befunolol – Bitolterol – Broxaterol – Buphenin – Karbuterol – Cimaterol – Klenbuterol – Denopamín – Deterenol – Dipivefrin – Dobutamín – Dopamín – Dopexamín – Efedrín – Epinefrín (Adrenalín) – Etafedrín – Etilefrín – Etylnorepinefrín – Fenoterol – Formoterol – Hexoprenalín – Higenamín – Indakaterol – Izoetarín – Izoprenalín (Izoproterenol) – Izoxsuprín – Labetalol – Levonordefrín – Levosalbutamol – Mabuterol – Metoxyfenamín – Metyldopa – N-Izopropyloktopamín – noradrenalín (noradrenalín) – orciprenalín – oxifedrín – fenylpropanolamín – pirbuterol – prenalterol – raktopamín – prokaterol – pseudoefedrín – reproterol – rimiterol – ritodrín – salbutamol (albuterol) – salmeterol – solabegron – terbutalín – tretochinol – tulobuterol – xamoterol – zilpaterol – zinterolAntagonisti: Acebutolol – Adaprolol – Adimolol – Afurolol – Alprenolol – Alprenoxim – Amosulalol – Ancarolol – Arnolol – Arotinolol – Atenolol – Befunolol – Betaxolol – Bevantolol – Bisoprolol – Bopindolol – Bormetolol – Bornaprolol – Brefonalol – Bucindolol – Bucumolol – Bufetolol – Buftiralol – Bufuralol – Bunitrolol – Bunolol – Bupranolol – Burocrolol – Butaxamín – Butidrín – Butofilol – Kapsinolol – Karazolol – Carpindolol – Karteolol – karvedilol – celiprolol – cetamolol – cykloprolol – cinamolol – chlóranolol – kyanopindolol – dalbraminol – dexpropranolol – diacetolol – dichloroizoprenalín – dihydroalprenolol – dilevalol – diprafenon – Draquinolol – Dropranolol – Ecastolol – Epanolol – Ericolol – Ersentilid – Esatenolol – Esmolol – Esprolol – Eugenodilol – Exaprolol – Falintolol – Flestolol – Flusoxolol – Hydroxycarteolol – Hydroxytertatolol – ICI-118,551 – Idropranolol – Indenolol – Indopanolol – Jodokyanopindolol – Iprocrolol – Isoxaprolol – Isamoltán – Labetalol – Landiolol – Levobetaxolol – Levobunolol – Levocykloprolol – Levomoprolol – Medroxalol – Mepindolol – Metalol – Metipranolol – Metoprolol – Moprolol – Nadolol – Nadoxolol – Nafetolol – Nebivolol – Neraminol – Nifenalol – Nipradilol – Oberadilol – Oxprenolol – Pacrinolol – Pafenolol – Pamatolol – Pargolol – Parodilol – Penbutolol – Penirolol – PhQA-33 – Pindolol – Pyrepolol – Practolol – Primidolol – Procinolol – Pronethalol – Propafenon – Propranolol – Ridazolol – Ronactolol – Soquinolol – Sotalol – Spirendolol – SR 59230A – Sulfinalol – TA-2005 – Talinolol – Tazolol – Teoprolol – Tertatolol – Terthianolol – Tienoxolol – Tilisolol – Timolol – Tiprenolol – Tolamolol – Toliprolol – Tribendilol – Trigevolol – Xibenolol – Xipranolol

Selektívne inhibítory spätného vychytávania noradrenalínu: Amedalin – Atomoxetin (Tomoxetin) – Ciclazindol – Daledalin – Esreboxetin – Lortalamin – Mazindol – Nisoxetin – Reboxetin – Talopram – Talsupram – Tandamin – Viloxazin; Inhibítory spätného vychytávania noradrenalínu a dopamínu: Amineptín – Bupropión (amfebutamón) – Fencamín – Fencamfamín – Lefetamín – Levofacetoperán – LR-5182 – Manifaxín – Metylfenidát – Nomifenzín – O-2172 – Radafaxín; inhibítory spätného vychytávania sérotonínu a noradrenalínu: Bicifadín – desvenlafaxín – duloxetín – eklanamín – levomilnacipran – milnacipran – sibutramín – venlafaxín; inhibítory spätného vychytávania sérotonínu, noradrenalínu a dopamínu: Brasofenzín – diklofenzín – DOV-102 677 – DOV-21 947 – DOV-216 303 – JNJ-7925476 – JZ-IV-10 – metylnaftidát – nafirón – NS-2359 – PRC200-SS – SEP-225 289 – SEP-227 162 – tesofenzín; tricyklické antidepresíva: Amitriptylín – butriptylín – kyanopramín – klomipramín – desipramín – dosulepín – doxepín – imipramín – lofepramín – melitracén – nortriptylín – protriptylín – trimipramín; tetracyklické antidepresíva: Amoxapín – Maprotilín – Mianserín – Oxaprotilín – Setiptilín; Iné: Kokaín – CP-39,332 – EXP-561 – Fezolamín – Ginkgo biloba – Nefazodón – Nefopam – Pridefrín – Tapentadol – Tramadol – Ziprasidón

Ibogaín – rezerpín – tetrabenazín

3-jodotyrozín – akvajamycín – bulbokapnín – metyrozín – oudenón

Benserazid – karbidopa – genisteín – metyldopa

Bupikomid – Disulfiram – Dopastín – Kyselina fusarová – Nepicastat – Kyselina fenopikolinová – Tropolón

CGS-19281A – SKF-64139 – SKF-7698

Neselektívne: Benmoxín – karoxazón – echinopsidín – furazolidon – hydralazín – indantadol – iproklozid – iproniazid – izokarboxazid – izoniazid – linezolid – mebanazín – metfendrazín – nialamid – oktamoxín – paraxazón – fenelzín – feniprazín – fenopropazín – pivalylbenzhydrazín – prokarbazín – safrazín – tranylcypromín; selektívny MAO-A: Amiflamín – bazinaprín – befloxatón – befol – brofaromín – cimoxatón – klorgilín – esuprón – harmalové alkaloidy (harmín, harmalín, tetrahydroharmín, harman, norharman atď.) – metylénová modrá – metralindol – minaprín – moklobemid – pirlindol – sercloremín – tetrindol – toloxatón – tyrima; MAO-B selektívne: D-deprenyl – selegilín (L-deprenyl) – ladostigil – lazabemid – milacemid – mofegilín – pargylín – rasagilín* Všimnite si, že inhibítory MAO-B ovplyvňujú aj hladiny noradrenalínu/epinefrínu, pretože inhibujú rozklad ich prekurzora dopamínu.

L-fenylalanín → L-tyrozín → L-DOPA (levodopa) → dopamín – L-DOPS (droxidopa)

Železo železnaté (Fe2+) – S-denozyl-L-Metionín – Vitamín B3 (niacín, nikotínamid → NADPH) – Vitamín B6 (pyridoxín, pyridoxamín, pyridoxal → pyridoxalfosfát) – Vitamín B9 (kyselina listová → kyselina tetrahydrofolová) – Vitamín C (kyselina askorbová) – Zinok (Zn2+)

Zosilňovače aktivity: BPAP – PPAP; blokátory uvoľňovania: betanidín – bretylium – guanadrel – guanazodín – guanlofín – guanetidín – guanoxán; toxíny: oxidopamín (6-hydroxydopamín)

Deserpidín – Ibogaín – Reserpín – Tetrabenazín

3-jodotyrozín – akvajamycín – bulbokapnín – metyrozín – oudenón

Benserazid – karbidopa – genisteín – metyldopa

Neselektívne: Benmoxín – karoxazón – echinopsidín – furazolidon – hydralazín – indantadol – iproklozid – iproniazid – izokarboxazid – izoniazid – linezolid – mebanazín – metfendrazín – nialamid – oktamoxín – paraxazón – fenelzín – feniprazín – fenopropazín – pivalylbenzhydrazín – prokarbazín – safrazín – tranylcypromín; selektívny MAO-A: Amiflamín – bazinaprín – befloxatón – befol – brofaromín – cimoxatón – klorgilín – esuprón – harmalové alkaloidy (harmín, harmalín, tetrahydroharmín, harman, norharman atď.) – metylénová modrá – metralindol – minaprín – moklobemid – pirlindol – sercloremín – tetrindol – toloxatón – tyrima; MAO-B selektívne: D-deprenyl – L-deprenyl (selegilín) – ladostigil – lazabemid – milacemid – mofegilín – pargylín – rasagilín

Bupikomid – Disulfiram – Dopastín – Kyselina fusarová – Nepicastat – Kyselina fenopikolinová – Tropolón

L-fenylalanín → L-tyrozín → L-DOPA (levodopa)

Železo železité (Fe2+) – Tetrahydrobiopterín – Vitamín B3 (niacín, nikotínamid → NADPH) – Vitamín B6 (pyridoxín, pyridoxamín, pyridoxal → pyridoxalfosfát) – Vitamín B9 (kyselina listová → kyselina tetrahydrofolová) – Vitamín C (kyselina askorbová) – Zinok (Zn2+)

Zlepšovače aktivity: Toxíny: Benzofuranylpropylaminopentán (BPAP) – Fenylpropylaminopentán (PPAP); Toxíny: Oxidopamín (6-hydroxydopamín)

Agonisty: Gastroprokinetiká: Cinitaprid – Cisaprid – Dazoprid – Metoklopramid – Mosaprid – Prucaloprid – Renzaprid – Tegaserod – Velusetrag – Zakoprid; Iné: 5-MT – BIMU8 – CJ-033,466 – PRX-03140 – RS-67333 – RS-67506 – SL65.0155 – Antagonisty: GR-113,808 – GR-125,487 – L-Lyzín – Piboserod – RS-39604 – RS-67532 – SB-203,186

Ibogaín – rezerpín – tetrabenazín

Benserazid – karbidopa – genisteín – metyldopa

Neselektívne: Benmoxín – karoxazón – echinopsidín – furazolidon – hydralazín – indantadol – iproklozid – iproniazid – izokarboxazid – izoniazid – linezolid – mebanazín – metfendrazín – nialamid – oktamoxín – paraxazón – fenelzín – feniprazín – fenopropazín – pivalylbenzhydrazín – prokarbazín – safrazín – tranylcypromín; selektívny MAO-A: Amiflamín – Bazinaprín – Befloxatón – Befol – Brofaromín – Cimoxatón – Clorgilín – Esupron – Harmalové alkaloidy (Harmín, Harmalín, Tetrahydroharmín, Harman, Norharman atď.) – Metylénová modrá – Metralindol – Minaprín – Moclobemid – Pirlindol – Sercloremín – Tetrindol – Toloxatón – Tyrima

Železo železité (Fe2+) – Horčík (Mg2+) – Tetrahydrobiopterín – Vitamín B3 (niacín, nikotínamid → NADPH) – Vitamín B6 (pyridoxín, pyridoxamín, pyridoxal → pyridoxalfosfát) – Vitamín B9 (kyselina listová → kyselina tetrahydrofolová) – Vitamín C (kyselina askorbová) – Zinok (Zn2+)

Zosilňovače aktivity: BPAP – PPAP; látky zvyšujúce spätné vychytávanie: Tianeptín

{2C-B}
{2C-C}
{2C-D}
{2C-E}
{2C-I}
{2C-N}
{2C-T-2}
{2C-T-21}
{2C-T-4}
{2C-T-7}
{2C-T-8}
{3C-E}
{4-FMP}
{Bupropion}
{Cathine}
{katinón}
{DESOXY}
{Dextroamfetamín}
{Metamfetamín}
{Dietylkatinón}
{Dimetylkatinón}
{DOC}
{DOB}
{DOI}
{DOM}
{bk-MBDB}
{Dopamín}
{Br-DFLY}
{Efedrín}
{Epinefrín}
{Eskalín}
{Fenfluramín}
{Levalbuterol}
{Levmetamfetamín}
{MBDB}
{MDA}
{MDMA}
{bk-MDMA/MDMC/MDMCat/Metylón}
{MDEA}
(MDPV)
{Meskalín}
{Metkatinón}
{Metylfenidát}
{Norepinefrín}
{fentermín}
{Salbutamol}
{Tyramín}
{Venlafaxín}

Kategórie
Psychologický slovník

Hranie sa

Termín acting out sa používa v dvoch významoch:

V psychoanalytickej teórii je Acting out psychologický termín, ktorý znamená vykonanie činnosti na zvládnutie (často nevedomých) emocionálnych konfliktov. Napríklad niekto si môže spôsobiť sebapoškodenie, čo možno interpretovať ako: „vystupuje“ zo svojich potrieb vyriešiť konflikt: chce hovoriť o tom, že bol sexuálne zneužitý, ale nemôže, porezaním sa bolesť odvádza pozornosť od myšlienok a poskytuje mu dočasné emocionálne uvoľnenie. Takéto správanie má zvyčajne paradoxný charakter, vyjadruje nesúhlasné pocity (v tomto prípade bolesť) a zároveň sa im bráni.

Hranie bolestivých pocitov môže byť v protiklade k ich vyjadreniu spôsobom, ktorý je pre trpiaceho užitočnejší, napr. rozprávaním, arteterapiou, psychodrámou alebo vedomým uvedomovaním si pocitov. Rozvíjanie schopnosti bezpečne a konštruktívne vyjadrovať svoje konflikty je dôležitou súčasťou kontroly impulzov, osobného rozvoja a starostlivosti o seba.

Tento pojem má všeobecnejší, menej technický význam, keď Acting out znamená v širšom zmysle konanie na základe impulzov, ktoré si neuvedomujú. Má negatívnu konotáciu a vo všeobecnosti sa používa na problémové správanie.

Vo všeobecnosti sa predpokladá, že pozorovateľ, zvyčajne profesionál, má nejakým spôsobom prístup k „skutočnej“ motivácii osoby a je v lepšej pozícii, aby podal správu o správaní ako samotná osoba.

Dynamika moci, ktorú táto pozícia vytvára, nie je bez problémov. Po prvé, samotnej osobe sťažuje následnú zodpovednosť za vlastné činy, ktoré boli teraz patologizované. Po druhé, definujúca autorita sa tým stáva otvorenou voči obvineniu, že aj ona sa „správa“ z potreby vytvoriť sociálnu moc prostredníctvom kontroly definícií.

Ak sú takéto interpretácie presné a citlivo podané, môžu byť užitočné. Ak sú nepresné a vnucované, môžu byť problematické a psychologicky iatrogénne.

Často ide o protispoločenské konanie, ktoré môže mať podobu konania na základe impulzov závislosti (t. j. pitie alkoholu, užívanie drog alebo krádeže v obchodoch) alebo o prostriedok, ktorého cieľom je (často nevedome alebo čiastočne vedome) získať pozornosť (t. j. hádzanie záchvatov hnevu alebo promiskuitné správanie). Hranie sa môže považovať za formu projektívnej identifikácie.

Vykonané konanie je zvyčajne deštruktívne pre seba alebo pre iných a môže brániť rozvoju konštruktívnejších reakcií na pocity. Pojem sa používa v liečbe sexuálnej závislosti, psychoterapii, dvanásťkrokových programoch, kriminológii a rodičovstve.

Interpretácia konania osoby a reakcia pozorovateľa sa značne líši, pričom očakávania publika zvyčajne určuje kontext a téma.

„Záchvaty hnevu“ v ranom veku možno chápať ako epizódy správania. Keďže malé deti nemajú vyvinuté prostriedky na vyjadrenie svojich pocitov úzkosti, záchvaty hnevu sú účinnou a dosiahnuteľnou metódou, ako upozorniť rodičov na svoje potreby a žiadať o pozornosť.

V ideálnom prípade sa dieťa počas svojho vývoja naučí nahradiť tieto stratégie získavania pozornosti spoločensky prijateľnejšou a konštruktívnejšou komunikáciou. V období dospievania možno konanie v podobe rebelantského správania, ako je fajčenie, krádeže v obchodoch a užívanie drog, chápať ako „volanie o pomoc“. Mladý človek sa môže javiť ako rušivý – a môže byť aj rušivý – ale toto správanie je často podložené potrebou regulovať emócie, ktoré sú príliš ťažké na to, aby sa zvládli iným spôsobom.

Morálny model závislosti hovorí, že závislosti sú výsledkom ľudskej slabosti a sú charakterovými chybami. Tí, ktorí presadzujú tento model, neuznávajú, že by závislosť mala nejaký biologický základ. Často majú pre ľudí s vážnymi závislosťami len málo pochopenia, pretože sa domnievajú, že buď človek s väčšou morálnou silou by mohol mať silu vôle, aby sa závislosti zbavil, alebo že závislý človek preukázal veľké morálne zlyhanie už tým, že začal so závislosťou. Morálny model sa široko uplatňuje pri závislosti od nelegálnych látok, možno čisto zo sociálnych alebo politických dôvodov, ale už sa všeobecne nepovažuje za niečo, čo by malo terapeutickú hodnotu.

Podľa modelu choroby závislosti je závislosť choroba, ktorá vzniká buď v dôsledku poruchy neurochemických alebo behaviorálnych procesov, alebo ich kombináciou. V rámci tohto modelu sa závislosťami zaoberajú odborníci na medicínu závislostí. V rámci medicíny majú Americká lekárska asociácia, Národná asociácia sociálnych pracovníkov a Americká psychologická asociácia politiku, podľa ktorej návykové procesy predstavujú chorobný stav. Aj keď medzi klinickými lekármi existujú určité spory o spoľahlivosti tohto modelu, je široko používaný v terapeutických zariadeniach. Väčšina liečebných prístupov zahŕňa uznanie, že závislosti sú poruchy správania, a teda zahŕňajú určitý prvok fyzickej alebo duševnej choroby. Kritici, ako napríklad Stanton Peele, opisujú absenciu lekárskych dôkazov o predpokladanom fyziologickom procese (okrem jednoduchých zmien stavu nálady), ktorý možno stotožniť s chorobou závislosti. Organizácie ako Americká spoločnosť medicíny závislostí sa domnievajú, že výskumom podložené dôkazy o štatúte závislosti ako choroby sú zdrvujúce.

Klasická kriminológia založená na filozofii „racionálneho agenta“…

Pozitivistická škola … psychoanalytická kriminológia

Svojpomoc / neformálna psychológia

Kategórie
Psychologický slovník

Metamfetamín

Chemická štruktúra metamfetamínu
Metamfetamín

Metamfetamín (metylamfetamín alebo desoxyefedrín), ľudovo skrátene pervitín alebo ľad, je psychostimulačná a sympatomimetická droga. Nezriedka sa predpisuje na liečbu poruchy pozornosti s hyperaktivitou, narkolepsie a obezity pod obchodným názvom Desoxyn. Považuje sa za druhú líniu liečby, ktorá sa používa, keď amfetamín a metylfenidát spôsobujú pacientovi príliš veľa vedľajších účinkov. Odporúča sa len na krátkodobé užívanie (~ 6 týždňov) u pacientov s obezitou, pretože sa predpokladá, že anoretické účinky lieku sú krátkodobé a rýchlo vyvolávajú toleranciu, zatiaľ čo účinky na stimuláciu CNS sú oveľa menej náchylné na toleranciu. Nelegálne sa používa aj na zníženie hmotnosti a na udržanie bdelosti, sústredenia, motivácie a mentálnej jasnosti počas dlhšieho obdobia a na rekreačné účely. „Kryštalický pervitín“ sa vzťahuje na kryštalickú, fajčiteľnú formu drogy a nepoužíva sa pre drogu vo forme tabliet alebo prášku.

Metamfetamín sa dostane do mozgu a spustí kaskádovité uvoľňovanie noradrenalínu, dopamínu a serotonínu. V menšej miere metamfetamín pôsobí ako inhibítor spätného vychytávania dopaminergných a adrenergných látok a vo vysokých koncentráciách ako inhibítor monaminooxidázy (MAOI). Keďže stimuluje mezolimbickú dráhu odmeny, spôsobuje eufóriu a vzrušenie, je náchylný na zneužívanie a závislosť.
Užívatelia môžu byť posadnutí alebo vykonávať opakované úlohy, ako je čistenie, umývanie rúk alebo montáž a demontáž predmetov. Abstinencia je charakterizovaná nadmerným spánkom, jedením a príznakmi podobnými depresii, ktoré často sprevádza úzkosť a túžba po droge. Užívatelia metamfetamínu často užívajú jeden alebo viac benzodiazepínov ako prostriedok na „schádzanie“.

Metamfetamín bol prvýkrát syntetizovaný z efedrínu v Japonsku v roku 1893 chemikom Nagayoshi Nagaiom. V roku 1919 kryštalizovaný metamfetamín syntetizoval Akira Ogata redukciou efedrínu pomocou červeného fosforu a jódu. Príbuznú zlúčeninu amfetamín prvýkrát syntetizoval v Nemecku v roku 1887 Lazăr Edeleanu.

K jednému z prvých použití metamfetamínu došlo počas druhej svetovej vojny, keď ho nemecká armáda vydávala pod obchodným názvom Pervitin. Bol široko distribuovaný v rôznych hodnostiach a divíziách, od elitných jednotiek až po posádky tankov a letecký personál. Čokolády dávkované metamfetamínom boli známe ako Fliegerschokolade („letecká čokoláda“), keď sa dávali pilotom, alebo Panzerschokolade („čokoláda pre tankistov“), keď sa dávali posádkam tankov. Od roku 1942 až do svojej smrti v roku 1945 dostával Adolf Hitler od svojho osobného lekára Theodora Morella denne intravenózne injekcie metamfetamínu ako liek proti depresii a únave. Je možné, že sa používal na liečbu Hitlerovej predpokladanej Parkinsonovej choroby, alebo že jeho príznaky podobné Parkinsonovej chorobe, ktoré sa rozvíjali od roku 1940, súviseli so zneužívaním metamfetamínu.

Po druhej svetovej vojne sa v Japonsku objavili veľké zásoby amfetamínu, ktorý predtým skladovala japonská armáda, pod pouličným názvom šabu (tiež Philopon (vyslovuje sa ヒロポン alebo Hiropon), čo je jeho obchodný názov). Japonské ministerstvo zdravotníctva ho v roku 1951 zakázalo a predpokladá sa, že jeho zákaz prispel k rastúcim aktivitám jakuzy spojeným s výrobou nelegálnych drog. Dnes sa metamfetamín stále spája s japonským podsvetím, ale od jeho užívania odrádza silné spoločenské tabu.

Podiel vysokoškolských študentov v USA, ktorí počas svojho života nelegálne užívali metamfetamín.

V 50. rokoch 20. storočia sa zvýšil počet legálnych receptov na metamfetamín pre americkú verejnosť. Podľa vydania knihy Pharmacology and Therapeutics od Arthura Grollmana z roku 1951 sa mal predpisovať pri „narkolepsii, postencefalitickom parkinsonizme, alkoholizme, pri niektorých depresívnych stavoch. a pri liečbe obezity“.

V 60. rokoch 20. storočia sa začal vo veľkej miere používať tajne vyrábaný metamfetamín a metamfetamín, ktorý si užívatelia vytvárali doma pre vlastnú potrebu. Rekreačné užívanie metamfetamínu dosiahlo vrchol v 80. rokoch 20. storočia. Vydanie časopisu The Economist z 2. decembra 1989 označilo San Diego v Kalifornii za „hlavné mesto metamfetamínu v Severnej Amerike“.

V roku 2000 časopis The Economist opäť označil San Diego v Kalifornii za hlavné mesto metamfetamínu v Severnej Amerike a South Gate v Kalifornii za druhé hlavné mesto.

Právne obmedzenia v Spojených štátoch

V roku 1983 boli v Spojených štátoch prijaté zákony zakazujúce držbu prekurzorov a zariadení na výrobu metamfetamínu; o mesiac neskôr nasledoval návrh zákona prijatý v Kanade, ktorý zaviedol podobné zákony. V roku 1986 vláda USA prijala federálny zákon o presadzovaní analógov kontrolovaných látok v snahe obmedziť rastúce používanie dizajnérskych drog. Napriek tomu sa užívanie metamfetamínu rozšírilo na celom vidieku Spojených štátov, najmä na stredozápade a juhu.

Od roku 1989 bolo v snahe obmedziť výrobu metamfetamínu prijatých päť federálnych zákonov a desiatky štátnych zákonov. Metamfetamín sa ľahko „varí“ v domácich laboratóriách s použitím pseudoefedrínu alebo efedrínu, účinných zložiek voľnopredajných liekov, ako sú Sudafed a Contac. Preventívne právne stratégie za posledných 17 rokov však neustále zvyšujú obmedzenia distribúcie výrobkov obsahujúcich pseudoefedrín/efedrín.

V dôsledku zákona o boji proti metamfetamínovej epidémii z roku 2005, ktorý je súčasťou zákona PATRIOT Act, existujú obmedzenia týkajúce sa množstva pseudoefedrínu a efedrínu, ktoré možno zakúpiť v určitom časovom období, a ďalšie požiadavky, podľa ktorých sa tieto výrobky musia skladovať, aby sa zabránilo ich krádeži.

Metamfetamín je silný stimulant centrálnej nervovej sústavy, ktorý ovplyvňuje neurochemické mechanizmy zodpovedné za reguláciu srdcovej frekvencie, telesnej teploty, krvného tlaku, chuti do jedla, pozornosti, nálady a reakcií spojených s bdelosťou alebo stavom ohrozenia. Akútne účinky drogy sa veľmi podobajú fyziologickým a psychologickým účinkom epinefrínom vyvolanej reakcie „bojuj alebo uteč“, vrátane zvýšenej srdcovej frekvencie a krvného tlaku, vazokonstrikcie (zúženie stien tepien), bronchodilatácie a hyperglykémie (zvýšenie hladiny cukru v krvi). Používatelia pociťujú zvýšenie sústredenia, zvýšenú duševnú bdelosť a odstránenie únavy, ako aj zníženie chuti do jedla.

Používatelia musia byť tiež opatrní a vyhýbať sa sprchovaniu studenou vodou, jazde na vysokorýchlostných horských dráhach, konzumácii nápojov s obsahom kofeínu alebo cvičeniu a posilňovaniu, pretože tieto činnosti môžu vyvolať hypertenziu, nervozitu, extrémne rýchly srdcový tep, rozšírený srdcový tep alebo náhlu smrť.

Metylová skupina je zodpovedná za zosilnenie účinkov v porovnaní s príbuznou zlúčeninou amfetamínom, čím sa látka na jednej strane stáva rozpustnejšou v tukoch a uľahčuje sa jej prenos cez hematoencefalickú bariéru a na druhej strane je stabilnejšia voči enzymatickej degradácii MAO. Metamfetamín spôsobuje, že norepinefrínový, dopamínový a serotonínový (5HT) transportér mení smer toku. Táto inverzia vedie k uvoľňovaniu týchto transmiterov z vezikúl do cytoplazmy a z cytoplazmy do synapsy (uvoľňovanie monoamínov u potkanov s pomerom približne NE:DA = 1:2, NE:5HT = 1:60), čo spôsobuje zvýšenú stimuláciu postsynaptických receptorov. Metamfetamín tiež nepriamo zabraňuje spätnému vychytávaniu týchto neurotransmiterov, čo spôsobuje ich dlhšie zotrvanie v synaptickej štrbine (inhibícia spätného vychytávania monoamínov u potkanov s pomermi približne: NE:DA = 1:2,35, NE:5HT = 1:44,5).

Nedávny výskum uverejnený v časopise Journal of Pharmacology And Experimental Therapeutics (2007) naznačuje, že metamfetamín sa viaže na skupinu receptorov nazývaných TAAR. TAAR je novoobjavený receptorový systém, na ktorý zrejme pôsobí celý rad látok podobných amfetamínu, nazývaných stopové amíny.

Metamfetamín je štruktúrou najviac podobný metkatinónu a amfetamínu. Pri nezákonnej výrobe sa bežne vyrába redukciou efedrínu alebo pseudoefedrínu. Väčšina potrebných chemických látok je ľahko dostupná v domácich výrobkoch alebo voľnopredajných liekoch proti nachladnutiu alebo alergii. Syntéza je relatívne jednoduchá, ale predstavuje riziko spojené s horľavými a žieravými chemikáliami, najmä rozpúšťadlami používanými pri extrakcii a čistení. Tajná výroba sa preto často odhalí pri požiaroch a výbuchoch spôsobených nesprávnou manipuláciou s prchavými alebo horľavými rozpúšťadlami.

Väčšina metód nezákonnej výroby zahŕňa hydrogenáciu hydroxylovej skupiny na molekule efedrínu alebo pseudoefedrínu. Najbežnejšia metóda pre malé metamfetamínové laboratóriá v Spojených štátoch sa nazýva predovšetkým „červený, biely a modrý proces“, ktorý zahŕňa červený fosfor, pseudoefedrín alebo efedrín(biely) a modrý jód, z ktorého vzniká kyselina hydroxidová.

Tento proces je pre amatérskych chemikov pomerne nebezpečný, pretože plynný fosfín, vedľajší produkt pri výrobe kyseliny jódovej in situ, je mimoriadne toxický pri vdychovaní. Čoraz bežnejšia metóda využíva proces Brezovej redukcie, pri ktorom sa kovové lítium (bežne získavané z dobíjacích batérií) nahrádza kovovým sodíkom, aby sa obišli ťažkosti so získavaním kovového sodíka.

Brezova redukcia je však nebezpečná, pretože alkalický kov a kvapalný bezvodý amoniak sú mimoriadne reaktívne a teplota kvapalného amoniaku spôsobuje, že po pridaní reaktantov dochádza k jeho výbušnému varu. Bezvodý amoniak a lítium alebo sodík (Birchova redukcia) môžu prekonať kyselinu jódovú (katalytická hydrogenácia) ako najbežnejší spôsob výroby metamfetamínu v USA a možno aj v Mexiku. Záťahom na „superlaboratóriá“ s kyselinou jódovou venujú médiá väčšiu pozornosť, pretože použité zariadenie je oveľa zložitejšie a viditeľnejšie ako sklenené nádoby alebo karafy na kávu, ktoré sa bežne používajú na výrobu metamfetamínu pomocou Brezovej redukcie.

Priemyselná továreň na výrobu metamfetamínu/MDMA v Cikande, Indonézia

Úplne iný postup syntézy využíva reduktívnu amináciu fenylacetónu s metylamínom, ktoré sú v súčasnosti chemikáliami zo zoznamu I DEA (rovnako ako pseudoefedrín a efedrín). Reakcia si vyžaduje katalyzátor, ktorý pôsobí ako redukčné činidlo, napríklad amalgám ortuti a hliníka alebo oxid platiničitý, známy aj ako Adamsov katalyzátor. Tento spôsob výroby kedysi uprednostňovali motorkárske gangy v Kalifornii, [Ako odkazovať a odkazovať na zhrnutie alebo text] kým to obmedzenia DEA týkajúce sa chemikálií nesťažili. Iné, menej rozšírené metódy využívajú iné spôsoby hydrogenácie, napríklad plynný vodík v prítomnosti katalyzátora.

Z laboratórií na výrobu metamfetamínu môžu vychádzať škodlivé výpary, ako napríklad plynný fosfín, plynný metylamín, výpary rozpúšťadiel, napríklad acetónu alebo chloroformu, jódové výpary, biely fosfor, bezvodý amoniak, chlorovodík/kyselina mariánska, jodovodík, kovové lítium/sodík, éter alebo výpary metamfetamínu. Ak výrobu metamfetamínu vykonávajú amatéri, môže byť mimoriadne nebezpečná. Ak sa červený fosfor prehreje z dôvodu nedostatočného vetrania, môže vzniknúť plynný fosfín. Tento plyn, ak je prítomný vo veľkom množstve, pravdepodobne exploduje pri samovznietení z difosfínu, ktorý vzniká prehriatím fosforu.

Výroba a distribúcia

Až do začiatku 90. rokov sa metamfetamín pre americký trh vyrábal prevažne v laboratóriách prevádzkovaných obchodníkmi s drogami v Mexiku a Kalifornii. Odvtedy úrady objavili čoraz viac malých metamfetamínových laboratórií po celých Spojených štátoch, väčšinou vo vidieckych, prímestských alebo nízkopríjmových oblastiach. Polícia štátu Indiana našla v roku 2003 1 260 laboratórií v porovnaní s iba 6 v roku 1995, hoci to môže byť dôsledok zvýšenej aktivity polície. V poslednom čase upútali pozornosť amerických spravodajských médií aj polície mobilné a motelové laboratóriá na výrobu metamfetamínu.

Tieto laboratóriá môžu spôsobiť výbuchy a požiare a vystaviť verejnosť nebezpečným chemikáliám. Osoby, ktoré vyrábajú metamfetamín, sú často poškodené toxickými plynmi. Mnohé policajné oddelenia majú špecializované pracovné skupiny s výcvikom, ktoré reagujú na prípady výroby metamfetamínu. V Národnom hodnotení drogových hrozieb 2006, ktoré vypracovalo ministerstvo spravodlivosti, sa zistilo, že „sa znížila domáca výroba metamfetamínu v malých aj veľkých laboratóriách“, ale aj to, že „pokles domácej výroby metamfetamínu bol kompenzovaný zvýšenou výrobou v Mexiku“. Dospeli k záveru, že „dostupnosť metamfetamínu sa v najbližšom období pravdepodobne nezníži“.

V júli 2007 chytili mexickí úradníci v prístave Lázaro Cárdenas loď s pôvodom v Hongkongu, ktorá prechádzala cez prístav Long Beach s 19 tonami pseudoefedrínu, suroviny potrebnej na výrobu pervitínu. Pri pouličnej cene 100 USD za gram to predstavuje metamfetamín v hodnote najmenej 1,9 miliardy USD. U čínskeho majiteľa sa v jeho sídle v Mexico City našlo 206 miliónov dolárov. V Long Beach sa to nepodarilo zistiť.

Raketa, ktorú pašeráci používajú na rýchle zbavenie sa metamfetamínu.

Metamfetamín distribuujú väzenské gangy, motorkárske gangy, pouličné gangy, tradičné operácie organizovaného zločinu a improvizované malé siete. V USA sa nelegálny metamfetamín dodáva v rôznych formách, pričom priemerná cena čistej látky je 150 USD za gram. Najčastejšie sa vyskytuje ako bezfarebná kryštalická pevná látka. Nečistoty môžu mať za následok hnedastú alebo hnedastú farbu. Farebné ochutené tabletky obsahujúce metamfetamín a kofeín sú známe ako yaa baa (thajsky „šialená medicína“).

V najnečistejšej podobe sa predáva ako drobivá hnedá alebo takmer biela hornina, ktorá sa bežne označuje ako „arašidová kľučka“. Metamfetamín, ktorý sa nachádza na ulici, je len zriedkavo čistý, ale s prímesou chemických látok, ktoré sa použili na jeho syntézu. Môže byť zriedený alebo „narezaný“ nepsychoaktívnymi látkami, ako je inozitol alebo dimetylsulfón. Môže byť tiež ochutený cukríkmi s vysokým obsahom cukru, nápojmi alebo nápojovými zmesami, aby sa zamaskovala horká chuť drogy. Do pervitínu sa môžu pridávať farbivá, ako je to v prípade „Strawberry Quick.“.

Metamfetamín sa medicínsky používa pod obchodným názvom Desoxyn pri nasledujúcich stavoch:

Vzhľadom na jeho spoločenskú stigmu sa Desoxyn zvyčajne nepredpisuje na liečbu ADHD, pokiaľ nezlyhali iné stimulanciá, ako napríklad metylfenidát (Ritalin®), dextroamfetamín (Dexedrine®) alebo zmiešané amfetamíny (Adderall®).

Podobne ako v prípade iných amfetamínov, ani tolerancia na metamfetamín nie je úplne objasnená, ale je dostatočne komplexná, takže ju nemožno vysvetliť žiadnym mechanizmom. Rozsah tolerancie a rýchlosť, akou sa vyvíja, sa u jednotlivých osôb značne líši a dokonca aj v rámci jednej osoby je veľmi závislá od dávky, dĺžky užívania a frekvencie podávania. Mnohé prípady narkolepsie sa liečia metamfetamínom celé roky bez zvyšovania dávok alebo zjavnej straty účinku.

Krátkodobá tolerancia môže byť spôsobená vyčerpanými hladinami neurotransmiterov vo vezikulách, ktoré sú k dispozícii na uvoľnenie do synaptickej štrbiny po následnom opätovnom použití (tachyfylaxia). Krátkodobá tolerancia zvyčajne trvá 2 – 3 dni, kým sa hladiny neurotransmiterov úplne nedoplnia. Dlhodobá nadmerná stimulácia dopamínových receptorov spôsobená metamfetamínom môže nakoniec spôsobiť zníženie regulácie receptorov s cieľom kompenzovať zvýšené hladiny dopamínu v synaptickej štrbine. Na kompenzáciu je potrebné väčšie množstvo drogy, aby sa dosiahla rovnaká úroveň účinkov.

Bežné okamžité vedľajšie účinky.:

Nežiaduce účinky spojené s chronickým užívaním:

Nežiaduce účinky spojené s predávkovaním:

Smrť z predávkovania je zvyčajne spôsobená mozgovou príhodou, zlyhaním srdca, ale môže byť spôsobená aj zástavou srdca (náhla smrť) alebo hypertermiou.

Závislí od metamfetamínu môžu abnormálne rýchlo strácať zuby, čo je známe ako „metamfetamínové ústa“. Tento efekt nie je spôsobený žiadnymi korozívnymi účinkami samotnej drogy, čo je rozšírený mýtus. Podľa Americkej asociácie zubných lekárov sú pervitínové ústa „pravdepodobne spôsobené kombináciou psychologických a fyziologických zmien vyvolaných drogami, ktoré majú za následok xerostómiu (suchosť v ústach), dlhšie obdobie nedostatočnej ústnej hygieny, častú konzumáciu vysokokalorických sýtených nápojov a škrípanie a zatínanie zubov“. Podobné, aj keď oveľa menej závažné príznaky boli hlásené pri klinickom užívaní iných amfetamínov, kde sa účinky nezhoršujú nedostatočnou ústnou hygienou počas dlhšieho obdobia.

Podobne ako iné látky, ktoré stimulujú sympatický nervový systém, metamfetamín spôsobuje zníženú tvorbu slín, ktoré bojujú proti kyselinám, a zvýšený smäd, čo vedie k zvýšenému riziku vzniku zubného kazu, najmä ak sa smäd uhasí nápojmi s vysokým obsahom cukru.

Užívatelia môžu pod vplyvom vykazovať sexuálne kompulzívne správanie. Takéto ignorovanie potenciálnych nebezpečenstiev nechráneného sexu alebo iné bezohľadné sexuálne správanie môže prispieť k šíreniu pohlavne prenosných infekcií (SPI) alebo pohlavne prenosných chorôb (PCH).

Medzi účinky, ktoré uvádzajú užívatelia metamfetamínu, patrí zvýšená potreba a naliehavosť sexu, schopnosť mať sex dlhší čas a neschopnosť ejakulovať alebo dosiahnuť orgazmus alebo fyzické uvoľnenie. Okrem toho, že metamfetamín zvyšuje potrebu sexu a umožňuje užívateľom dlhšie trvajúcu sexuálnu aktivitu, znižuje zábrany a môže spôsobiť, že užívatelia sa budú správať bezohľadne alebo budú zabúdať. Užívatelia môžu po dlhodobom užívaní dokonca hlásiť negatívne zážitky, ktoré sú v rozpore s hlásenými pocitmi, myšlienkami a postojmi dosiahnutými pri podobných dávkach za podobných okolností, ale v skorších obdobiach predĺženého alebo dlhodobého cyklu.

Okrem toho sa mnohí chronickí užívatelia dopúšťajú nadmernej a opakovanej masturbácie. Podľa nedávnej štúdie zo San Diega [Ako odkaz a odkaz na zhrnutie alebo text] sa užívatelia metamfetamínu často zapájajú do nebezpečných sexuálnych aktivít a zabúdajú alebo sa rozhodnú nepoužívať kondómy. Štúdia zistila, že u užívateľov metamfetamínu je šesťkrát nižšia pravdepodobnosť, že budú používať kondómy. Naliehavosť sexu v kombinácii s neschopnosťou dosiahnuť uvoľnenie (ejakuláciu) môže mať za následok roztrhnutie, odreniny a poranenia (ako sú napríklad drsné a trecie rany) pohlavných orgánov, konečníka a úst, čo dramaticky zvyšuje riziko prenosu HIV a iných pohlavne prenosných chorôb. Metamfetamín tiež spôsobuje erektilnú dysfunkciu v dôsledku vazokonstrikcie.

Kalifornský spisovateľ a bývalý užívateľ metamfetamínu David Schiff v článku o závislosti svojho syna na metamfetamíne povedal: „Táto droga má jedinečnú, strašnú kvalitu.“ Stephan Jenkins, spevák skupiny Third Eye Blind, v jednom rozhovore povedal, že metamfetamín vám dáva pocit „jasnosti a lesku“.

Metamfetamín je návykový, najmä keď sa injekčne podáva alebo fajčí. Aj keď nie je život ohrozujúci, abstinencia je často intenzívna a ako pri všetkých závislostiach je častý relaps. V boji proti recidíve sa mnohí zotavujúci sa závislí zúčastňujú na stretnutiach 12 krokov, ako je napríklad Anonymný kryštálový metamfetamín.

Metamfetamínom indukovaná hyperstimulácia dráh slasti vedie k anhedónii. Bývalí užívatelia si všimli, že keď prestanú užívať metamfetamín, cítia sa hlúpo alebo nudne. Je možné, že každodenné podávanie aminokyselín L-tyrozínu a L-5HTP/triptofánu môže pomôcť v procese zotavenia tým, že uľahčí telu zvrátiť úbytok dopamínu, noradrenalínu a serotonínu. Hoci štúdie zahŕňajúce používanie týchto aminokyselín preukázali určitý úspech, táto metóda zotavenia sa nepreukázala ako trvalo účinná.

Ukázalo sa, že užívanie kyseliny askorbovej pred užitím metamfetamínu môže pomôcť znížiť akútnu toxicitu na mozog, keďže u potkanov, ktorým sa 30 minút pred dávkou metamfetamínu podalo 5 – 10 gramov kyseliny askorbovej v ľudskom ekvivalente, bola toxicita sprostredkovaná, avšak pri riešení závažných problémov so správaním spojených s užívaním metamfetamínu, ktoré spôsobujú mnohé problémy, s ktorými sa užívatelia stretávajú, to bude pravdepodobne málo účinné.

Závažné zdravotné a vzhľadové problémy spôsobujú nesterilizované ihly, nedostatočná hygiena, chemické zloženie metamfetamínu (najmä pri fajčení) a najmä škodliviny v pouličnom metamfetamíne. Užívanie metamfetamínu môže viesť k hypertenzii, poškodeniu srdcových chlopní, výrazne zhoršenému zdraviu zubov a zvýšenému riziku mozgovej príhody.

V boji proti závislosti začínajú lekári používať iné formy amfetamínu, ako je dextroamfetamín, aby prerušili cyklus závislosti metódou podobnou metadónu pre závislých od heroínu. Na použitie pri problémoch s metamfetamínom nie sú známe žiadne lieky porovnateľné s naloxónom, ktorý blokuje opiátové receptory, a preto sa používa pri liečbe závislosti od opiátov. Keďže fenetylamín fentermín je konštitučný izomér metamfetamínu, špekuluje sa, že môže byť účinný pri liečbe závislosti od metamfetamínu. Hoci je fenteremín centrálny nervový stimulant, ktorý pôsobí na dopamín a noradrenalín, nebolo hlásené, že by spôsoboval rovnaký stupeň eufórie, aký sa spája s inými amfetamínmi.

Zvyčajný spôsob lekárskeho použitia je perorálne podanie. Pri rekreačnom užívaní sa môže prehĺtať, šnupať, fajčiť, rozpúšťať vo vode a vstrekovať (alebo aj bez vody, tzv. dry shot), zavádzať análne (s rozpustením vo vode alebo bez neho; známy aj ako booty bump alebo shafting) alebo do močovej trubice. Potenciál vzniku závislosti je väčší, keď sa podáva metódami, ktoré spôsobujú rýchle zvýšenie koncentrácie v krvi, najmä preto, že užívateľom požadované účinky sa prejavia rýchlejšie a s vyššou intenzitou ako pri umiernenom mechanizme podávania.

Štúdie ukázali, že subjektívny pôžitok z užívania drogy (posilňujúca zložka závislosti) je úmerný rýchlosti, akou sa zvyšuje hladina drogy v krvi.“ [Ako odkazovať a odkazovať na zhrnutie alebo text] Vo všeobecnosti je najrýchlejším mechanizmom fajčenie (t. j. spôsobuje najrýchlejšie zvýšenie koncentrácie v krvi za najkratší čas, pretože umožňuje látke cestovať do mozgu priamejšou cestou ako intravenózna injekcia), po ktorom nasleduje injekcia, análny vpich, insuflácia a prehĺtanie.

„Fajčenie“ amfetamínu sa v skutočnosti vzťahuje na jeho odparovanie, čím sa vytvárajú výpary, a nie na spaľovanie a vdychovanie výsledného dymu ako pri tabaku. Bežne sa fajčí v sklenených fajkách alebo v hliníkovej fólii zahrievanej plameňom pod ňou. Táto metóda je známa aj ako „naháňanie bieleho draka“ (ako odvodené od metódy fajčenia heroínu známej ako „naháňanie draka“) alebo sa častejšie nazýva „kloktanie“. Existuje len málo dôkazov o tom, že inhalácia metamfetamínu vedie k väčšej toxicite ako akýkoľvek iný spôsob podania. Pri dlhodobom užívaní bolo hlásené poškodenie pľúc, ktoré sa však prejavuje vo formách nezávislých od spôsobu užívania (pľúcna hypertenzia a súvisiace komplikácie) alebo sa obmedzuje na injekčných užívateľov (pľúcna embólia).

Injekcia je obľúbená metóda používania, známa aj ako slamming, ale prináša pomerne vážne riziká. Hydrochloridová soľ metamfetamínu je rozpustná vo vode; injekční užívatelia môžu použiť akúkoľvek dávku od 125 mg až po viac ako gram, pričom použijú malú ihlu. Tento rozsah dávok môže byť pre osoby, ktoré nie sú závislé, smrteľný; u závislých sa rýchlo vyvinie tolerancia na drogu. U injekčných užívateľov sa často vyskytujú kožné vyrážky (niekedy nazývané „rýchlostné rany“) a infekcie v mieste vpichu. Ako pri každej injekčnej droge, ak skupina užívateľov zdieľa spoločnú ihlu alebo akýkoľvek typ injekčného náčinia bez sterilizačných postupov, môže dôjsť aj k prenosu krvou prenosných chorôb, ako je HIV alebo hepatitída.

Veľmi málo výskumov sa zameralo na análnu aplikáciu ako metódu a o nepotvrdených dôkazoch jej účinkov sa hovorí len zriedkavo, pravdepodobne kvôli sociálnym tabu v mnohých kultúrach týkajúcich sa konečníka. V komunitách, ktoré užívajú metamfetamín na sexuálnu stimuláciu, je to často známe ako „zadková raketa“, „booty bump“, „keistering“ alebo „plugging“ a podľa anekdotických správ to zvyšuje sexuálne potešenie, kým účinky drogy trvajú. Do konečníka sa pravdepodobne dostane väčšina drogy cez membrány vystieľajúce jeho steny. (Ďalšie informácie o ďalších rizikových faktoroch nájdete v časti Metamfetamín a sex.) Ďalším spôsobom požitia metamfetamínu je rozdrvenie kryštálikov a ich insuflácia. Tým sa tiež obíde metabolizmus prvého prechodu a dostane sa priamo do krvného obehu.

Z prísneho hľadiska je metamfetamín ako droga zaradená do zoznamu 8 v Austrálii uznaný na lekárske použitie, v praxi to však neplatí. Je známy aj pod názvom Ice a stal sa predmetom celonárodného boja proti nemu. Od roku 2007 sa táto téma stala súčasťou volebného programu oboch hlavných politických strán.

Metamfetamín nie je v Kanade schválený na lekárske použitie. Maximálny trest za výrobu a distribúciu je doživotie.

Metamfetamín sa riadi zoznamom 1 hongkonskej kapitoly 134 vyhlášky o nebezpečných drogách. Legálne ho môžu používať len zdravotnícki pracovníci a na účely univerzitného výskumu. Látku môžu podávať lekárnici na lekársky predpis. Každý, kto dodá látku bez lekárskeho predpisu, môže byť pokutovaný sumou 10000 USD (HKD). Trest za obchodovanie s látkou alebo jej výrobu je pokuta 5 000 000 USD (HKD) a doživotné väzenie. Držanie látky na konzumáciu bez licencie ministerstva zdravotníctva je nezákonné s pokutou 1 000 000 USD (HKD) a/alebo 7 rokov odňatia slobody.

Metamfetamín nie je v Holandsku schválený na lekárske použitie. Patrí do zoznamu I zákona o ópiu. Hoci výroba a distribúcia tejto drogy sú zakázané, niekoľko ľudí, ktorí boli prichytení s malým množstvom pre osobnú potrebu, bolo trestne stíhaných.

Metamfetamín je kontrolovaná droga triedy „A“ podľa zákona o zneužívaní drog z roku 1975. Maximálny trest za výrobu a distribúciu je doživotný trest odňatia slobody. Teoreticky by ho síce lekár mohol predpísať na vhodnú indikáciu, ale vyžadovalo by si to individuálne schválenie generálnym riaditeľom pre verejné zdravie. Na Novom Zélande sa metamfetamín najčastejšie označuje pouličným názvom P.

V Južnej Afrike je metamfetamín klasifikovaný ako droga zaradená do zoznamu 5 a je uvedený ako nežiaduca látka vyvolávajúca závislosť v časti III zoznamu 2 zákona o drogách a obchodovaní s drogami z roku 1992 (zákon č. 140 z roku 1992). Bežne sa nazýva Tik a zneužívajú ho najmä mladí ľudia do 20 rokov v oblastiach Cape Flats.

Od 18. januára 2007 je metamfetamín klasifikovaný ako droga triedy A podľa zákona o zneužívaní drog z roku 1971 na základe odporúčania Poradnej rady pre zneužívanie drog z júna 2006. Predtým bol klasifikovaný ako droga triedy B, okrem prípadov, keď je pripravený na injekčné použitie.

Metamfetamín je podľa Dohovoru o psychotropných látkach Úradom pre kontrolu liečiv zaradený do zoznamu II. Je dostupný na lekársky predpis pod obchodným názvom Desoxyn, ktorý vyrába spoločnosť Ovation Pharma. Hoci technicky nie je rozdiel medzi zákonmi týkajúcimi sa metamfetamínu a iných kontrolovaných stimulantov, väčšina lekárov ho kvôli jeho notorickej známosti predpisuje s odporom.

Nelegálny metamfetamín sa v posledných rokoch stal hlavnou témou „vojny proti drogám“ v Spojených štátoch. Okrem federálnych zákonov niektoré štáty zaviedli ďalšie obmedzenia na predaj chemických prekurzorov, ktoré sa bežne používajú na syntézu metamfetamínu, najmä pseudoefedrínu, bežného voľnopredajného dekongestíva. V roku 2005 DEA zhabala 2 148,6 kg metamfetamínu. V roku 2005 bol v rámci zákona USA PATRIOT Act prijatý zákon o boji proti metamfetamínovej epidémii z roku 2005, ktorým sa zaviedli obmedzenia na predaj prekurzorov metamfetamínu.

Ministerstvo spravodlivosti USA vyhlásilo 7. novembra 2006 30. november za Deň povedomia o metamfetamíne.

Údaje spravodajského centra DEA El Paso EPICdata ukazujú zreteľný klesajúci trend v zadržaní tajných drogových laboratórií na nezákonnú výrobu metamfetamínu z vysokého počtu 17 356 v roku 2003. Údaje o záchytoch laboratórií v Spojených štátoch sú dostupné z EPIC od roku 1999, keď bolo v tomto kalendárnom roku nahlásených 7 438 záchytov laboratórií.

Zákonnosť podobných chemikálií

Pozri pseudoefedrín a efedrín, kde sú uvedené zákonné obmedzenia v dôsledku ich používania ako prekurzorov pri tajnej výrobe metamfetamínu.

Metamfetamín – Desoxyn – Yaba (droga) – Metamfetamín a sex – Metamfetamín v populárnej kultúre – Meth mouth – Party and play – Montana Meth Project – Meth song – Levometamfetamín – Amfetamín – Galéria obrázkov – Combat Methamphetamine Epidemic Act of 2005 – Methamphetamine Precursor Control Act – Crystal Meth Anonymous

Adaphenoxate –
Adapromín –
Amantadín –
Bromantán –
Chlodantán –
Gludantan –
Memantín –
Midantane

8-chlórteofylín – 8-cyklopentylteofylín – 8-fenylteofylín – aminofylín – kofeín – CGS-15943 – dimetazín – paraxantín – SCH-58261 – teobromín – teofylín

Cyklopentamín – Cypenamín
Cypenamín – cyprodenát
Cyprodenát –
Heptaminol –
Izometheptén –
Metylhexanamín –
Oktodrín –
Propylhexedrín –
Tuaminoheptán

Benocyklidín –
Dieticyklidín –
Esketamín –
Eticyklidín –
Gacyclidine –
Ketamín –
Fencyklamín –
Fencyklidín –
Rolicyklidín –
Tenocyklidín –
Tiletamín

6-Br-APB –
SKF-77434 –
SKF-81297 –
SKF-82958

A-84543 –
A-366,833 –
ABT-202 –
ABT-418 –
AR-R17779 –
Altiniklín –
Anabasín –
Arekolín –
Kotinín –
Cytisine –
Dianiklín –
Epibatidín –
Epiboxidín –
TSG-21 –
Ispronicline –
Nikotín –
PHA-543,613 –
PNU-120,596 –
PNU-282,987 –
Pozanicline –
Rivanicline –
Sazetidín A –
SIB-1553A –
SSR-180,711 –
TC-1698 –
TC-1827 –
TC-2216 –
TC-5619 –
Tebanicline –
UB-165 –
Vareniklín –
WAY-317 538

Anatoxín-a –
Bikukulín –
DMCM –
Flurothyl –
Gabazín –
Pentetrazol –
Pikrotoxín –
Strychnín –
Thujone

Adrafinil –
Armodafinil –
CRL-40941 –
Modafinil

4-metylaminorex – Aminorex
Aminorex –
Clominorex –
Cyklazodón –
Fenozolón –
Fluminorex –
Pemoline –
Thozalinon

1-(4-metylfenyl)-2-aminobután –
1-Phenyl-2-(piperidin-1-yl)pentan-3-one –
1-metylamino-1-(3,4-metyléndioxyfenyl)propán –
2-fluóramfetamín –
2-fluórmetamfetamín – – 2-OH-PEA
2-OH-PEA – – 2-FENYL
2-fenyl-3-aminobután – – 2-OH-PEA
2-fenyl-3-metylaminobután – – 2,3-MDA
2,3-MDA – – 3-FLUÓRAMFETAMÍN
3-fluóramfetamín – – 3-fluóretamfetamín
3-fluóretamfetamín – – 2,3-MDA
3-fluórmetkatinón – – 3-metoxyamfetamín
3-metoxyamfetamín – – 3-metylamfetamín
3-metylamfetamín – – 3,4-DMMC
3,4-DMMC – 4-BMC
4-BMC – 4-ETYLAMFETAMÍN
4-etyllamfetamín – – 4-FA
4-FA –
4-FMA –
4-MA –
4-MMA –
4-MTA –
6-FNE –
Alfetamín –
α-etylfenetylamín –
Amfecloral –
Amfepentorex –
Amfepramón –
Amidefrín – Amfetamín (dextroamfetamín, levoamfetamín)
Amfetamín (dextroamfetamín, levoamfetamín) – Amfetamín
Amfetamín – – Arbutamín
Arbutamín –
β-metylfenetylamín – β-fenylmetamfetamín
β-fenylmetamfetamín – – Benfluorex
Benfluorex – Benzedron
Benzedrón – Benzfetamín
Benzfetamín – Benzedron – Benzfetamín
BDB (J) –
BOH (Hydroxy-J) –
BPAP –
Buphedron –
Bupropión (amfebutamón) –
Butylón –
Cathine –
Katinón –
Chlórfentermín –
Cinnamedrine –
Klenbuterol –
Clobenzorex –
Cloforex –
Clortermine –
D-deprenyl –
Denopamín –
Dimetoxyamfetamín –
Dimetylamfetamín – dimetylkatinón (dimetylpropión, metamfepramón)
Dimetylkatinón (dimetylpropión, metamfepramón) – – Dobutamín
Dobutamín – – DOPA (dextrodopa)
DOPA (dextrodopa, levodopa) – dopamín
Dopamín – Dopexamín
Dopexamín –
Droxidopa –
EBDB (Ethyl-J) –
Efedrín –
Epinefrín (adrenalín) –
Epinín (deoxyepinefrín) – Etafedrín
Etafedrín – etkatinón
Etikatinón (etylpropión) – Etylamfetamín (etylpropión)
Etylamfetamín (etilamfetamín) – Etylnorepinefrín (adrenalín)
Etylnorepinefrín (butanefrín) – etylón
Etylón – etylefrín
Etylefrín – Etylpropión (Etylpropión)
Famprofazón – fenbutrazát
Fenbutrazát – – Fenbutrazát
Fencamín –
Fenetylín – fenetylamín
Fenfluramín (dexfenfluramín) – – Fenmetramid
Fenmetramid – Fenproporex
Fenproporex – Fenmetramid
Flefedrón – Fludorex
Fludorex – Furfenorex
Furfenorex – Gepefrín
Gepefrín –
HMMA –
Hordenine –
Ibopamín –
IMP –
Indanylamfetamín –
Isoetarine –
Izoetkatinón –
Izoprenalín (izoproterenol) – – L-deprenyl (selegilín)
L-deprenyl (selegilín) – lefetamín
Lefetamín – lisdexamfetamín
Lisdexamfetamín – Lophophine (Homomyrist)
Lophophine (Homomyristicillamine) – Manifaxine
Manifaxín – – Manifaxín (homomyristikamín)
MBDB (metyl-J; „Eden“) – – MDA (tenamfetamín)
MDA (tenamfetamín) – MDBU
MDBU – – MDEA („EVE“)
MDEA („Eve“) – – MDMA („Extáza“)
MDMA („Extáza“, „Adam“) – – MDMPEA (homarylamín)
MDMPEA (homarylamín) – MDOH
MDOH –
MDPR –
MDPEA (homopiperonylamín) – – Mefenorex
Mefenorex – Mefedron
Mefedrón –
Mefentermín –
Metanefrín –
Metaraminol – metamfetamín
Metamfetamín (desoxyefedrín, metedrín; dextrometamfetamín, levometamfetamín) – – Metoxamín
Metoxamín – – Metoxyfenamín
Metoxyfenamín – – Metoxyfenamín
MMA –
Metkatinón (metylpropión) – Methedron
Metedrón – Metoxyfenamín
Metoxyfenamín – – metylón
Metylón –
MMDA –
MMDMA –
MMMA –
Morazone –
N-benzyl-1-fenetilamin – – N
N,N-dimetylfenetylamín – – Naftylamfetamín
Nafylamfetamín – – Nisoxetín
Nisoxetín – noradrenalín (noradrenalín)
Norepinefrín (noradrenalín) – noradrenalín
Norfenefrín – noradrenalín (noradrenalín)
Norfenfluramín – noradrenalín (noradrenalín)
Normetanefrín – oktopamín
Oktopamín –
Orciprenalín –
Ortetamín –
Oxilofrin –
Paredrín (norfolydrín, oxamfetamín, mykadrín) –
PBA –
PCA –
PHA –
Pargyline –
Pentorex (Phenpentermine) – – Pentylone
Pentylón –
Fendimetrazín –
Fenmetrazín –
Fenprometamín –
Fentermín –
Fenylalanín –
Fenylefrín (neosynefrín) –
Fenylpropanolamín –
Pholedrine –
PIA –
PMA –
PMEA –
PMMA –
PPAP –
Prenylamín –
Propylamfetamín –
Pseudoefedrín –
Radafaxine –
Ropinirol – salbutamol (albuterol; levosalbutamol)
Salbutamol (albuterol; levosalbutamol) – – Sibutramín
Sibutramín – Synefrín (Oxedrine)
Synefrín (Oxedrine) – Teodrenalín
Teodrenalín – Tiflorex (Flután)
Tiflorex (Flutiorex) – Tranylcypromín
Tranylcypromín – tyramín
Tyramín – Tyrozín
Tyrozín –
Xamoterol – Xylopropamín
Xylopropamín – Zylofuramín
Zylofuramín

2C-B-BZP –
BZP –
CM156 –
DBL-583 – GBR
GBR-12783 –
GBR-12935 –
GBR-13069 –
GBR-13098 –
GBR-13119 –
MeOPP –
MBZP –
Vanoxerín

1-Benzyl-4-(2-(difenylmetoxy)etyl)piperidín –
1-(3,4-dichlórfenyl)-1-(piperidín-2-yl)bután –
2-benzylpiperidín –
2-metyl-3-fenylpiperidín –
3,4-dichlórmetylfenidát –
4-benzylpiperidín –
4-metylfenidát –
Deoxypipradrol –
Difemetorex –
Difenylpyralín –
Etylfenidát –
Metylnaftidát –
Metylfenidát (dexmetylfenidát) –
N-metyl-3β-propyl-4β-(4-chlórfenyl)piperidín –
Nocaine –
Phacetoperane –
Pipradrol –
SCH-5472

2-difenylmetylpyrolidín – α-PPP
α-PPP –
α-PBP –
α-PVP –
Difenylprolinol –
MDPPP –
MDPBP –
MDPV –
MPBP –
MPHP –
MPPP –
MOPPP –
Naphyrone –
PEP –
Prolintane –
Pyrovalerón

3-CPMT –
3′-chlór-3α-(difenylmetoxy)tropán –
3-pseudotropyl-4-fluorobenzoát –
4′-fluorokokaín –
AHN-1055 –
Altropán (IACFT) –
Brasofenzín –
CFT (WIN 35,428) –
β-CIT (RTI-55) – Kokaetylén
Kokaetylén –
Kokaín – dichlórpan (RTI-111)
Dichlórpan (RTI-111) – – Difluórpín
Difluoropín – FE-β-CPPIT
FE-β-CPPIT – FE-β-CPPIT
FP-β-CPPIT – Ioflupán (123I)
Ioflupán (123I) – Norkokaín
Norkokaín – PIT
PIT –
PTT –
RTI-31 –
RTI-32 –
RTI-51 –
RTI-105 –
RTI-112 –
RTI-113 –
RTI-117 –
RTI-120 –
RTI-121 (IPCIT) –
RTI-126 –
RTI-150 –
RTI-154 – – RTI-171
RTI-171 –
RTI-177 –
RTI-183 –
RTI-193 –
RTI-194 –
RTI-199 –
RTI-202 –
RTI-204 –
RTI-229 –
RTI-241 –
RTI-336 –
RTI-354 –
RTI-371 –
RTI-386 – – SALICYLMETYLEKGONÍN
Salicylmetylekgonín – – – Salicylmetylekgonín
Tesofenzín –
Troparil (β-CPT, WIN 35,065-2) – – Tropoxán
Tropoxán –
WF-23 – – WF-33
WF-33 –
WF-60

1-(tiofén-2-yl)-2-aminopropán – – 2-amino-1,2-dihydronaftalén
2-amino-1,2-dihydronaftalén – – 2-aminoindán
2-aminoindán – – 2-aminotetralín
2-aminotetralín –
2-MDP – – 2-FENYLCYKLOHEXÁN
2-fenylcyklohexylamín – – 2-aminoindán
2-fenyl-3,6-dimetylmorfolín – – 3-benzhydrylmorfolín
3-benzhydrylmorfolín – – 3,3-difenylcyklohexylamín
3,3-difenylcyklobutanamín – – 5-(2-amino-propyl)
5-(2-aminopropyl)indol – – 5-jodo-2-amino
5-jodo-2-aminoindán –
AL-1095 –
Kyselina amfonová –
Amineptín –
Amifenazoly –
Atipamezol –
Atomoxetín (tomoxetín) –
Bemegrid – Bemegrid (Tomoxetín) – Bemegrid
Benzydamín –
BTQ –
BTS 74,398 –
Carphedon –
Ciclazindol –
Cilobamín –
Klofencikán –
Cropropamid –
Krotetamid – – Cypenamín
Cypenamín –
D-161 –
Diklofenzín –
Dimetokaín –
Efaroxan –
Etamivan –
EXP-561 –
Fencamfamín –
Fenpentadiol –
Feprosidnine –
G-130 –
Gamfexine –
Gilutenzín –
GSK1360707F –
GYKI-52895 –
Hexacyklonát –
Idazoxan –
Indanorex –
Indatralín –
JNJ-7925476 –
JZ-IV-10 –
Lazabemid –
Leptaklín –
Levopropylhexedrín –
Lomevactone –
LR-5182 –
Mazindol –
Mazindol – meklofenoxát
Medifoxamín –
Mefexamid –
Mesocarb –
Metastyridón –
Metiopropamín – – N-metyl-3-fenylnorbornan-2-amín
N-metyl-3-fenylnorbornan-2-amín – – Nefopam
Nefopam –
Niketamid –
Nomifenzín –
O-2172 –
Oxaprotiline –
Ftalimidopropiofenón –
PNU-99,194 – PROPYLHEXEDRÍN
Propylhexedrín –
PRC200-SS –
Rasagilín – Rauwolscine
Rauwolscine – – Chlorid rubídia
Chlorid rubídia –
Setazindol –
Tametraline –
Tandamín –
Trazium –
UH-232 –
Yohimbin

{2C-B}
{2C-C}
{2C-D}
{2C-E}
{2C-I}
{2C-N}
{2C-T-2}
{2C-T-21}
{2C-T-4}
{2C-T-7}
{2C-T-8}
{3C-E}
{4-FMP}
{Bupropion}
{Cathine}
{katinón}
{DESOXY}
{Dextroamfetamín}
{Metamfetamín}
{Dietylkatinón}
{Dimetylkatinón}
{DOC}
{DOB}
{DOI}
{DOM}
{bk-MBDB}
{Dopamín}
{Br-DFLY}
{Efedrín}
{Epinefrín}
{Eskalín}
{Fenfluramín}
{Levalbuterol}
{Levmetamfetamín}
{MBDB}
{MDA}
{MDMA}
{bk-MDMA/MDMC/MDMCat/Metylón}
{MDEA}
(MDPV)
{Meskalín}
{Metkatinón}
{Metylfenidát}
{Norepinefrín}
{fentermín}
{Salbutamol}
{Tyramín}
{Venlafaxín}

Kategórie
Psychologický slovník

Alopécia

Plešatosť je stav, keď chýbajú vlasy tam, kde často rastú, najmä na hlave. Najčastejšou formou plešatosti je postupné rednutie vlasov nazývané androgénna alopécia alebo „mužská plešatosť“, ktorá sa vyskytuje u dospelých mužov ľudí a iných druhov. Závažnosť a povaha plešatosti sa môže veľmi líšiť; siaha od alopécie mužského a ženského typu (androgénna alopécia, nazývaná aj androgénna alopécia alebo alopécia androgenetica), alopécie areata, ktorá zahŕňa stratu časti vlasov na hlave, alopécie totalis, ktorá zahŕňa stratu všetkých vlasov na hlave, až po najextrémnejšiu formu, alopéciu univerzalis, ktorá zahŕňa stratu všetkých vlasov na hlave a na tele. Liečba rôznych foriem alopécie má obmedzený úspech, ale typická mužská plešatosť je v súčasnosti veľmi dobre preventabilná a (do určitej miery) reverzibilná. Tisíce jednotlivcov dnes využívajú klinicky overené liečebné prípravky, ako sú Avacor, Propecia a nová pena Rogaine, ktoré vykazujú výrazný opätovný rast a zabraňujú ďalšiemu vypadávaniu vlasov. Vo všeobecnosti platí, že čím viac vlasov ste stratili, tým ťažšie sa obnovujú, ale liečby pomôžu drvivej väčšine používateľov a v kozmetickej transplantačnej chirurgii a systémoch na náhradu vlasov existujú nové technológie, ktoré sú úplne nezistiteľné.

Existuje niekoľko ďalších druhov plešatosti:

Termín alopécia (al-oh-PEE-she-uh) vznikol z gréckeho αλώπηξ (alopex), čo znamená líška. Pôvod tohto použitia je v tom, že toto zviera zhodí srsť dvakrát ročne.

Výraz plešatý pravdepodobne pochádza z anglického slova balde, čo znamená „biely, bledý“, alebo z keltského ball, čo znamená „biela škvrna alebo plameň“, napríklad na hlave koňa.

Priemerná ľudská hlava má približne 100 000 vlasových folikulov. Z každého folikulu môže počas života človeka vyrásť približne 20 jednotlivých vlasov. Priemerná strata vlasov je približne 100 prameňov denne.

Mužská plešatosť je charakterizovaná ústupom vlasov z bočných strán čela, tzv. „ustupujúcou vlasovou líniou“.

Na vrchole (vertex) sa môže vytvoriť ďalšia lysina. Spúšťačom tohto typu plešatosti (nazývanej androgénna alopécia) je DHT, silný pohlavný hormón a stimulátor rastu vlasov, ktorý môže nepriaznivo ovplyvniť vlasy a prostatu.

Mužská plešatosť sa klasifikuje na Hamiltonovej-Norwoodovej stupnici I-VIII.

Výskyt plešatosti sa v jednotlivých populáciách líši v závislosti od genetického pozadia. Zdá sa, že faktory prostredia nemajú na tento typ plešatosti veľký vplyv. Jedna rozsiahla štúdia v Maryborough v centrálnej časti štátu Victoria (Austrália) ukázala, že výskyt vypadávania vlasov v strednej časti tváre sa zvyšuje s vekom a postihuje 57 % žien a 73,5 % mužov vo veku 80 rokov a viac.

Mechanizmus, ktorým to DHT dosahuje, zatiaľ nie je známy. V geneticky náchylných vlasoch DHT iniciuje proces miniaturizácie folikulov. Procesom miniaturizácie folikulov sa postupne zmenšuje šírka vlasového stvolu, až kým sa vlasy na hlave nepodobajú na krehké vlasy alebo „broskyňové chumáče“, prípadne sa stanú neexistujúcimi. Vypadávanie vlasov sa niekedy začína už na konci puberty a je väčšinou geneticky podmienené.
Predtým sa predpokladalo, že plešatosť je dedičná. Hoci tento názor má svoje opodstatnenie, k pravdepodobnosti vypadávania vlasov u svojich potomkov prispievajú obaja rodičia. S najväčšou pravdepodobnosťou je dedičnosť technicky „autozomálne dominantná so zmiešanou penetranciou“ (pozri „folklór o plešatosti“ nižšie).

Psychologické príčiny vypadávania vlasov

Evolučné teórie mužskej plešatosti

Ohľadom podrobností vývoja mužskej plešatosti nepanuje zhoda. Väčšina teórií ju považuje za dôsledok pohlavného výberu. Aj u mnohých iných druhov primátov dochádza po dosiahnutí pohlavnej zrelosti k vypadávaniu vlasov a niektoré druhy primátov zjavne využívajú zväčšené čelo, ktoré vzniká anatomicky aj prostredníctvom stratégií, ako je napríklad čelná plešina, na vyjadrenie zvýšeného postavenia a zrelosti. Tvrdenie, že MPB má vyjadrovať sociálny odkaz, podporuje skutočnosť, že distribúcia androgénnych receptorov v pokožke hlavy sa u mužov a žien líši a staršie ženy alebo ženy s vysokou hladinou androgénov často vykazujú difúzne rednutie vlasov na rozdiel od mužskej plešatosti.

Jedna z teórií, ktorú rozvíjajú Muscarella a Cunningham, predpokladá, že plešatosť sa u samcov vyvinula v dôsledku pohlavného výberu ako signál starnutia a sociálnej zrelosti, pričom sa znížila agresivita a ochota riskovať a zvýšilo sa opatrovateľské správanie (1).

V štúdii Muscarella a Cunnhinghama si muži a ženy pozerali 6 mužských modelov s rôznou úrovňou ochlpenia na tvári (brada a fúzy alebo čisté) a s ochlpením na lebke (plná hlava, ustupujúce vlasy a pleš). Účastníci hodnotili každú kombináciu na základe 32 prídavných mien týkajúcich sa sociálneho vnímania. Muži s fúzikmi a muži s plešinou alebo ustupujúcimi vlasmi boli hodnotení ako starší ako tí, ktorí boli oholení na čisto alebo mali celú hlavu vlasov. Brady a plná hlava vlasov boli vnímané ako agresívnejšie a menej sociálne zrelé a plešatosť bola spojená s väčšou sociálnou zrelosťou.

Psychologické dôsledky vypadávania vlasov sa u jednotlivcov veľmi líšia. Niektorí ľudia sa na zmenu prispôsobia pohodlne, zatiaľ čo iní majú vážne problémy spojené s úzkosťou, depresiou, sociálnou fóbiou a v niektorých prípadoch aj so zmenou identity.

Astronaut NASA vo výslužbe Story Musgrave.

Uvádza sa, že alopécia vyvolaná chemoterapiou rakoviny spôsobuje zmeny v sebavedomí a obraze tela. Po opätovnom narastení vlasov sa u väčšiny pacientov obraz tela nevráti do pôvodného stavu. V takýchto prípadoch majú pacienti problémy s vyjadrovaním svojich pocitov (čo sa nazýva alexitýmia) a môžu byť náchylnejší vyhýbať sa rodinným konfliktom. Rodinná terapia môže pomôcť rodine vyrovnať sa s týmito psychologickými problémami, ak sa vyskytnú.

Psychické problémy spôsobené plešatosťou, ak sú prítomné, sú zvyčajne najzávažnejšie na začiatku príznakov.

Niektorí plešatí muži môžu byť na svoju plešatosť hrdí a cítiť príbuzenský vzťah so slávnymi charizmatickými plešatými mužmi, ako sú Telly Savalas, Patrick Stewart, Sean Connery, Yul Brynner, Billy Corgan, Vin Diesel, Michael Chiklis, Michael Stipe, Ross Kemp, Jason Alexander, Larry David, Danny De Vito, Ben Kingsley alebo Bruce Willis; alebo politici ako Ed Koch, John Reid, Menzies Campbell a James Carville; alebo športovci ako wrestler Stone Cold Steve Austin, futbalisti Zinedine Zidane, Bobby Charlton alebo tenisová hviezda Andre Agassi. Veľká časť vnímania mužnosti a fešáctva týchto celebrít sa odvíja od ich najviditeľnejšieho rozlišovacieho znaku. Plešatosť sa v posledných rokoch v každom prípade stala menej (údajnou) príťažou, pretože medzi mužmi, aspoň v západných krajinách, je čoraz viac v móde veľmi krátke alebo dokonca úplne vyholené ochlpenie. Platí to dokonca aj pre ženy, ako ukazuje prípad speváčky Sinead O’Connor, ktorá má vyholenú hlavu.

Mnohé spoločnosti vybudovali úspešný biznis na predaji produktov, ktoré zvracajú plešatosť, údajne obnovujú vlasy, transplantujú vlasy alebo predávajú príčesky. Existuje len veľmi málo dôkazov o tom, že niektorý z produktov, ktoré tvrdia, že vlasy rastú, skutočne funguje.

Prevencia a zvrátenie vypadávania vlasov

V USA existujú len 2 liečebné postupy, ktoré schválila FDA (Food and Drug Administration), a jeden produkt, ktorý FDA povolila na liečbu androgénnej alopécie, inak známej ako vypadávanie vlasov u mužov alebo žien. Tieto dve liečby schválené FDA sú finasterid (predávaný na vypadávanie vlasov ako Propecia) a minoxidil.

Spoločnosť Merck Pharmaceuticals sa snažila nájsť najmenšie účinné množstvo finasteridu a otestovať jeho dlhodobé účinky na 1 553 mužoch vo veku 18 až 41 rokov s miernym až stredne silným rednutím vlasov. Na základe ich výskumu bola zvolená dávka 1 mg denne a po 2 rokoch každodennej liečby si viac ako 83 % z 1 553 mužov, u ktorých došlo k vypadávaniu mužských vlasov, skutočne udržalo alebo zvýšilo počet vlasov oproti východiskovému stavu. Vizuálne hodnotenia dospeli k záveru, že u viac ako 80 % sa zlepšil vzhľad.

Minoxidil sa najprv používal vo forme tabliet ako liek na liečbu vysokého krvného tlaku, ale zistilo sa, že u niektorých pacientov liečených minoxidilom sa ako vedľajší účinok objavil nadmerný rast vlasov (hypertrichóza). Ďalší výskum ukázal, že aplikácia Minoxidilu vo forme roztoku priamo na pokožku hlavy by mohla byť prospešná pre tých, ktorí trpia lokálnym vypadávaním vlasov.

Klinické štúdie FDA ukázali, že 65 % mužov s androgénnou alopeciou si pri používaní minoxidilu 5 % v tekutej forme zachovalo alebo zvýšilo počet vlasov. U 54 % týchto mužov došlo k stredne silnému až silnému opätovnému rastu vlasov a u 46 % k stabilizácii vypadávania vlasov a miernemu opätovnému rastu vlasov.

V kontrolovaných klinických štúdiách na ženách vo veku 18-45 rokov 2 z 3 žien so stredným stupňom dedičného vypadávania vlasov po použití 2% minoxidilu zaznamenali opätovný rast vlasov. Počiatočné výsledky sa dostavili po 4 mesiacoch, pričom maximálne výsledky sa dostavili po 8 mesiacoch.

V testovacej správe FDA sa uvádza, že subjekty, ktoré používali liečbu, „mali výrazne väčší nárast priemernej terminálnej hustoty vlasov“ ako subjekty, ktoré v testoch používali placebo.

Ako napovedá názov zariadenia, kombinuje nízkoúrovňový laser s hrebeňom. Keď sa laser pretiahne cez vlasy, zasiahne pokožku hlavy a podporí rast vlasov.

LaserComb je jediný výrobok bez liekov určený na domáce použitie v boji proti vypadávaniu vlasov, ktorý získal súhlas Úradu pre kontrolu potravín a liečiv.

Za najúčinnejšiu formu nechirurgickej liečby vypadávania vlasov sa považuje kombinácia liečby schválenej FDA. [Ako odkazovať a odkazovať na zhrnutie alebo text]

Chirurgický zákrok je ďalšou metódou zvrátenia vypadávania vlasov a plešatosti, hoci sa môže považovať za extrémne opatrenie. Medzi používané chirurgické metódy patrí transplantácia vlasov, pri ktorej sa zo zadnej a bočnej časti hlavy odoberú vlasové folikuly a vstreknú sa do plešatých alebo rednúcich oblastí.

Do budúcnosti sa ukazuje, že perspektívna liečba rozmnožovaním vlasov/klonovaním vlasov, ktorá extrahuje samoreplikujúce sa kmeňové bunky folikulov, mnohonásobne ich rozmnožuje v laboratóriu a mikroinjekčne ich vpravuje do pokožky hlavy, funguje na myšiach a v súčasnosti sa vyvíja, pričom niektorí vedci očakávajú, že bude k dispozícii verejnosti v rokoch 2009 – 2015. Niektorí vedci očakávajú, že následné verzie liečby budú schopné spôsobiť, že tieto folikulárne kmeňové bunky jednoducho vyšlú signál okolitým vlasovým folikulom, aby sa omladili. Pozri časť Liečba plešatosti

V októbri 2006 britská biotechnologická spoločnosť Intercytex oznámila, že úspešne otestovala metódu odoberania vlasových folikulov zo zadnej časti krku, ich množenia a následnej reimplantácie buniek do pokožky hlavy (Hair multiplication). Výsledkom počiatočného testovania bolo, že 70 % pacientov mužského pohlavia znovu narástli vlasy. Očakáva sa, že táto liečebná metóda bude verejnosti k dispozícii do roku 2009 .

V januári 2007 talianski výskumníci zaoberajúci sa kmeňovými bunkami tvrdili, že prišli s novou technikou liečby plešatosti. Pierluigi Santi z kliniky v Janove povedal, že kmeňové bunky by sa mohli použiť na „rozmnoženie“ vlasových korienkov. Povedal, že klinika bude pripravená vykonať prvé transplantácie vlasov prioritným pacientom – tým, ktorí prišli o vlasy pri požiaroch alebo iných nehodách – v priebehu niekoľkých mesiacov. Potom, povedal, „otvoríme dvere platiacim zákazníkom“. Santiho prístup funguje tak, že rozdeľuje korienky a pestuje nové folikuly.

Lokálna aplikácia ketokonazolu, ktorý je protiplesňovým a zároveň silným inhibítorom 5-alfa reduktázy, sa často používa ako doplnok k iným prístupom.1

Jednotlivé nenasýtené mastné kyseliny, ako napríklad kyselina gama linolénová, sú inhibítormi 5 alfa reduktázy, ak sa užívajú vnútorne.

Je zaujímavé, že placebo liečba v štúdiách má často primeranú úspešnosť, hoci nie takú vysokú ako testované produkty, a dokonca aj podobné vedľajšie účinky ako produkty. Napríklad v štúdiách s finasteridom (Propecia) bolo percento pacientov s akoukoľvek sexuálnou nežiaducou skúsenosťou súvisiacou s liekom 3,8 % v porovnaní s 2,0 % v skupine s placebom.

Štúdie vykonané na subjektoch rôzneho veku naznačujú, že samotný silový tréning môže zvýšiť testosterón v štúdiách, v ktorých sa porovnávalo buď aeróbne cvičenie (len) so silovým tréningom (len) alebo mierne sedavým životom;

Jedna štúdia naznačuje, že na zvýšenie voľného testosterónu u silových trénerov je potrebná kombinácia ťažkého cvičenia a zvýšeného príjmu tukov. To by im pomohlo budovať svaly, ale môže spôsobiť, že náchylní jedinci stratia vlasy.

Existuje však aspoň jedna štúdia, ktorá naznačuje pokles voľného testosterónu v kombinácii so zvýšením sily v dôsledku (nešpecifikovaného) silového tréningu.

Zníženie stresu môže byť užitočné pri spomalení vypadávania vlasov. (pozri časť Ľudová slovesnosť o plešatosti)

Bolo preukázané, že imunosupresíva aplikované na pokožku hlavy dočasne zvrátia alopéciu areata, hoci vedľajšie účinky niektorých z týchto liekov robia takúto liečbu spornou.

Saw Palmetto (Serenoa repens) je bylinný inhibítor DHT, o ktorom sa často tvrdí, že je lacnejší a má menej vedľajších účinkov ako finasterid a dutasterid. Na rozdiel od iných inhibítorov 5alfa-reduktázy vyvoláva Serenoa repens svoje účinky bez toho, aby zasahovala do bunkovej schopnosti vylučovať PSA.
Bolo preukázané, že extrakt zo Saw palmetta inhibuje obe izoformy 5-alfa-reduktázy na rozdiel od finasteridu, ktorý inhibuje len (prevažujúci) izoenzým typu 2 5-alfa-reduktázy.

Polygonum Multiflorum je tradičný čínsky liek na vypadávanie vlasov. Bez ohľadu na to, či je samotná rastlina užitočná, všeobecná bezpečnosť a kontrola kvality bylín dovážaných z Číny môže byť otázna.

Beta sitosterol, ktorý je súčasťou mnohých olejov zo semien, môže pomôcť pri liečbe BHP znížením hladiny cholesterolu. Ak sa používa na tento účel, najlepší je extrakt. Konzumácia veľkého množstva oleja na získanie malého množstva beta sitosterolu pravdepodobne zhorší mužskú plešatosť.

Resveratrol zo šupiek hrozna.

Aj keď sú drastické, širokospektrálne antiandrogény, ako je flutamid, sa niekedy používajú lokálne. Flutamid je dostatočne silný na to, aby mal u mužov feminizačný účinok vrátane rastu prsníkov.

V marci 2006 spoločnosť Curis oznámila, že získala prvý predklinický míľnik, platbu v hotovosti vo výške 1 000 000 USD, v rámci svojho programu rastu vlasov so spoločnosťou Procter & Gamble Pharmaceuticals, divíziou spoločnosti The Procter & Gamble Company. Program je zameraný na potenciálny vývoj lokálneho agonistu Hedgehog na poruchy rastu vlasov, ako je napríklad mužská plešatosť a vypadávanie vlasov u žien. Výskumný program curis na liečbu vypadávania vlasov bol v máji 2007 zastavený, pretože proces nespĺňal príslušné bezpečnostné normy.

V máji 2007 americká spoločnosť Follica Inc. oznámila, že získala licenciu od Pensylvánskej univerzity na technológiu, ktorá dokáže regenerovať vlasové folikuly opätovným prebudením génov, ktoré boli kedysi aktívne len v embryonálnom štádiu vývoja človeka.

Jednou z metód zakrytia vypadávania vlasov je „česanie“, ktoré spočíva v úprave zostávajúcich vlasov tak, aby zakryli plešatú oblasť. Zvyčajne ide o dočasné riešenie, ktoré je užitočné len dovtedy, kým je oblasť vypadávania vlasov malá. Keď sa vypadávanie vlasov zväčšuje, hrebeň sa stáva menej účinným. Keď to dosiahne štádium extrémnej námahy s malým účinkom – môže sa stať, že osoba sa stane predmetom posmeškov alebo opovrhovania.

Ďalšou metódou je nosenie klobúka alebo príčesku – parochne alebo príčesku. Parochňa je vrstva umelých alebo prírodných vlasov vyrobená tak, aby pripomínala typický účes. Vo väčšine prípadov sú vlasy umelé. Parochne sa značne líšia kvalitou a cenou. V Spojených štátoch stoja najlepšie parochne – tie, ktoré vyzerajú ako pravé vlasy – až desaťtisíce dolárov. Organizácie ako Wigs for Kids a Locks of Love zbierajú od jednotlivcov ich vlastné prirodzené vlasy, z ktorých sa vyrábajú parochne pre mladých pacientov s rakovinou, ktorí prišli o vlasy v dôsledku chemoterapie alebo inej liečby rakoviny, ako aj akéhokoľvek iného typu straty vlasov.

Hoci to nie je tak časté ako vypadávanie vlasov na hlave, chemoterapia, hormonálna nerovnováha, formy alopécie a iné faktory môžu tiež spôsobiť vypadávanie vlasov v obočí. Na nahradenie chýbajúceho obočia alebo na zakrytie nejednotného obočia sú k dispozícii umelé obočia.

Herec Telly Savalas si počas svojej hereckej kariéry udržiaval vyholenú hlavu a bradu

Samozrejme, namiesto toho, aby ste vypadávanie vlasov skrývali, môžete ho prijať. Na oholenej hlave rastie strnisko rovnakým spôsobom a rovnakou rýchlosťou ako na oholenej tvári. Mnohé celebrity a športovci si holia hlavy. Široká verejnosť tiež prijala oholenú hlavu.

Ženská plešatosť je spoločensky menej akceptovaná.

Gén LIPH vytvára proteín LIPH, ktorý nie je úplne známy, ale zdá sa, že zohráva úlohu pri normálnej tvorbe a raste vlasov.“

„Takzvaný gén pre bezvláskovosť funguje tak, že potláča produkciu proteínu nazývaného wise, ktorý môže brániť rastu vlasov, ak sa nahromadí.“

Kategórie
Psychologický slovník

Hematoencefalická bariéra

Časť siete kapilár zásobujúcich mozgové bunky

Astrocyty typu 1 obklopujúce kapiláry v mozgu

Kortikálne mikrovesely farbené na prítomnosť proteínu ZO-1, ktorý tvorí hematoencefalickú bariéru

Hematoencefalická bariéra (BBB) je oddelenie cirkulujúcej krvi od extracelulárnej tekutiny v mozgu (BECF) v centrálnom nervovom systéme (CNS). Vyskytuje sa pozdĺž všetkých kapilár a pozostáva z tesných spojov okolo kapilár, ktoré v normálnom krvnom obehu neexistujú. Endotelové bunky obmedzujú difúziu mikroskopických objektov (napr. baktérií) a veľkých alebo hydrofilných molekúl do mozgovomiechového moku (CSF), pričom umožňujú difúziu malých hydrofóbnych molekúl (O2, CO2, hormóny). Bunky bariéry aktívne transportujú metabolické produkty, ako je glukóza, cez bariéru pomocou špecifických proteínov [potrebná citácia] Táto bariéra zahŕňa aj hrubú bazálnu membránu a astrocytárne koncové plôšky.

Paul Ehrlich bol bakteriológ, ktorý skúmal farbenie, postup, ktorý sa používa v mnohých mikroskopických štúdiách na zviditeľnenie jemných biologických štruktúr pomocou chemických farbív. Keď Ehrlich vstrekol niektoré z týchto farbív (najmä anilínové farbivá, ktoré sa vtedy bežne používali), farbivo zafarbilo všetky orgány niektorých druhov zvierat okrem ich mozgu. V tom čase Ehrlich pripisoval tento nedostatok farbenia tomu, že mozog jednoducho nezachytáva toľko farbiva [potrebná citácia].

V neskoršom experimente v roku 1913 však Edwin Goldmann (jeden z Ehrlichových študentov) vstrekol farbivo priamo do mozgovomiechových tekutín zvierat. Zistil, že v tomto prípade sa mozog skutočne zafarbil, ale zvyšok tela nie. To jasne dokázalo existenciu určitého rozdelenia medzi nimi. V tom čase sa predpokladalo, že za bariéru sú zodpovedné samotné cievy, pretože sa nenašla žiadna zjavná membrána. Koncept hematoencefalickej bariéry (vtedy nazývaný hematoencefalická bariéra) navrhol v roku 1900 berlínsky lekár Lewandowsky. Skutočnú membránu bolo možné pozorovať a dokázať jej existenciu až po zavedení skenovacieho elektrónového mikroskopu do medicínskeho výskumu v 60. rokoch 20. storočia.

Schematický náčrt zobrazujúci zloženie ciev v mozgu

Táto „bariéra“ je výsledkom selektivity tesných spojov medzi endotelovými bunkami v cievach CNS, ktoré obmedzujú prestup rozpustených látok [potrebná citácia] Na rozhraní medzi krvou a mozgom sú endotelové bunky zošité týmito tesnými spojmi, ktoré sa skladajú z menších podjednotiek, často biochemických dimérov, ktoré sú transmembránovými proteínmi, ako sú napríklad okludín, klaudíny, junkčná adhézna molekula (JAM) alebo ESAM.[potrebná citácia] Každý z týchto transmembránových proteínov je ukotvený v endotelových bunkách ďalším proteínovým komplexom, ktorý zahŕňa zo-1 a pridružené proteíny [potrebná citácia].

Hematoencefalická bariéra je zložená z buniek s vysokou hustotou, ktoré obmedzujú prestup látok z krvného obehu oveľa viac ako endotelové bunky v kapilárach inde v tele.[potrebná citácia] Výstupky buniek astrocytov nazývané astrocytové nožičky (známe aj ako „glia limitans“) obklopujú endotelové bunky BBB a poskytujú týmto bunkám biochemickú podporu.[Potrebná citácia] BBB sa líši od celkom podobnej bariéry krv – cerebrospinálna tekutina, ktorá je funkciou buniek cievnatky choroidálneho plexu, a od bariéry krv – sietnica, ktorú možno považovať za súčasť celej sféry takýchto bariér.

Pôvodne experimenty v 20. rokoch 20. storočia ukázali, že hematoencefalická bariéra (BBB) je u novorodencov ešte nezrelá. Dôvodom tohto omylu bola chyba v metodike (osmotický tlak bol príliš vysoký a jemné embryonálne kapilárne cievy boli čiastočne poškodené). Neskôr sa v experimentoch so zníženým objemom vstrekovaných tekutín ukázalo, že skúmané markery nemôžu prejsť cez BBB. Uviedlo sa, že tie prirodzené látky, ako je albumín, α-1-fetoproteín alebo transferín so zvýšenou koncentráciou v plazme novorodenca, sa nedajú zistiť mimo buniek v mozgu. Transportér P-glykoproteín existuje už v embryonálnom endoteli [potrebná citácia].

Meranie absorpcie acetamidu, antipyrínu, benzylalkoholu, butanolu, kofeínu, cytosínu, difenylhydantoínu, etanolu, etylénglykolu, heroínu, manitolu, metanolu, fenobarbitalu, propylénglykolu, tiomočoviny a močoviny v mozgu u novorodencov anestézovaných éterom vs. dospelých králikov ukazuje, že mozgové endotelie novorodencov a dospelých králikov sú funkčne podobné, pokiaľ ide o permeabilitu sprostredkovanú lipidmi [potrebná citácia] Tieto údaje potvrdili, že medzi kapilárami BBB novorodencov a dospelých králikov nemožno zistiť žiadne rozdiely v permeabilite. Medzi dospelými a novorodenými králikmi sa nepozoroval žiadny rozdiel v absorpcii glukózy, aminokyselín, organických kyselín, purínov, nukleozidov alebo cholínu v mozgu.“ [potrebná citácia] Tieto experimenty naznačujú, že novorodenecká BBB má podobné reštrikčné vlastnosti ako BBB dospelých. V protiklade k predpokladom o nezrelej bariére u mladých zvierat tieto štúdie naznačujú, že pri narodení funguje sofistikovaná, selektívna BBB.

Hematoencefalická bariéra veľmi účinne chráni mozog pred mnohými bežnými bakteriálnymi infekciami. Preto sú infekcie mozgu veľmi zriedkavé. Infekcie mozgu, ktoré sa vyskytnú, sú často veľmi závažné a ťažko liečiteľné. Protilátky sú príliš veľké na to, aby prešli cez hematoencefalickú bariéru, a len niektoré antibiotiká sú schopné prejsť. V niektorých prípadoch je potrebné podať farmaká priamo do mozgovomiechového moku [potrebná citácia] Lieky podané priamo do mozgovomiechového moku však účinne nepreniknú do samotného mozgového tkaniva, pravdepodobne kvôli torzovitosti intersticiálneho priestoru v mozgu. Hematoencefalická bariéra sa stáva priepustnejšou počas zápalu. To umožňuje niektorým antibiotikám a fagocytom prechádzať cez BBB. To však umožňuje aj prienik baktérií a vírusov do BBB. Výnimkou z vylúčenia baktérií sú ochorenia spôsobené spirochétami, ako sú borélie, ktoré spôsobujú boreliózu, a Treponema pallidum, ktorá spôsobuje syfilis. Zdá sa, že tieto škodlivé baktérie prekonávajú hematoencefalickú bariéru fyzickým tunelovaním cez steny ciev [potrebná citácia].

Existujú aj niektoré biochemické jedy, ktoré sa skladajú z veľkých molekúl, ktoré sú príliš veľké na to, aby prešli cez hematoencefalickú bariéru. To bolo dôležité najmä v primitívnych alebo stredovekých časoch, keď ľudia často jedli kontaminované potraviny. Neurotoxíny, ako napríklad botulín, v potravinách by mohli ovplyvniť periférne nervy, ale hematoencefalická bariéra často dokáže zabrániť tomu, aby sa takéto toxíny dostali do centrálneho nervového systému, kde by mohli spôsobiť vážne alebo smrteľné poškodenie.

Prekonanie ťažkostí s dodávaním terapeutických látok do špecifických oblastí mozgu predstavuje veľkú výzvu pri liečbe väčšiny mozgových porúch. Hematoencefalická bariéra, ktorá plní svoju neuroprotektívnu úlohu, bráni prísunu mnohých potenciálne dôležitých diagnostických a terapeutických látok do mozgu. Terapeutické molekuly a protilátky, ktoré by inak mohli byť účinné pri diagnostike a terapii, neprechádzajú cez BBB v primeranom množstve. Penetrácia do mozgovomiechového moku je podiel liečiva, ktoré prechádza cez hematoencefalickú bariéru a dostáva sa do mozgovomiechového moku

Mechanizmy cielenia liečiv v mozgu zahŕňajú prechod buď „cez“, alebo „za“ BBB. Spôsoby podávania liekov cez BBB zahŕňajú jej narušenie osmotickými prostriedkami, biochemicky pomocou vazoaktívnych látok, ako je bradykinín, alebo dokonca lokalizovaným pôsobením vysoko intenzívneho fokusovaného ultrazvuku (HIFU). Ďalšie metódy používané na prekonanie BBB môžu zahŕňať použitie endogénnych transportných systémov vrátane transportérov sprostredkovaných nosičmi, ako sú nosiče glukózy a aminokyselín; transcytózu sprostredkovanú receptormi pre inzulín alebo transferín; a blokovanie aktívnych efluxných transportérov, ako je p-glykoproteín. Metódy podávania liekov za BBB zahŕňajú intracerebrálnu implantáciu (napríklad pomocou ihiel) a konvekciou posilnenú distribúciu. Manitol sa môže použiť pri obchádzaní BBB.

Nanotechnológia môže pomôcť aj pri prenose liekov cez BBB. Nedávno sa výskumníci pokúšali vytvoriť lipozómy naplnené nanočasticami, aby získali prístup cez BBB. Je potrebný ďalší výskum, aby sa určilo, ktoré stratégie budú najúčinnejšie a ako ich možno zlepšiť pre pacientov s nádormi mozgu. Potenciál využitia otvorenia BBB na zacielenie špecifických látok na nádory mozgu sa práve začal skúmať.

Dodávanie liekov cez hematoencefalickú bariéru je jednou z najsľubnejších aplikácií nanotechnológií v klinickej neurovede. Nanočastice by potenciálne mohli vykonávať viacero úloh vo vopred stanovenom poradí, čo je veľmi dôležité pri dodávaní liečiv cez hematoencefalickú bariéru.

Významný objem výskumu v tejto oblasti sa venoval skúmaniu metód sprostredkovaného dodávania nanočastíc antineoplastických liečiv do nádorov v centrálnom nervovom systéme. Napríklad rádioaktívne značené polyetylénglykolom potiahnuté hexadecylcyanoakrylátové nanosféry sa zamerali na gliosarkóm potkana a akumulovali sa v ňom. Táto metóda však ešte nie je pripravená na klinické skúšky z dôvodu akumulácie nanosfér v okolitom zdravom tkanive.

Treba poznamenať, že cievne endotelové bunky a pridružené pericyty sú v nádoroch často abnormálne a že hematoencefalická bariéra nemusí byť v mozgových nádoroch vždy neporušená. Bazálna membrána je tiež niekedy neúplná. K rezistencii nádorov mozgu na liečbu môžu prispievať aj iné faktory, napríklad astrocyty.

Peptidy sú schopné prekonávať hematoencefalickú bariéru (BBB) rôznymi mechanizmami, čo otvára nové diagnostické a terapeutické možnosti. Údaje o ich transporte cez BBB sú však v literatúre roztrúsené v rôznych odboroch, pričom sa používajú rôzne metodiky uvádzajúce rôzne aspekty influxu alebo efluxu. Preto bola vytvorená komplexná databáza peptidov BBB (Brainpeps) s cieľom zhromaždiť údaje o BBB dostupné v literatúre. Brainpeps v súčasnosti obsahuje informácie o transporte cez BBB s pozitívnymi aj negatívnymi výsledkami. Databáza je užitočným nástrojom na stanovenie priorít pri výbere peptidov na hodnotenie rôznych reakcií BBB alebo na štúdium kvantitatívnych vzťahov medzi štruktúrou a vlastnosťami (správanie sa v BBB) peptidov. Keďže na hodnotenie správania sa zlúčenín v BBB sa používa množstvo metód, klasifikovali sme tieto metódy a ich odpovede. Okrem toho sme objasnili a vizualizovali vzťahy medzi rôznymi metódami transportu v BBB [potrebná citácia].

Casomorphin je heptapeptid a mohol by byť schopný prechádzať cez BBB.[potrebná citácia]

Choroby zahŕňajúce hematoencefalickú bariéru

Meningitída je zápal blán, ktoré obklopujú mozog a miechu (tieto blany sa nazývajú meningy). Meningitídu najčastejšie spôsobujú infekcie rôznymi patogénmi, ako sú napríklad Streptococcus pneumoniae a Haemophilus influenzae. Pri zápale mozgových blán môže dôjsť k narušeniu hematoencefalickej bariéry. Toto narušenie môže zvýšiť prenikanie rôznych látok (vrátane toxínov alebo antibiotík) do mozgu. Antibiotiká používané na liečbu meningitídy môžu zhoršiť zápalovú reakciu centrálneho nervového systému uvoľnením neurotoxínov z bunkových stien baktérií – ako je lipopolysacharid (LPS). V závislosti od pôvodcu ochorenia, či už ide o baktériu, hubu alebo prvoka, sa zvyčajne predpisuje liečba cefalosporínom tretej alebo štvrtej generácie alebo amfotericínom B.

Epilepsia je bežné neurologické ochorenie, ktoré sa vyznačuje opakujúcimi sa a niekedy neliečiteľnými záchvatmi. Viaceré klinické a experimentálne údaje poukazujú na zlyhanie funkcie hematoencefalickej bariéry pri vyvolávaní chronických alebo akútnych záchvatov. Niektoré štúdie poukazujú na interakcie medzi bežným krvným proteínom (albumínom) a astrocytmi. Tieto zistenia naznačujú, že akútne záchvaty sú predvídateľným dôsledkom narušenia BBB buď umelými, alebo zápalovými mechanizmami. Okrem toho expresia molekúl a transportérov rezistencie na lieky v BBB je významným mechanizmom rezistencie na bežne používané antiepileptické lieky.

Skleróza multiplex (SM) sa považuje za autoimunitné a neurodegeneratívne ochorenie, pri ktorom imunitný systém napáda myelín, ktorý chráni a elektricky izoluje neuróny centrálneho a periférneho nervového systému. Za normálnych okolností je nervový systém človeka neprístupný pre biele krvinky kvôli hematoencefalickej bariére. Magnetická rezonancia však ukázala, že keď človek prechádza „útokom“ SM, hematoencefalická bariéra sa v časti mozgu alebo miechy porušila, čo umožnilo bielym krvinkám nazývaným T-lymfocyty prejsť cez ňu a napadnúť myelín. Niekedy sa predpokladá, že SM nie je ochorenie imunitného systému, ale ochorenie hematoencefalickej bariéry. Nedávna štúdia naznačuje, že oslabenie hematoencefalickej bariéry je dôsledkom poruchy endotelových buniek na vnútornej strane cievy, kvôli ktorej nefunguje dobre produkcia proteínu P-glykoproteínu [potrebná citácia].

V súčasnosti sa aktívne skúma liečba narušenej hematoencefalickej bariéry. Predpokladá sa, že oxidačný stres zohráva dôležitú úlohu pri poruche bariéry. Antioxidanty, ako napríklad kyselina lipoová, môžu byť schopné stabilizovať oslabenú hematoencefalickú bariéru.

Neuromyelitis optica, známa aj ako Devicova choroba, je podobná a často sa zamieňa so sklerózou multiplex. Okrem iných odlišností od SM bol identifikovaný iný cieľ autoimunitnej odpovede. Pacienti s neuromyelitídou optica majú vysoké hladiny protilátok proti proteínu nazývanému aquaporín 4 (súčasť astrocytárnych procesov na nohách v hematoencefalickej bariére).

Neskoré štádium neurologickej trypanozomózy (spavej choroby)

Neskoré štádium neurologickej trypanozomózy alebo spavej choroby je stav, pri ktorom sa v mozgovom tkanive nachádzajú prvoky trypanozómy. Zatiaľ nie je známe, ako parazity infikujú mozog z krvi, ale predpokladá sa, že prechádzajú cez choroidálny plexus, obvodový orgán.

Progresívna multifokálna leukoencefalopatia (PML)

Progresívna multifokálna leukoencefalopatia (PML) je demyelinizačné ochorenie centrálneho nervového systému, ktoré je spôsobené reaktiváciou latentnej infekcie papovírusom (polyomavírus JC), ktorý môže prechádzať cez BBB. Postihuje pacientov so zníženou imunitou a zvyčajne sa vyskytuje u pacientov trpiacich AIDS.

Ochorenie de Vivo (známe aj ako syndróm nedostatku GLUT1) je zriedkavé ochorenie spôsobené nedostatočným prenosom cukru, glukózy, cez hematoencefalickú bariéru, čo vedie k oneskoreniu vývoja a iným neurologickým problémom. Zdá sa, že hlavnou príčinou ochorenia De Vivo sú genetické defekty transportéra glukózy typu 1 (GLUT1).

Niektoré nové dôkazy naznačujú, že narušenie hematoencefalickej bariéry u pacientov s Alzheimerovou chorobou umožňuje krvnej plazme obsahujúcej amyloid beta (Aβ) preniknúť do mozgu, kde sa Aβ prednostne prichytáva na povrch astrocytov. Tieto zistenia viedli k hypotézam, že (1) porušenie hematoencefalickej bariéry umožňuje prístup autoprotilátok viažucich sa na neuróny a rozpustného exogénneho Aβ42 k mozgovým neurónom a (2) väzba týchto autoprotilátok na neuróny spúšťa a/alebo uľahčuje internalizáciu a akumuláciu Aβ42 viazaného na povrch buniek v zraniteľných neurónoch prostredníctvom ich prirodzenej tendencie odstraňovať autoprotilátky viazané na povrch prostredníctvom endocytózy. Nakoniec je astrocyt preťažený, odumrie, praskne a rozpadne sa, pričom po sebe zanechá nerozpustný plak Aβ42. U niektorých pacientov teda môže byť Alzheimerova choroba spôsobená (alebo skôr zhoršená) poruchou hematoencefalickej bariéry.

Predpokladá sa, že latentný vírus HIV môže prekročiť hematoencefalickú bariéru vo vnútri cirkulujúcich monocytov v krvnom riečisku (teória „trójskeho koňa“) počas prvých 14 dní infekcie. Keď sa tieto monocyty dostanú dovnútra, aktivujú sa a premenia sa na makrofágy. Aktivované makrofágy uvoľňujú virióny do mozgového tkaniva v blízkosti mozgových mikrovaskulárnych ciev. Tieto vírusové častice pravdepodobne priťahujú pozornosť sentinelových mozgových mikroglií a perivaskulárnych makrofágov, ktoré iniciujú zápalovú kaskádu, ktorá môže spôsobiť sériu intracelulárnych signálov v endotelových bunkách mozgových mikrovaskulárnych ciev a poškodiť funkčnú a štrukturálnu integritu BBB. Tento zápal predstavuje HIV encefalitídu (HIVE). Prípady HIVE sa pravdepodobne vyskytujú počas celého priebehu AIDS a sú predzvesťou demencie súvisiacej s HIV (HAD). Hlavným modelom na štúdium HIV a HIVE je model opice.

Počas smrteľnej infekcie myší besnotou hematoencefalická bariéra (BBB) neumožňuje antivírusovým imunitným bunkám vstup do mozgu, primárneho miesta replikácie vírusu besnoty. Tento aspekt prispieva k patogenite vírusu a umelé zvýšenie priepustnosti BBB podporuje klírens vírusu. Otvorenie BBB počas infekcie besnoty sa navrhlo ako možný nový prístup k liečbe ochorenia, hoci sa zatiaľ neurobili žiadne pokusy o určenie, či by táto liečba mohla byť úspešná.

Kategórie
Psychologický slovník

Benzedrín

Reklama na benzedrín z roku 1939

Benzedrín je obchodný názov racemickej zmesi amfetamínu (dl-amfetamín). Pod týmto obchodným názvom ho od roku 1928 predávala v USA spoločnosť Smith, Kline and French vo forme inhalátorov. Benzedrín sa používal na rozšírenie nosových a prieduškových ciest a je úzko príbuzný s ďalšími neskôr vyrábanými stimulantmi, ako je dexedrín (d-amfetamín) a metamfetamín.

Prví používatelia inhalátora s benzedrínom zistili, že má euforizujúci stimulačný účinok, čo viedlo k tomu, že bol jedným z prvých syntetických stimulantov, ktoré sa začali vo veľkom používať na rekreačné (t. j. nemedicínske) účely. Napriek tomu, že táto droga bola určená na inhaláciu, mnohí ľudia ju zneužívali tak, že rozlomili nádobku a prehltli papierový prúžok vo vnútri, ktorý bol pokrytý benzedrínom. Prúžky sa často zrolovali do malých guľôčok a prehltli, alebo sa užili s kávou či alkoholom. Užívatelia a literatúra často označovali drogu ako „Benny“.

Vzhľadom na vedľajší stimulačný účinok lekári zistili, že amfetamín sa môže používať aj na liečbu narkolepsie. To viedlo k výrobe benzedrínu vo forme tabliet.

V 40. a 50. rokoch 20. storočia sa začali objavovať správy o zneužívaní inhalátorov s benzedrínom a v roku 1949 začali lekári upúšťať od predpisovania benzedrínu ako bronchodilatancia a prostriedku na potlačenie chuti do jedla. V roku 1959 ho Úrad pre kontrolu potravín a liečiv (FDA) v Spojených štátoch zaradil medzi lieky na predpis. Benzedrín a odvodené amfetamíny sa používali ako stimulant pre ozbrojené sily v druhej svetovej vojne a vo Vietname.

Keď sa benzedrín stal kontrolovanou látkou, nahradil ho menej účinný stimulant, propylhexedrín (známy aj ako hexahydrometamfetamín). Propylhexedrín vyrábala aj spoločnosť Smith, Kline a French a predával sa pod názvom Benzedrex. Hoci Benzedrex nie je taký silný ako Benzedrin, stále má potenciál zneužitia a bol príčinou úmrtia pri intravenóznom použití. Inhalátor Benzedrex je dostupný aj v súčasnosti, ale spoločnosť Smith, Kline and French ho už nevyrába.

Benzedrín by sa nemal zamieňať so zásadne odlišnou látkou benzfetamínom.

4-FMP
Amfetamín
Benzfetamín
Dextroamfetamín
dl-amfetamín
MDMA
MDA
MDEA
Metamfetamín
Parametoxyamfetamín

Kategórie
Psychologický slovník

Randomizácia

Randomizácia je proces, pri ktorom sa niečo stáva náhodným; môže to znamenať:

Randomizácia sa v oblasti hazardných hier používa vo veľkej miere. Nedokonalá randomizácia môže skúsenému hráčovi umožniť získať výhodu, preto sa veľa výskumov venovalo efektívnej randomizácii. Klasickým príkladom randomizácie je miešanie hracích kariet.

Náhodnosť je základným princípom štatistickej teórie navrhovania experimentov. Jej používanie vo veľkej miere propagoval R. A. Fisher vo svojej knihe Štatistické metódy pre výskumných pracovníkov. Randomizácia spočíva v náhodnom rozdelení experimentálnych jednotiek do jednotlivých liečebných skupín. Ak sa teda v experimente porovnáva nový liek so štandardným liekom používaným ako kontrola, pacienti by mali byť náhodným postupom pridelení k novému lieku alebo ku kontrole.

Náhodnosť nie je náhodná; slúži na to vo frekvenčnej aj bayesovskej štatistike. Frekventantista by povedal, že randomizácia znižuje skreslenie tým, že vyrovnáva iné faktory, ktoré neboli explicitne zohľadnené v experimentálnom pláne. Úvahy o zaujatosti sa netýkajú bayesovcov, ktorí odporúčajú randomizáciu, pretože vytvára ignorovateľné návrhy. Pri navrhovaní experimentov dávajú frekventisti prednosť úplne náhodným návrhom. Iné návrhy experimentov sa používajú, keď úplná randomizácia nie je možná. Medzi tieto prípady patria experimenty, ktoré zahŕňajú blokovanie, a experimenty, ktoré majú ťažko meniteľné faktory.

Hoci v minulosti sa používali „manuálne“ techniky náhodného výberu (ako napríklad miešanie kariet, ťahanie papierikov z vrecúška, otáčanie rulety), v súčasnosti sa väčšinou používajú automatizované techniky. Keďže výber náhodných vzoriek aj náhodných permutácií možno zredukovať na jednoduchý výber náhodných čísel, v súčasnosti sa najčastejšie používajú metódy generovania náhodných čísel, a to hardvérové generátory náhodných čísel aj generátory pseudonáhodných čísel.

Kategórie
Psychologický slovník

Anabolické steroidy

Kryštálová štruktúra ľudského globulínu viažuceho pohlavné hormóny, ktorý transportuje 5-alfa-dihydrotestosterón.

Anabolické steroidy (známe aj ako anabolické-androgénne steroidy alebo AAS) sú skupinou steroidných hormónov príbuzných hormónu testosterónu. Zvyšujú syntézu bielkovín v bunkách, čo vedie k anabolizmu bunkového tkaniva, najmä vo svaloch. Anabolické steroidy majú aj androgénne a virilizujúce vlastnosti vrátane rozvoja a udržiavania mužských znakov, ako je rast hlasiviek a ochlpenia. Slovo anabolické pochádza z gréčtiny: anabole, „budovať“, a slovo androgénne pochádza z gréčtiny: andros, „muž“ + genein, „produkovať“.

Anabolické steroidy boli prvýkrát izolované, identifikované a syntetizované v 30. rokoch 20. storočia a v súčasnosti sa terapeuticky používajú v medicíne na stimuláciu rastu kostí a chuti do jedla, na vyvolanie mužskej puberty a na liečbu chronických vyčerpávajúcich ochorení, ako je rakovina a AIDS. Anabolické steroidy tiež spôsobujú nárast svalovej hmoty a fyzickej sily, a preto sa používajú v športe a kulturistike na zvýšenie sily alebo postavy. Vážne zdravotné riziká môže spôsobiť dlhodobé užívanie alebo nadmerné dávky anabolických steroidov. Tieto účinky zahŕňajú škodlivé zmeny hladiny cholesterolu (zvýšenie zlého cholesterolu a zníženie dobrého cholesterolu), akné, vysoký krvný tlak, poškodenie pečene a nebezpečné zmeny v štruktúre ľavej komory srdca. Niektoré z týchto účinkov možno zmierniť cvičením alebo užívaním doplnkových liekov.

Nemedicínske používanie anabolických steroidov je kontroverzné, pretože sa môžu používať na získanie výhody v súťažných športoch, ako aj kvôli ich nepriaznivým účinkom. Používanie anabolických steroidov je zakázané všetkými významnými športovými orgánmi vrátane Medzinárodného olympijského výboru, FIFA, UEFA, Národnej hokejovej ligy, Major League Baseball, Národnej basketbalovej asociácie, Európskej atletickej asociácie a Národnej futbalovej ligy. Anabolické steroidy sú kontrolovanými látkami v mnohých krajinách vrátane Spojených štátov (USA), Kanady, Spojeného kráľovstva (UK), Austrálie, Argentíny a Brazílie, zatiaľ čo v iných krajinách, napríklad v Mexiku a Thajsku, sú voľne dostupné. V krajinách, kde sú drogy kontrolované, často existuje čierny trh, na ktorom sa užívateľom predávajú pašované alebo falšované drogy. Kvalita takýchto nelegálnych drog môže byť nízka a kontaminanty môžu spôsobovať ďalšie zdravotné riziká. Mnohí užívatelia vyzývajú na dekriminalizáciu anabolických steroidov.

Látky zvyšujúce výkonnosť sa v tradičnej medicíne používajú už tisíce rokov v spoločnostiach na celom svete s cieľom podporiť vitalitu a silu. Najmä používanie steroidných hormónov predchádzalo ich identifikácii a izolácii: lekárske používanie extraktu zo semenníkov sa začalo koncom 19. storočia a vtedy sa skúmali aj jeho účinky na silu.

Vývoj moderných farmaceutických anabolických steroidov sa datuje do roku 1931, keď chemik Adolf Butenandt v Marburgu získal 15 miligramov mužského hormónu androstenónu z desiatok tisíc litrov moču. Tento hormón syntetizoval v roku 1934 chemik Leopold Ruzicka v Zürichu. Už vtedy sa vedelo, že semenníky obsahujú silnejší androgén ako androstenón, a tri skupiny vedcov financované konkurenčnými farmaceutickými spoločnosťami v Holandsku, Nemecku a Švajčiarsku sa predháňali v jeho izolácii.

Tento semenníkový hormón prvýkrát identifikovali Karoly Gyula David, E. Dingemanse, J. Freud a Ernst Laqueur v článku „On Crystalline Male Hormone from Testicles (Testosterone)“ z mája 1935. Hormón nazvali testosterón, a to zo základov testicle (semenník) a sterol (sterol) a prípony ketón. Chemická syntéza testosterónu bola dosiahnutá v auguste toho istého roku, keď Butenandt a G. Hanisch uverejnili článok opisujúci „Metódu prípravy testosterónu z cholesterolu“. Len o týždeň neskôr tretia skupina, Ruzicka a A. Wettstein, oznámila podanie patentovej prihlášky v článku „O umelej príprave testikulárneho hormónu testosterónu (Androsten-3-one-17-ol)“. Ruzicka a Butenandt dostali za svoju prácu v roku 1939 Nobelovu cenu za chémiu, ale nacistická vláda prinútila Butenandta túto poctu odmietnuť.

Klinické skúšky na ľuďoch, ktoré zahŕňali buď perorálne dávky metyltestosterónu, alebo injekcie testosterónpropionátu, sa začali už v roku 1937. Testosterón propionát sa spomína v liste redaktorovi časopisu Strength and Health v roku 1938; ide o prvú známu zmienku o anabolickom steroide v americkom vzpieračskom alebo kulturistickom časopise.

Počas druhej svetovej vojny nemeckí vedci syntetizovali ďalšie anabolické steroidy a experimentovali na väzňoch v koncentračných táboroch a vojnových zajatcoch v snahe liečiť chronické chradnutie. Experimentovali aj na nemeckých vojakoch v nádeji, že zvýšia ich agresivitu. Samotnému Adolfovi Hitlerovi podľa jeho lekára podávali injekčne deriváty testosterónu na liečbu rôznych ochorení. Vývoju vlastností testosterónu na budovanie svalov sa venovali v 40. rokoch 20. storočia v Sovietskom zväze a v krajinách východného bloku, ako napríklad vo východnom Nemecku, kde sa steroidné programy používali na zvýšenie výkonnosti olympijských a amatérskych vzpieračov. Na Západe sa vedecký záujem o steroidy obnovil v 50. rokoch 20. storočia a v roku 1958, po sľubných pokusoch vykonaných v iných krajinách, bol Dianabol (obchodný názov methandrostenolónu) schválený na používanie v USA Úradom pre potraviny a liečivá.

Od 50. do 80. rokov 20. storočia existovali pochybnosti o tom, že anabolické steroidy vyvolávajú niečo viac ako placebo efekt. V štúdii z roku 1972 boli účastníci informovaní, že budú denne dostávať injekcie anabolických steroidov, ale v skutočnosti dostali placebo. Údajne nedokázali rozoznať rozdiel a vnímané zvýšenie výkonnosti bolo podobné ako u subjektov užívajúcich skutočné anabolické zlúčeniny. Podľa Geraline Linovej, výskumníčky Národného inštitútu pre zneužívanie drog, zostali tieto výsledky nespochybnené 18 rokov, hoci sa v štúdii použili nekonzistentné kontroly a nevýznamné dávky. V štúdii z roku 2001 sa skúmali účinky vysokých dávok anabolických steroidov, a to injekčným podávaním rôznych dávok (až 600 mg/týždeň) testosterón enantátu do svalového tkaniva počas 20 týždňov. Výsledky ukázali jasný nárast svalovej hmoty a pokles tukovej hmoty v súvislosti s dávkami testosterónu.

Anabolické a androgénne účinky

Chemická štruktúra prírodného anabolického hormónu testosterónu, 17β-hydroxy-4-androstén-3-ónu.

Ako už názov napovedá, anabolické-androgénne steroidy majú dva rôzne, ale prekrývajúce sa typy účinkov. Po prvé, sú anabolické, čo znamená, že podporujú anabolizmus (rast buniek). Niektoré príklady anabolických účinkov týchto hormónov sú zvýšená syntéza bielkovín z aminokyselín, zvýšená chuť do jedla, zvýšená prestavba a rast kostí a stimulácia kostnej drene, ktorá zvyšuje tvorbu červených krviniek.

Po druhé, tieto steroidy sú androgénne alebo virilizujúce, čo znamená najmä to, že ovplyvňujú vývoj a udržiavanie mužských znakov. Biochemické funkcie androgénov, ako je testosterón, sú početné. Medzi ovplyvnené procesy patrí pubertálny rast, produkcia oleja v mazových žľazách a sexualita (najmä vo vývoji plodu). Niektoré príklady virilizačných účinkov sú rast klitorisu u žien a penisu u detí mužského pohlavia (dospelý penis nerastie ani pri vystavení vysokým dávkam androgénov), zvýšený rast ochlpenia citlivého na androgény (ochlpenie pubické, fúzy, hrudník a končatiny), zväčšenie hlasiviek, prehĺbenie hlasu, zvýšené libido, potlačenie prirodzených pohlavných hormónov a porucha produkcie spermií.

Kombináciou týchto účinkov anabolické steroidy stimulujú tvorbu svalov, a tým spôsobujú zväčšenie svalových vlákien, čo vedie k zvýšeniu svalovej hmoty a sily. Tento nárast svalovej hmoty je väčšinou spôsobený väčšími kostrovými svalmi a je spôsobený zvýšenou produkciou svalových bielkovín, ako aj poklesom rýchlosti odbúravania týchto bielkovín. Vysoká dávka testosterónu tiež znižuje množstvo tuku vo svaloch a zároveň zvyšuje obsah bielkovín. Steroidy tiež znižujú celkový obsah tuku.

Anabolické steroidy môžu spôsobiť mnoho nežiaducich účinkov. Väčšina týchto vedľajších účinkov závisí od dávky, najčastejšie je to zvýšený krvný tlak, najmä u osôb s hypertenziou, a škodlivé hladiny cholesterolu: niektoré steroidy spôsobujú zvýšenie zlého cholesterolu a zníženie dobrého cholesterolu. Anabolické steroidy, ako je testosterón, tiež zvyšujú riziko kardiovaskulárnych ochorení alebo ischemickej choroby srdca u mužov s vysokým rizikom zlého cholesterolu. Akné je medzi užívateľmi anabolických steroidov pomerne časté, väčšinou v dôsledku zvýšenia testosterónu stimulujúceho mazové žľazy. Premena testosterónu na dihydrotestosterón (DHT) môže urýchliť rýchlosť predčasnej plešatosti u tých, ktorí sú geneticky predisponovaní.

Medzi ďalšie vedľajšie účinky môžu patriť zmeny v štruktúre srdca s vyvolaním nepriaznivého zväčšenia a zhrubnutia ľavej komory, čo zhoršuje jej kontrakciu a relaxáciu. Možnými účinkami týchto zmien v srdci sú hypertenzia, srdcová arytmia, srdcový infarkt a náhla srdcová smrť. Tieto zmeny sa vyskytujú aj u športovcov neužívajúcich drogy, ale užívanie steroidov môže tento proces urýchliť. Súvislosť medzi zmenami v štruktúre ľavej komory a zníženou funkciou srdca, ako aj súvislosť s užívaním steroidov sú však sporné.

Vysoké dávky perorálnych anabolických steroidov môžu spôsobiť poškodenie pečene, pretože steroidy sa v tráviacom systéme metabolizujú (17-alfa-alkylujú), aby sa zvýšila ich biologická dostupnosť a stabilita. Pri dlhodobom užívaní vysokých dávok takýchto steroidov môže dôjsť k závažnému poškodeniu pečene a k vzniku rakoviny pečene.

Existujú aj vedľajšie účinky anabolických steroidov špecifické pre jednotlivé pohlavia. Vývoj prsného tkaniva u mužov, stav nazývaný gynekomastia (ktorý je zvyčajne spôsobený vysokou hladinou cirkulujúceho estrogénu), môže vzniknúť v dôsledku zvýšenej premeny testosterónu na estrogén enzýmom aromatáza. U mužov sa môže vyskytnúť aj znížená sexuálna funkcia a dočasná neplodnosť. Ďalším vedľajším účinkom špecifickým pre mužov, ktorý sa môže vyskytnúť, je atrofia semenníkov, spôsobená potlačením prirodzených hladín testosterónu, čo inhibuje tvorbu spermií (väčšina hmoty semenníkov sú vyvíjajúce sa spermie). Tento vedľajší účinok je dočasný: veľkosť semenníkov sa zvyčajne vráti do normálu v priebehu niekoľkých týždňov po ukončení užívania anabolických steroidov, keď sa obnoví normálna produkcia spermií. Medzi vedľajšie účinky špecifické pre ženy patrí zväčšenie ochlpenia, prehĺbenie hlasu, zväčšenie klitorisu a dočasné zníženie menštruačného cyklu. Pri užívaní počas tehotenstva môžu anabolické steroidy ovplyvniť vývoj plodu tým, že spôsobia rozvoj mužských znakov u ženského plodu a ženských znakov u mužského plodu.

Ak dospievajúci užívajú anabolické steroidy, môžu sa vyskytnúť viaceré závažné vedľajšie účinky. Steroidy môžu napríklad predčasne zastaviť predlžovanie kostí (predčasné epifyzárne zrasty v dôsledku zvýšených hladín estrogénových metabolitov), čo vedie k spomaleniu rastu. Medzi ďalšie účinky patrí okrem iného zrýchlené dozrievanie kostí, zvýšená frekvencia a trvanie erekcie a predčasný sexuálny vývoj. Užívanie anabolických steroidov v období dospievania súvisí aj s horším postojom v súvislosti so zdravím.

Ľudský androgénny receptor viazaný na testosterón. Proteín je znázornený ako stužkový diagram červenou, zelenou a modrou farbou, pričom steroid je znázornený čiernou farbou.

Účinok anabolických steroidov na svalovú hmotu je spôsobený minimálne dvoma spôsobmi: po prvé, zvyšujú produkciu bielkovín; po druhé, skracujú čas regenerácie tým, že blokujú účinky stresového hormónu kortizolu na svalové tkanivo, takže katabolizmus svalov sa výrazne znižuje. Predpokladá sa, že k tomuto zníženiu odbúravania svalov môže dôjsť tým, že anabolické steroidy inhibujú účinok iných steroidných hormónov nazývaných glukokortikoidy, ktoré podporujú odbúravanie svalov. Anabolické steroidy tiež ovplyvňujú počet buniek, ktoré sa vyvíjajú na bunky ukladajúce tuk, tým, že namiesto toho podporujú diferenciáciu buniek na svalové bunky.

Hlavným spôsobom interakcie steroidných hormónov s bunkami je väzba na proteíny nazývané steroidné receptory. Keď sa steroidy naviažu na tieto receptory, proteíny sa presunú do bunkového jadra a buď zmenia expresiu génov, alebo aktivujú procesy, ktoré vysielajú signály do iných častí bunky.

V prípade anabolických steroidov sa príslušné receptory nazývajú androgénne receptory. Mechanizmy účinku sa líšia v závislosti od konkrétneho anabolického steroidu. Rôzne typy anabolických steroidov sa viažu na androgénny receptor s rôznou afinitou v závislosti od ich chemickej štruktúry. Anabolické steroidy, ako napríklad metandrostenolón, sa na tento receptor viažu slabo a namiesto toho priamo ovplyvňujú syntézu bielkovín alebo glykogenolýzu. Na druhej strane sa steroidy, ako napríklad oxandrolón, viažu na receptor pevne a pôsobia najmä na expresiu génov.

Medicínske a nemedicínske použitie

Rôzne anabolické steroidy a príbuzné zlúčeniny.

Od objavenia a syntézy testosterónu v 30. rokoch 20. storočia lekári používajú anabolické steroidy na rôzne účely s rôznym úspechom.

Je veľmi ťažké určiť, koľko percent populácie vo všeobecnosti skutočne užívalo anabolické steroidy, ale zdá sa, že toto číslo je pomerne nízke. Štúdie ukázali, že užívatelia anabolických steroidov sú väčšinou heterosexuálni muži strednej triedy s priemerným vekom približne 25 rokov, ktorí sú nesúťažiaci kulturisti a nešportovci, ktorí užívajú drogy na kozmetické účely. Podľa nedávneho prieskumu 78,4 % užívateľov steroidov boli nesúťažiaci kulturisti a nešportovci, pričom približne 13 % uviedlo nebezpečné injekčné praktiky, ako je opakované používanie ihiel, spoločné používanie ihiel a spoločné používanie viacdávkových injekčných liekoviek. Väčšina užívateľov nesúťaží v žiadnom športe. Užívatelia anabolických steroidov sú v populárnych médiách a kultúre často stereotypne označovaní za nevzdelaných alebo za „svalovcov“, avšak štúdia o užívateľoch steroidov z roku 1998 ukázala, že sú to najvzdelanejší užívatelia drog zo všetkých užívateľov kontrolovaných látok. Užívatelia anabolických steroidov majú tiež tendenciu skúmať drogy, ktoré užívajú, viac ako ktorákoľvek iná skupina užívateľov kontrolovaných látok. Okrem toho užívatelia anabolických steroidov majú tendenciu byť rozčarovaní z vykresľovania anabolických steroidov ako smrteľných v médiách a v politike.

Anabolické steroidy používajú muži a ženy v mnohých rôznych druhoch profesionálnych športov (kriket, atletika, vzpieranie, kulturistika, streľba, cyklistika, bejzbal, zápasenie, zmiešané bojové umenia, box, futbal atď.), aby dosiahli konkurenčnú výhodu alebo pomohli pri zotavovaní sa zo zranenia. Steroidy používané na získanie súťažnej výhody sú zakázané pravidlami riadiacich orgánov mnohých športov. Anabolické steroidy zrejme užívajú najmä mladiství, ktorí sa venujú športu. Predpokladá sa, že prevalencia užívania medzi stredoškolákmi v USA môže byť až 2,7 %. Študenti mužského pohlavia užívali viac ako študenti ženského pohlavia a tí, ktorí sa venovali športu, užívali v priemere častejšie ako tí, ktorí v priemere nešportovali.

Injekčná liekovka s anabolickým steroidom depo-testosterón-cypionátom

Existujú tri bežné formy podávania anabolických steroidov: perorálne tablety, injekčné steroidy a kožné náplasti. Perorálne podávanie je najpohodlnejšie, ale steroid musí byť chemicky upravený tak, aby ho pečeň nemohla rozložiť skôr, ako sa dostane do krvného obehu; preto tieto prípravky môžu vo vysokých dávkach spôsobiť poškodenie pečene. Injekčné steroidy sa zvyčajne podávajú do svalu, nie do žily, aby sa zabránilo náhlym zmenám množstva lieku v krvnom obehu. Na podávanie stálej dávky cez kožu do krvného obehu sa môžu používať aj transdermálne náplasti (lepiace náplasti umiestnené na koži).

Minimalizácia vedľajších účinkov

Pri užívaní anabolických steroidov, či už zo zdravotných alebo iných dôvodov, je žiaduce minimalizovať akékoľvek nežiaduce účinky. Používatelia môžu napríklad zvýšiť úroveň kardiovaskulárneho cvičenia, aby pomohli čeliť účinkom zmien v ľavej srdcovej komore. Niektoré androgény sa v tele menia na estrogén, čo je proces známy ako aromatizácia, ktorý má potenciálne nežiaduce účinky opísané vyššie. V dôsledku toho môžu užívatelia počas steroidného cyklu užívať aj lieky, ktoré zabraňujú aromatizácii (tzv. inhibítory aromatázy), alebo lieky, ktoré ovplyvňujú väzbu na estrogénové receptory (tzv. selektívne modulátory estrogénových receptorov alebo SERM): napríklad SERM tamoxifén zabraňuje väzbe na estrogénový receptor v prsníku, a preto sa môže používať na zníženie rizika gynekomastie.

Na boj proti prirodzenému potlačeniu testosterónu a na obnovenie správnej funkcie mnohých príslušných žliaz sa niekedy používa tzv. „postcyklická liečba“ alebo PCT. PCT prebieha po každom cykle užívania anabolických steroidov a zvyčajne pozostáva z kombinácie nasledujúcich liekov, v závislosti od použitého protokolu:

Cieľom PCT je vrátiť endogénnu hormonálnu rovnováhu tela do pôvodného stavu v čo najkratšom čase. Je známe, že ľudia náchylní na predčasné vypadávanie vlasov zhoršené užívaním steroidov užívajú dlhodobo liek na predpis finasterid. Finasterid znižuje premenu testosterónu na DHT, ktorý má oveľa vyššiu účinnosť pri alopécii. Finasterid je nepoužiteľný v prípadoch, keď sa steroid nepremení na androgénnejší derivát. Keďže anabolické steroidy môžu byť toxické pre pečeň alebo môžu spôsobiť zvýšenie krvného tlaku alebo cholesterolu, mnohí používatelia považujú za ideálne časté vyšetrenie krvi a krvného tlaku, aby sa uistili, že ich krvný tlak alebo cholesterol sú stále v norme.

Mylné predstavy a kontroverzie

Anabolické steroidy, podobne ako mnohé iné drogy, vyvolali veľa kontroverzií. Existuje aj mnoho populárnych mylných predstáv o ich účinkoch a vedľajších účinkoch. Jedným z častých mylných názorov v populárnej kultúre a médiách je, že anabolické steroidy sú veľmi nebezpečné a úmrtnosť ich užívateľov je vysoká. Anabolické steroidy sa v medicíne používajú vo veľkej miere s prijateľným profilom vedľajších účinkov, pokiaľ sú pacienti sledovaní kvôli možným komplikáciám. Tak ako všetky lieky, aj anabolické steroidy majú vedľajšie účinky, ale riziko predčasného úmrtia v dôsledku užívania anabolických steroidov sa zdá byť mimoriadne nízke. Bývalý odborný asistent na Torontskej univerzite Mauro Di Pasquale uviedol: „Pri používaní väčšinou ľudí vrátane športovcov sa zdá, že nežiaduce účinky anabolických steroidov sú minimálne.“

Jedným z možných zdrojov myšlienky, že steroidy sú mimoriadne nebezpečné, je tvrdenie, že Lyle Alzado zomrel na rakovinu mozgu spôsobenú anabolickými steroidmi. Alzado sám tvrdil, že príčinou jeho rakoviny boli anabolické steroidy. Hoci steroidy môžu spôsobiť rakovinu pečene, neexistujú žiadne publikované dôkazy o tom, že anabolické steroidy spôsobujú rakovinu mozgu alebo špecifický typ T-bunkového lymfómu, ktorý bol príčinou jeho smrti. Alzadovi lekári uviedli, že anabolické steroidy neprispeli k jeho smrti.

Ďalším príkladom je mylná predstava, že anabolické steroidy môžu zmenšiť mužský penis. Je možné, že táto predstava pochádza z dočasného vedľajšieho účinku, ktorý majú anabolické steroidy na veľkosť semenníkov (atrofia semenníkov), o ktorom sme už hovorili.

Medzi ďalšie údajné vedľajšie účinky patrí aj názor, že anabolické steroidy spôsobili samovraždu mnohých tínedžerov. Hoci je známe, že nižšia hladina testosterónu spôsobuje depresiu a ukončenie steroidného cyklu dočasne znižuje hladinu testosterónu, hypotéza, že anabolické steroidy sú zodpovedné za samovraždy medzi tínedžermi, zostáva nedokázaná. Hoci dospievajúci kulturisti užívajú steroidy minimálne od začiatku 60. rokov 20. storočia, v lekárskej literatúre bolo zaznamenaných len niekoľko prípadov naznačujúcich súvislosť medzi steroidmi a samovraždami.

Ďalší stav, o ktorom sa často hovorí ako o možnom vedľajšom účinku anabolických steroidov, je známy ako „roid rage“; v lekárskej literatúre však neexistuje zhoda o tom, či takýto stav skutočne existuje. Hladina testosterónu sa skutočne spája s agresivitou a hypomániou, ale súvislosť medzi inými anabolickými steroidmi a agresivitou zostáva nejasná. Niektoré štúdie síce preukázali súvislosť medzi manickými príznakmi a užívaním anabolických steroidov, neskoršie štúdie však tieto závery spochybnili. V súčasnosti tri slepé štúdie preukázali súvislosť medzi agresivitou a užívaním steroidov, ale pri odhadoch viac ako 1 milióna bývalých alebo súčasných užívateľov steroidov v Spojených štátoch sa zdá, že extrémne malé percento užívateľov steroidov malo psychické poruchy dostatočne závažné na to, aby viedli ku klinickej liečbe alebo lekárskym kazuistikám.[80] Jednotlivé štúdie sa vo svojich zisteniach líšia, niektoré neuvádzajú žiadny nárast agresivity alebo nepriateľstva pri užívaní anabolických steroidov, iné naopak zistili koreláciu [81] [82] Vrátane štúdie dvoch párov jednovaječných dvojčiat, v ktorej jedno dvojča užívalo anabolické steroidy a druhé nie, sa zistilo, že v oboch prípadoch dvojča užívajúce steroidy vykazovalo vysokú úroveň agresivity, nepriateľstva, úzkosti a paranoidných myšlienok, ktoré sa u „kontrolného“ dvojčaťa nevyskytovali [83].

Už skôr sa objavila teória, že niektoré štúdie, ktoré ukazujú súvislosť medzi zlostným správaním a užívaním steroidov, sú zmätené skutočnosťou, že užívatelia steroidov pravdepodobne vykazujú poruchy osobnosti skupiny B pred podávaním steroidov [84].[85][86][87] Okrem toho mnohé prípadové štúdie dospeli k záveru, že anabolické steroidy majú malý alebo žiadny skutočný vplyv na zvýšené agresívne správanie.

Arnold Schwarzenegger je predmetom mestskej legendy o vedľajších účinkoch anabolických steroidov. Schwarzenegger priznal, že počas svojej kulturistickej kariéry užíval anabolické steroidy mnoho rokov predtým, ako boli zakázané,[88] a v roku 1997 podstúpil operáciu na odstránenie chyby týkajúcej sa jeho srdca. Niektorí predpokladali, že to bolo spôsobené anabolickými steroidmi. Hoci užívanie anabolických steroidov môže niekedy spôsobiť nepriaznivé zväčšenie a zhrubnutie ľavej komory, Schwarzenegger sa narodil s vrodenou genetickou chybou, pri ktorej malo jeho srdce dvojcípu aortálnu chlopňu – inými slovami, zatiaľ čo normálne srdce má tri hroty, jeho malo len dva, čo môže občas spôsobiť problémy v neskoršom veku[89].

Právne a športové obmedzenia

Právny štatút anabolických steroidov sa v jednotlivých krajinách líši: v niektorých krajinách sú kontroly ich používania alebo predpisovania prísnejšie ako v iných. V USA sú anabolické steroidy v súčasnosti zaradené do zoznamu III kontrolovaných látok podľa zákona o kontrolovaných látkach, čo znamená, že držanie takýchto látok bez platného lekárskeho predpisu je federálny trestný čin, za ktorý hrozí až sedem rokov väzenia.[90] V Kanade sú anabolické steroidy a ich deriváty súčasťou zákona o kontrolovaných drogách a látkach a patria do zoznamu IV, čo znamená, že ich získanie alebo predaj bez platného lekárskeho predpisu je nezákonný; ich držanie však nie je trestné, čo je dôsledok vyhradený pre látky zo zoznamu I, II alebo III. Osoby, ktoré sa v Kanade previnia nákupom alebo predajom anabolických steroidov, môžu byť uväznené až na 18 mesiacov. Podobné tresty hrozia aj za dovoz a vývoz.[91] Anabolické steroidy sú bez lekárskeho predpisu nezákonné aj v Austrálii,[92] Argentíne, Brazílii a Portugalsku[93] a v Spojenom kráľovstve sú zaradené do zoznamu 4 kontrolovaných drog. Na druhej strane sú anabolické steroidy ľahko dostupné bez platného lekárskeho predpisu v krajinách, ako sú Mexiko a Thajsko.

História americkej legislatívy o anabolických steroidoch siaha do konca 80. rokov 20. storočia, keď americký Kongres zvažoval zaradenie anabolických steroidov pod zákon o kontrolovaných látkach po kontroverzii okolo víťazstva Bena Johnsona na letných olympijských hrách v Soule v roku 1988. Počas rokovaní sa AMA, DEA, FDA, ako aj NIDA postavili proti zaradeniu anabolických steroidov medzi kontrolované látky, pričom sa odvolávali na skutočnosť, že užívanie týchto hormónov nevedie k fyzickej alebo psychickej závislosti, ktorá sa vyžaduje na takéto zaradenie podľa zákona o kontrolovaných látkach. Napriek tomu boli anabolické steroidy zaradené do zoznamu III zákona o kontrolovaných látkach v zákone o kontrole anabolických steroidov z roku 1990 [94]. ten istý zákon zaviedol aj prísnejšie kontroly s vyššími trestnými sankciami za trestné činy týkajúce sa nezákonnej distribúcie anabolických steroidov a ľudského rastového hormónu. Začiatkom 90. rokov 20. storočia po zaradení anabolických steroidov do zoznamu v USA niekoľko farmaceutických spoločností vrátane spoločností Ciba, Searle, Syntex a ďalších prestalo vyrábať alebo predávať tieto výrobky v USA.

V zákone o kontrolovaných látkach sú anabolické steroidy definované ako akýkoľvek liek alebo hormonálna látka chemicky a farmakologicky príbuzná testosterónu (okrem estrogénov, progestínov a kortikosteroidov), ktoré podporujú rast svalov. Zákon bol zmenený a doplnený zákonom o kontrole anabolických steroidov z roku 2004, ktorým sa do zoznamu kontrolovaných látok s účinnosťou od 20. januára 2005 pridali prohormóny[90].

Anabolické steroidy sú zakázané všetkými významnými športovými organizáciami vrátane olympijských hier,[95] NBA,[96] NHL,[97] ako aj NFL.[98] Svetová antidopingová agentúra (WADA) vedie zoznam látok zvyšujúcich výkonnosť, ktoré používajú mnohé významné športové organizácie, a zahŕňa všetky anabolické látky, čo zahŕňa všetky anabolické steroidy a prekurzory, ako aj všetky hormóny a súvisiace látky.[99][100] Španielsko prijalo antidopingový zákon, na základe ktorého by sa vytvorila národná antidopingová agentúra. 101] Taliansko prijalo v roku 2000 zákon, v ktorom sa tresty pohybujú až do troch rokov väzenia, ak má športovec pozitívny test na zakázané látky. 102] V roku 2006 ruský prezident Vladimir Putin podpísal zákon o ratifikácii Medzinárodného dohovoru proti dopingu v športe, ktorý by podporil spoluprácu s WADA. Mnohé ďalšie krajiny majú podobné právne predpisy zakazujúce anabolické steroidy v športe vrátane Dánska,[103] Francúzska,[104] Holandska[105] a Švédska[106].

Nezákonný obchod s anabolickými steroidmi

V krajinách, kde sú anabolické steroidy nezákonné alebo kontrolované, sa väčšina steroidov získava nelegálne prostredníctvom čierneho trhu [107] [108].Tieto steroidy sa zvyčajne vyrábajú v iných krajinách, a preto sa musia pašovať cez medzinárodné hranice. Tak ako do väčšiny významných pašeráckych operácií je zapojený organizovaný zločin. Pašovanie anabolických steroidov sa často vyskytuje v spojení s inými nelegálnymi drogami, hoci v porovnaní s obchodovaním s psychoaktívnymi rekreačnými drogami, ako je marihuana a heroín, nebolo zaznamenaných veľa známych prípadov, keď boli jednotliví pašeráci anabolických steroidov chytení.

Okrem pašovania sa v posledných rokoch rýchlo objavil aj nelegálny obchod s falšovanými liekmi, keďže počítače a skenovacia technológia umožnili ľahko kopírovať dizajn etikiet pravých výrobkov. V dôsledku toho trh zaplavili výrobky obsahujúce čokoľvek od rastlinného oleja až po toxické látky. Tieto výrobky si kupovali a injekčne aplikovali nič netušiaci používatelia, z ktorých niektorí zomreli v dôsledku otravy krvi, otravy metanolom alebo podkožného abscesu[109].

Hnutie za dekriminalizáciu

Po prijatí zákona o kontrole anabolických steroidov v roku 1990, ktorý zaradil anabolické steroidy do zoznamu III kontrolovaných látok v USA, vzniklo malé hnutie, ktoré veľmi kritizuje súčasné zákony týkajúce sa anabolických steroidov. Dňa 21. júna 2005 odvysielala relácia Real Sports časť, v ktorej sa diskutovalo o legálnosti a zákaze anabolických steroidov v Amerike [113]. v relácii vystúpil doktor Gary I. Wadler, predseda Antidopingovej agentúry USA a prominentný aktivista proti steroidom. Keď korešpondent Armen Keteyian žiadal vedecké dôkazy o tom, že anabolické steroidy sú také „vysoko fatálne“, ako sa často tvrdí, Wadler priznal, že žiadne dôkazy neexistujú. Gumbel dospel k záveru, že „humbuk“ týkajúci sa nebezpečenstva anabolických steroidov v médiách je „len dym a žiadny oheň“. V relácii vystúpil aj John Romano, prosteroidový aktivista, ktorý píše „The Romano Factor“, prosteroidovú rubriku pre kulturistický časopis Muscular Development.

Androstadienon – Boldenone undecylenate (Equipoise) – Desoxymethyltestosterone (Madol) – DHT – Methandrostenolone (Dianabol) – Methenolone – Norethandrolone – Oxandrolone (Anavar) – Oxymetholone (Anadrol) – Quinbolone (Anabolicum Vister) – Stanozolol (Winstrol) – Testosterón – Clostebol – 4-Chlórdehydrometyltestosterón (Turinabol) – Fluoxymesterón (Halotestin) – Drostanolón (Masteron) – DHEA – Oxymetolón (Anadrol-50) – Mesterolón (Proviron) – Metenolón enantát (Primobolan) – Mestanolón

Etylestrenol – nandrolón (Deca Durabolin) – norboletón (Genabol) – oxabolón cipionát – trenbolón (Fina) – mibolerón (Cheque Drops) – tetrahydrogestrinón (The Clear)

Kategórie
Psychologický slovník

Reumatoidná artritída

Reumatoidná artritída (RA) je chronické systémové autoimunitné ochorenie, ktoré najčastejšie spôsobuje zápal a poškodenie tkaniva kĺbov (artritída) a šľachových puzdier spolu s anémiou. Môže tiež spôsobiť difúzny zápal v pľúcach, osrdcovníku, pohrudnici a sklére oka a tiež uzlovité lézie, najčastejšie v podkožnom tkanive pod kožou. Môže ísť o invalidizujúce a bolestivé ochorenie, ktoré môže viesť k výraznej strate funkčnosti a pohyblivosti. Diagnostikuje sa najmä na základe príznakov a znakov, ale aj pomocou krvných testov (najmä testu nazývaného reumatoidný faktor) a röntgenových snímok. Diagnostiku a dlhodobú liečbu zvyčajne vykonáva reumatológ, odborník na ochorenia kĺbov a spojivových tkanív.

K dispozícii sú rôzne procedúry. Nefarmakologická liečba zahŕňa fyzikálnu terapiu a ergoterapiu. Na potlačenie príznakov sa používajú analgetiká (lieky proti bolesti) a protizápalové lieky, ako aj steroidy, zatiaľ čo na potlačenie alebo zastavenie základného imunitného procesu a zabránenie dlhodobému poškodeniu sú často potrebné chorobu modifikujúce antireumatické lieky (DMARD). V poslednom čase rozšírila možnosti liečby novšia skupina biologických liekov.

Názov vychádza z termínu „reumatická horúčka“, ochorenia, ktoré zahŕňa bolesť kĺbov, a je odvodený od gréckeho slova rheumatos („tečúci“). Prípona -oid („pripomínajúci“) dáva preklad ako zápal kĺbov, ktorý sa podobá reumatickej horúčke. Prvý uznaný opis reumatoidnej artritídy urobil v roku 1800 doktor Augustin Jacob Landré-Beauvais (1772 – 1840) z Paríža.

Aj keď reumatoidná artritída postihuje predovšetkým kĺby, je známe, že sa vyskytujú aj problémy s inými telesnými orgánmi. Extraartikulárne („mimo kĺbov“) prejavy okrem anémie (ktorá je veľmi častá) sú klinicky zjavné približne u 15 – 25 % jedincov s reumatoidnou artritídou. Môže byť ťažké určiť, či sú prejavy ochorenia spôsobené priamo samotným reumatoidným procesom alebo vedľajšími účinkami liekov, ktoré sa bežne používajú na liečbu – napríklad fibróza pľúc po metotrexáte alebo osteoporóza po kortikosteroidoch.

Reumatoidná artritída je spôsobená synovitídou, čo je zápal synoviálnej membrány, ktorá vystiela kĺby a šľachové puzdrá. Kĺby sú opuchnuté, citlivé a teplé a stuhnutosť bráni ich používaniu. Časom RA takmer vždy postihuje viacero kĺbov (ide o polyartritídu). Najčastejšie sú postihnuté malé kĺby rúk, nôh a krčnej chrbtice, ale môžu byť postihnuté aj väčšie kĺby, ako napríklad rameno a koleno, pričom sa to u každého jednotlivca líši. Synovitída môže viesť k zviazaniu tkaniva so stratou pohybu a erózii povrchu kĺbu, čo spôsobuje deformitu a stratu funkcie.

Zápal v kĺboch sa prejavuje ako mäkký, „cestovitý“ opuch, ktorý spôsobuje bolesť a citlivosť na pohmat a pohyb, pocit lokálneho tepla a obmedzený pohyb. Zvýšená stuhnutosť po prebudení je často výrazným znakom a môže trvať viac ako hodinu. Tieto príznaky pomáhajú odlíšiť reumatoidnú artritídu od nezápalových problémov kĺbov, ktoré sa často označujú ako osteoartritída alebo „opotrebovaná“ artritída. Pri RA sú kĺby často postihnuté pomerne symetricky, hoci to nie je špecifické a počiatočný prejav môže byť asymetrický.

S postupujúcou patológiou vedie zápalová aktivita k zväzovaniu šliach, erózii a deštrukcii povrchu kĺbu, čo zhoršuje rozsah pohybu a vedie k deformite. Prsty môžu trpieť takmer akoukoľvek deformitou v závislosti od toho, ktoré kĺby sú najviac postihnuté. Študenti medicíny sa učia názvy špecifických deformít, ako je ulnárna deviácia, boutonniere deformita, deformita labutieho krku a „Z-palec“, ale tie nemajú väčší význam pre diagnózu alebo postihnutie ako iné varianty.

Reumatoidný uzol, ktorý je často podkožný, je najcharakteristickejším znakom reumatoidnej artritídy. Počiatočný patologický proces pri tvorbe uzlíkov nie je známy, ale môže byť v podstate rovnaký ako pri synovitíde, pretože v oboch prípadoch sa vyskytujú podobné štrukturálne znaky. Uzlík má centrálnu oblasť fibrinoidnej nekrózy, ktorá môže byť prasknutá a ktorá zodpovedá nekrotickému materiálu bohatému na fibrín, ktorý sa nachádza v postihnutom synoviálnom priestore a jeho okolí. Okolo nekrózy je vrstva palisád makrofágov a fibroblastov, ktorá zodpovedá intimálnej vrstve v synovii, a manžeta spojivového tkaniva obsahujúca zhluky lymfocytov a plazmatických buniek, ktorá zodpovedá subintimálnej zóne pri synovitíde. Typický reumatoidný uzol môže mať priemer niekoľko milimetrov až niekoľko centimetrov a zvyčajne sa nachádza nad kostnými výbežkami, ako je napríklad olekranón, kalkaneálna tuberozita, metakarpofalangeálne kĺby alebo iné oblasti, ktoré sú opakovane mechanicky namáhané. Uzly sú spojené s pozitívnym titrom RF (reumatoidného faktora) a ťažkou erozívnou artritídou. Zriedkavo sa môžu vyskytnúť vo vnútorných orgánoch.

Pri reumatoidnej artritíde sa vyskytuje niekoľko foriem vaskulitídy. Benígna forma sa vyskytuje ako mikroinfarkty okolo nechtových záhybov. K závažnejším formám patrí livedo reticularis, čo je sieť (retikulum) erytematózneho až purpurového sfarbenia kože v dôsledku prítomnosti obliterujúcej kožnej kapilaropatie.

Fibróza pľúc je uznávanou reakciou na reumatoidné ochorenie. Je tiež zriedkavým, ale dobre známym dôsledkom liečby (napríklad metotrexátom a leflunomidom). Caplanov syndróm opisuje pľúcne uzlíky u jedincov s reumatoidnou artritídou a dodatočnou expozíciou uhoľnému prachu. S reumatoidnou artritídou sa spájajú aj pleurálne výpotky.

Renálna amyloidóza môže vzniknúť ako dôsledok chronického zápalu. Reumatoidná artritída môže ovplyvniť glomerulus obličky priamo prostredníctvom vaskulopatie alebo mezangiálneho infiltrátu, ale je to menej zdokumentované. Liečba penicilamínom a soľami zlata sú uznávanými príčinami membranóznej nefropatie.

U ľudí s polyartritídou sa zvyčajne vykonáva röntgenové vyšetrenie rúk a nôh. Pri reumatoidnej artritíde sa na nich v počiatočných štádiách ochorenia nemusia prejaviť žiadne zmeny, ale v pokročilejších prípadoch sa prejavujú erózie a resorpcia kostí. Röntgenové snímky iných kĺbov sa môžu vykonať, ak sa v týchto kĺboch objavia príznaky bolesti alebo opuchu [Ako odkazovať a odkazovať na zhrnutie alebo text].

Pri klinickom podozrení na RA sú potrebné imunologické štúdie, napríklad testovanie na prítomnosť reumatoidného faktora (RF, špecifická protilátka). Negatívny RF nevylučuje RA; artritída sa skôr nazýva séronegatívna. To je prípad približne 15 % pacientov. Počas prvého roka ochorenia je pravdepodobnejšie, že reumatoidný faktor bude negatívny, pričom u niektorých jedincov sa časom zmení na séropozitívny. RF sa vyskytuje aj pri iných ochoreniach, napríklad pri Sjögrenovom syndróme, a približne u 10 % zdravej populácie, preto test nie je veľmi špecifický.

Vzhľadom na túto nízku špecifickosť bol vyvinutý nový sérologický test, ktorý testuje prítomnosť tzv. anticitrulinovaných proteínových protilátok (ACPA). Podobne ako RF je tento test pozitívny len v časti (67 %) všetkých prípadov RA, ale zriedkavo je pozitívny, ak RA nie je prítomná, čo mu dáva špecifickosť približne 95 %. Podobne ako v prípade RF existujú dôkazy o tom, že ACPA sú prítomné v mnohých prípadoch ešte pred nástupom klinického ochorenia. [Ako odkazovať a odkazovať na zhrnutie alebo text] V súčasnosti je najbežnejším testom na ACPA test anti-CCP (cyklický citrulinovaný peptid).

Tiež, niekoľko ďalších krvných testov sa zvyčajne vykonáva, aby sa na iné príčiny artritídy, ako je lupus erythematosus. V tejto fáze sa vykonáva sedimentácia erytrocytov (ESR), C-reaktívny proteín, kompletný krvný obraz, funkcia obličiek, pečeňové enzýmy a ďalšie imunologické testy (napr. antinukleárne protilátky/ANA). Zvýšená hladina feritínu môže odhaliť hemochromatózu, ktorá napodobňuje RA, alebo môže byť príznakom Stillovej choroby, séronegatívneho, zvyčajne juvenilného variantu reumatoidnej choroby.

American College of Rheumatology definovala (1987) nasledujúce kritériá klasifikácie reumatoidnej artritídy:

Na klasifikáciu ako RA musia byť splnené aspoň štyri kritériá. Tieto kritériá nie sú určené na diagnostiku pre bežnú klinickú starostlivosť; boli určené predovšetkým na kategorizáciu vo výskume. Napríklad: jedným z kritérií je prítomnosť kostnej erózie na röntgenovom snímku. Prevencia kostnej erózie je jedným z hlavných cieľov liečby, pretože je vo všeobecnosti nezvratná. Čakanie, kým sa splnia všetky kritériá ACR pre reumatoidnú artritídu, môže niekedy viesť k horšiemu výsledku. Väčšina chorých a reumatológov by sa zhodla na tom, že by bolo lepšie liečiť ochorenie čo najskôr a zabrániť vzniku kostnej erózie, aj keď to znamená liečiť ľudí, ktorí nespĺňajú kritériá ACR. Kritériá ACR sú však veľmi užitočné na kategorizáciu zistenej reumatoidnej artritídy, napríklad na epidemiologické účely [Ako odkazovať a odkazovať na zhrnutie alebo text].

Viaceré iné ochorenia môžu pripomínať RA a zvyčajne je potrebné ich od nej v čase stanovenia diagnózy odlíšiť:

Zriedkavejšie príčiny, ktoré sa zvyčajne správajú inak, ale môžu spôsobiť bolesti kĺbov:

Abnormality kĺbov pri reumatoidnej artritíde

Reumatoidná artritída je forma autoimunity, ktorej príčiny sú stále neúplne známe. Ide o systémové (celotelové) ochorenie postihujúce najmä synoviálne tkanivá.

Kľúčové dôkazy týkajúce sa patogenézy sú:

1. Genetická súvislosť s HLA-DR4 a príbuznými alotypmi MHC II. triedy a s T-bunkami asociovaným proteínom PTPN22.

2. Súvislosť s fajčením cigariet, ktorá sa zdá byť príčinná.

3. Dramatická odpoveď v mnohých prípadoch na blokádu cytokínu TNF (alfa).

4. Podobná dramatická odpoveď v mnohých prípadoch na depléciu B lymfocytov, ale žiadna porovnateľná odpoveď na depléciu T lymfocytov.

5. Viac-menej náhodný vzorec toho, či a kedy sú predisponovaní jedinci postihnutí.

6. Prítomnosť autoprotilátok proti IgGFc, známych ako reumatoidné faktory (RF), a protilátok proti citrulinovaným peptidom (ACPA).

Tieto údaje naznačujú, že ochorenie zahŕňa abnormálnu interakciu B buniek a T buniek, pričom prezentácia antigénov B bunkami T bunkám prostredníctvom HLA-DR vyvoláva pomoc T buniek a následnú produkciu RF a ACPA. Zápal je potom vyvolaný buď produktmi B buniek alebo T buniek, ktoré stimulujú uvoľňovanie TNF a iných cytokínov. Tento proces môže byť uľahčený vplyvom fajčenia na citrulinizáciu, ale stochastická (náhodná) epidemiológia naznačuje, že rýchlostne limitujúcim krokom v genéze ochorenia u predisponovaných jedincov môže byť vlastný stochastický proces v rámci imunitnej odpovede, ako je rekombinácia a mutácia génov imunoglobulínov alebo receptorov T buniek. (Všeobecné mechanizmy sú uvedené v položke autoimunita.)

Ak je uvoľňovanie TNF stimulované produktmi B buniek vo forme RF alebo ACPA – obsahujúcich imunitné komplexy, prostredníctvom aktivácie imunoglobulínových Fc receptorov, potom možno RA považovať za formu precitlivenosti III. typu. Ak je uvoľňovanie TNF stimulované produktmi T-buniek, ako je interleukín-17, možno to považovať za bližšie k hypersenzitivite IV. typu, hoci táto terminológia môže byť už trochu zastaraná a neužitočná. Diskusia o relatívnej úlohe imunitných komplexov a produktov T-buniek v zápale pri RA trvá už 30 rokov. Je len málo pochybností o tom, že B aj T bunky sú pre ochorenie nevyhnutné. Existujú však dobré dôkazy o tom, že v mieste zápalu nie je potrebná ani jedna z týchto buniek. To svedčí skôr v prospech imunitných komplexov (na báze protilátok syntetizovaných inde) ako iniciátorov, aj keď nie jediných pôvodcov zápalu. Okrem toho práca Thurlingsa a ďalších v skupine Paula-Petra Taku a tiež v skupine Arthura Kavanagha naznačuje, že ak sú nejaké imunitné bunky lokálne dôležité, sú to plazmatické bunky, ktoré pochádzajú z B-buniek a vo veľkom produkujú protilátky vybrané v štádiu B-buniek.

Hoci sa zdá, že TNF je dominantný, na zápale pri RA sa pravdepodobne podieľajú aj iné cytokíny (chemické mediátory). Blokáda TNF neprospieva všetkým pacientom ani všetkým tkanivám (ochorenie pľúc a uzlín sa môže zhoršiť). Blokáda IL-1, IL-15 a IL-6 má tiež priaznivé účinky a dôležitý môže byť aj IL-17. Konštitučné príznaky, ako je horúčka, malátnosť, strata chuti do jedla a úbytok hmotnosti, sú tiež spôsobené cytokínmi uvoľňovanými do krvného obehu.

Tak ako pri väčšine autoimunitných ochorení je dôležité rozlišovať medzi príčinou (príčinami), ktoré spúšťajú proces, a príčinami, ktoré môžu umožniť jeho pretrvávanie a postup.

Už dlho sa predpokladá, že určité infekcie môžu byť spúšťačom tohto ochorenia. Teória „zámeny identity“ predpokladá, že infekcia vyvolá imunitnú reakciu a zanechá po sebe protilátky, ktoré by mali byť špecifické pre daný organizmus. Protilátky však nie sú dostatočne špecifické a spustia imunitný útok proti časti hostiteľa. Pretože normálna molekula hostiteľa „vyzerá“ ako molekula na útočnom organizme, ktorá spustila počiatočnú imunitnú reakciu – tento jav sa nazýva molekulárna mimikry. Medzi infekčné organizmy podozrivé zo spúšťania reumatoidnej artritídy patria mykoplazmy, Erysipelothrix, parvovírus B19 a rubeola, ale tieto súvislosti neboli nikdy potvrdené v epidemiologických štúdiách. Presvedčivé dôkazy neboli predložené ani v prípade iných typov spúšťačov, ako sú potravinové alergie.

Neexistujú tiež jasné dôkazy o tom, že by spúšťačom ochorenia mohli byť fyzické a emocionálne vplyvy, stres a nesprávna strava. Mnohé negatívne nálezy naznačujú, že buď sa spúšťač mení, alebo že by v skutočnosti mohlo ísť o náhodnú udalosť, ktorá je vlastná imunitnej reakcii, ako to navrhol Edwards a kol .

Epidemiologické štúdie potvrdili potenciálnu súvislosť medzi RA a dvoma herpetickými vírusmi: Epstein-Barrovej (EBV) a ľudským herpesvírusom 6 (HHV-6). U jedincov s RA je pravdepodobnejšie, že sa u nich prejaví abnormálna imunitná odpoveď na vírus Epsteina-Barrovej. Alela HLA-DRB1*0404 sa spája s nízkou frekvenciou T-buniek špecifických pre glykoproteín 110 EBV a predurčuje človeka na vznik RA.

Faktory, ktoré umožňujú, aby sa abnormálna imunitná reakcia po jej spustení stala trvalou a chronickou, sú čoraz jasnejšie pochopené. Genetické spojenie s HLA-DR4, ako aj novoobjavené spojenia s génom PTPN22 a s ďalšími dvoma génmi , poukazujú na zmenené prahové hodnoty v regulácii adaptívnej imunitnej odpovede. Z nedávnych štúdií tiež vyplynulo, že tieto genetické faktory môžu interagovať s najjasnejšie definovaným environmentálnym rizikovým faktorom reumatoidnej artritídy, a to fajčením cigariet Zdá sa, že aj iné environmentálne faktory modulujú riziko vzniku RA a hormonálne faktory u jednotlivca môžu vysvetľovať niektoré črty ochorenia, ako je vyšší výskyt u žien, nezriedkavý nástup po pôrode a (mierna) modulácia rizika ochorenia hormonálnymi liekmi. Presne to, ako zmenené regulačné prahy umožňujú spustenie špecifickej autoimunitnej reakcie, zostáva neisté. Jednou z možností však je, že mechanizmy negatívnej spätnej väzby, ktoré za normálnych okolností udržiavajú toleranciu voči sebe samému, sú prekonané aberantnými mechanizmami pozitívnej spätnej väzby pre určité antigény, ako je IgG Fc (viazaný RF) a citrulinovaný fibrinogén (viazaný ACPA) (pozri heslo o autoimunite).

Keď sa abnormálna imunitná odpoveď vytvorí (čo môže trvať niekoľko rokov, kým sa objavia akékoľvek príznaky), plazmatické bunky odvodené od B lymfocytov produkujú vo veľkom množstve reumatoidné faktory a ACPA triedy IgG a IgM. Tieto sa neukladajú tak, ako je to pri systémovom lupuse. Zdá sa, že skôr aktivujú makrofágy prostredníctvom väzby na Fc receptor a možno aj komplement. To môže prispieť k zápalu synovie v zmysle edému, vazodilatácie a infiltrácie aktivovanými T-bunkami (hlavne CD4 v uzlovitých agregátoch a CD8 v difúznych infiltrátoch). Synoviálne makrofágy a dendritické bunky ďalej fungujú ako antigén prezentujúce bunky expresiou molekúl MHC II. triedy, čo vedie k vytvorenej lokálnej imunitnej reakcii v tkanive. Ochorenie postupuje spoločne s tvorbou granulačného tkaniva na okrajoch synoviálnej výstelky (pannus) s rozsiahlou angiogenézou a produkciou enzýmov, ktoré spôsobujú poškodenie tkaniva. Moderná farmakologická liečba RA je zameraná na tieto mediátory. Po vzniku zápalovej reakcie sa synovia zhrubne, chrupavka a pod ňou ležiaca kosť sa začnú rozpadávať a pribúdajú dôkazy o deštrukcii kĺbu.

Neexistuje žiadny známy liek na reumatoidnú artritídu, ale mnoho rôznych typov liečby môže zmierniť príznaky a/alebo upraviť proces ochorenia.

Kortizónová terapia v minulosti prinášala úľavu, ale jej dlhodobé účinky sa považovali za nežiaduce. Kortizónové injekcie však môžu byť cenným doplnkom dlhodobého liečebného plánu a používanie nízkych denných dávok kortizónu (napr. prednizón alebo prednizolón, 5 – 7,5 mg denne) môže mať tiež významný prínos, ak sa pridá k správnej špecifickej antireumatickej liečbe [Ako odkazovať a odkazovať na zhrnutie alebo text].

Farmakologickú liečbu RA možno rozdeliť na chorobu modifikujúce antireumatiká (DMARD), protizápalové látky a analgetiká.
Liečba zahŕňa aj odpočinok a fyzickú aktivitu.

Antireumatické lieky modifikujúce ochorenie (DMARDs)

Termín DMARD (Disease modifying anti-rheumatic drug) pôvodne znamenal liek, ktorý ovplyvňuje biologické ukazovatele, ako sú ESR a hladiny hemoglobínu a autoprotilátok, ale v súčasnosti sa zvyčajne používa na označenie lieku, ktorý znižuje mieru poškodenia kostí a chrupaviek. Zistilo sa, že DMARD vyvolávajú trvalé symptomatické remisie a odďaľujú alebo zastavujú progresiu. To je dôležité, pretože takéto poškodenie je zvyčajne nezvratné. Protizápalové lieky a analgetiká zlepšujú bolesť a stuhnutosť, ale nezabraňujú poškodeniu kĺbov ani nespomaľujú progresiu ochorenia.

Reumatológovia čoraz viac uznávajú, že k trvalému poškodeniu kĺbov dochádza už vo veľmi skorom štádiu ochorenia. V minulosti sa bežne začínalo len s protizápalovým liekom a progresia sa posudzovala klinicky a pomocou röntgenových snímok. Ak sa preukázalo, že začína dochádzať k poškodeniu kĺbov, predpísal sa silnejší DMARD. Ultrazvuk a magnetická rezonancia sú citlivejšie metódy zobrazovania kĺbov a preukázali, že k poškodeniu kĺbov dochádza oveľa skôr a u väčšieho počtu pacientov, ako sa doteraz predpokladalo. Ľudia s normálnym röntgenovým vyšetrením majú často erózie zistiteľné ultrazvukom, ktoré röntgen nemohol preukázať. Cieľom je teraz liečiť skôr, ako dôjde k poškodeniu.

Môžu existovať aj iné dôvody, prečo je skoré začatie liečby DMARDs prospešné, ako aj prevencia štrukturálneho poškodenia kĺbov. Kĺby sú od najranejších štádií ochorenia infiltrované bunkami imunitného systému, ktoré si navzájom dávajú signály spôsobom, ktorý môže zahŕňať rôzne pozitívne spätné väzby (už dlho sa pozoruje, že jediná injekcia kortikosteroidu môže na dlhé obdobie prerušiť synovitídu v určitom kĺbe). Zdá sa, že čo najskoršie prerušenie tohto procesu účinným DMARD (ako je metotrexát) zlepšuje výsledky z RA na roky potom. Odloženie liečby už o niekoľko mesiacov po objavení sa príznakov môže mať z dlhodobého hľadiska za následok horšie výsledky. Existuje preto značný záujem o stanovenie najúčinnejšej terapie pri včasnej artritíde, keď sú na liečbu najcitlivejší a môžu najviac získať.

Tradičné lieky s malou molekulovou hmotnosťou

Chemicky syntetizované DMARDs:

Najdôležitejšie a najčastejšie nežiaduce udalosti sa týkajú toxicity pečene a kostnej drene (MTX, SSZ, leflunomid, azatioprín, zlúčeniny zlata, D-penicilamín), renálnej toxicity (cyklosporín A, parenterálne soli zlata, D-penicilamín), pneumonitídy (MTX), alergických kožných reakcií (zlúčeniny zlata, SSZ), autoimunity (D-penicilamín, SSZ, minocyklín) a infekcií (azatioprín, cyklosporín A). Hydroxychlorochín môže spôsobiť očnú toxicitu, hoci je to zriedkavé, a keďže hydroxychlorochín nemá vplyv na kostnú dreň alebo pečeň, často sa považuje za DMARD s najmenšou toxicitou. Nanešťastie hydroxychlorochín nie je veľmi účinný a zvyčajne nestačí na to, aby sám kontroloval príznaky.

Mnohí reumatológovia považujú metotrexát za najdôležitejší a najužitočnejší DMARD, najmä kvôli nižšej miere vysadenia z dôvodu toxicity. Napriek tomu sa metotrexát často považuje za veľmi „toxický“ liek. Táto povesť nie je úplne oprávnená a niekedy môže viesť k tomu, že ľuďom je odopretá najúčinnejšia liečba ich artritídy. Hoci metotrexát má potenciál potlačiť kostnú dreň alebo spôsobiť hepatitídu, tieto účinky sa dajú monitorovať pomocou pravidelných krvných testov a liek sa môže vysadiť v počiatočnom štádiu, ak sú testy abnormálne, skôr ako dôjde k vážnemu poškodeniu (zvyčajne sa krvné testy po vysadení lieku vrátia do normálu). V klinických štúdiách, v ktorých sa používal jeden z rôznych DMARD, ľudia, ktorým bol predpísaný metotrexát, zotrvali na lieku najdlhšie (ostatní prestali užívať liek buď pre vedľajšie účinky, alebo pre neschopnosť lieku kontrolovať artritídu). Reumatológovia často uprednostňujú metotrexát, pretože ak sám o sebe nezvláda artritídu, potom dobre funguje v kombinácii s mnohými inými liekmi, najmä s biologickými látkami. Iné DMARDs nemusia byť v kombinácii s biologickými látkami také účinné alebo bezpečné.

Protizápalové látky a analgetiká

Prístroj na filtrovanie krvi v kolóne Prosorba bol schválený FDA na liečbu RA v roku 1999 Výsledky však boli veľmi skromné [Ako odkazovať a odkazovať na zhrnutie alebo text].

V minulosti sa pri liečbe RA používal aj odpočinok, ľad, kompresia a elevácia, akupunktúra, jablková diéta, muškátový oriešok, občasné ľahké cvičenie, žihľava, včelí jed, medené náramky, rebarbora, odpočinok, extrakcia zubov, pôst, med, vitamíny, inzulín, magnety a elektrokonvulzívna terapia (ECT). Väčšina z nich buď nemala žiadny účinok, alebo ich účinky boli mierne a prechodné, pričom sa nedali zovšeobecniť.

Ďalšími terapiami sú redukcia hmotnosti, ergoterapia, podiatria, fyzioterapia, kĺbové injekcie a špeciálne nástroje na zlepšenie ťažkých pohybov (napr. špeciálne otvárače plechoviek). Pravidelné cvičenie je dôležité na udržanie pohyblivosti kĺbov a posilnenie kĺbových svalov. Zvlášť vhodné je plávanie, ktoré umožňuje cvičenie s minimálnym zaťažením kĺbov. Aplikácie tepla a chladu sú spôsoby, ktoré môžu zmierniť príznaky pred a po cvičení. Bolesť kĺbov niekedy zmierňuje perorálne podávaný ibuprofén alebo iný protizápalový prostriedok. Ostatné oblasti tela, ako sú oči a sliznica srdca, sa liečia individuálne. Rybí olej môže mať protizápalové účinky.

Radónová terapia, populárna v Nemecku a východnej Európe, môže mať priaznivé dlhodobé účinky na reumatoidnú artritídu.

Prieskum v Spojenom kráľovstve v rokoch 1998 až 2002 zistil, že medzi piatimi najčastejšími dôvodmi užívania konope na lekárske účely sa uvádza artritída.

Pacienti s reumatoidnou artritídou nemajú z akupunktúry prospech. Ťažko postihnuté kĺby môžu vyžadovať operáciu, napríklad výmenu kolena.

Priebeh ochorenia sa značne líši. Niektorí ľudia majú mierne krátkodobé príznaky, ale u väčšiny ochorenie postupuje celý život. Približne 20 – 30 % pacientov má podkožné uzlíky (tzv. reumatoidné uzlíky), ktoré sú spojené so zlou prognózou.

Medzi zlé prognostické faktory patria pretrvávajúca synovitída, skoré erozívne ochorenie, mimokĺbové nálezy (vrátane podkožných reumatoidných uzlíkov), pozitívne nálezy RF v sére, pozitívne autoprotilátky anti-CCP v sére, nosičstvo alel HLA-DR4 „Shared Epitope“, rodinná anamnéza RA, zlý funkčný stav, socioekonomické faktory, zvýšená reakcia na akútnu fázu (rýchlosť sedimentácie erytrocytov [ESR], C-reaktívny proteín [CRP]) a zvýšená klinická závažnosť.

Výskyt RA sa pohybuje okolo 3 prípadov na 10 000 obyvateľov ročne. Výskyt je zriedkavý vo veku do 15 rokov a odvtedy výskyt stúpa s vekom až do veku 80 rokov. Prevalencia je 1 %, pričom ženy sú postihnuté tri až päťkrát častejšie ako muži. U fajčiarov sa vyskytuje 4-krát častejšie ako u nefajčiarov. Niektoré indiánske skupiny majú vyššiu mieru výskytu (5 – 6 %) a ľudia z karibskej oblasti majú nižšiu mieru výskytu. Miera výskytu u prvostupňových príbuzných je 2 – 3 % a genetická zhoda ochorenia u jednovaječných dvojčiat je približne 15 – 20 % [Ako odkazovať a odkazovať na zhrnutie alebo text].

Je silne spojená s dedičným typom hlavného histokompatibilného komplexu (MHC) antigénu HLA-DR4 (konkrétne DR0401 a 0404) – preto je rodinná anamnéza dôležitým rizikovým faktorom [Ako odkazovať a odkazovať na zhrnutie alebo text].

Reumatoidná artritída postihuje ženy trikrát častejšie ako mužov a môže sa objaviť v akomkoľvek veku. Zdá sa, že riziko prvého výskytu ochorenia (výskyt ochorenia) je najväčšie u žien medzi 40. a 50. rokom života a u mužov o niečo neskôr. RA je chronické ochorenie, a hoci sa zriedkavo môže vyskytnúť spontánna remisia, prirodzený priebeh je takmer vždy spojený s pretrvávajúcimi príznakmi, ktorých intenzita sa mení a klesá, a s postupným zhoršovaním kĺbových štruktúr, ktoré vedie k deformáciám a invalidite.

Prvé známe stopy artritídy pochádzajú minimálne z obdobia 4500 rokov pred naším letopočtom. V texte z roku 123 n. l. sa prvýkrát opisujú príznaky veľmi podobné reumatoidnej artritíde. Bola zaznamenaná u kostrových pozostatkov pôvodných obyvateľov Ameriky nájdených v Tennessee. V Starom svete je toto ochorenie pred rokom 1600 mizivé a na základe toho sa bádatelia domnievajú, že sa rozšírilo cez Atlantik počas doby objavovania. V roku 1859 získala choroba svoj súčasný názov.

Pri skúmaní predkolumbovských kostí bola zistená anomália. Kosti z náleziska v Tennessee nevykazujú žiadne známky tuberkulózy, hoci v tom čase bola rozšírená v celej Amerike. Jim Mobley zo spoločnosti Pfizer objavil historický vzorec epidémií tuberkulózy, po ktorých o niekoľko generácií neskôr nasledoval prudký nárast počtu prípadov reumatoidnej artritídy. Mobley pripisuje prudký nárast výskytu artritídy selektívnemu tlaku spôsobenému tuberkulózou. Hyperaktívny imunitný systém chráni pred tuberkulózou za cenu zvýšeného rizika autoimunitného ochorenia.

Umenie Petra Paula Rubensa môže zobrazovať účinky reumatoidnej artritídy. Na jeho neskorších obrazoch sa podľa názoru niektorých lekárov objavujú čoraz väčšie deformácie rúk, ktoré zodpovedajú príznakom tejto choroby. Zdá sa, že reumatoidná artritída bola podľa niektorých zobrazená už na maľbách zo 16. storočia. V umeleckohistorických kruhoch sa však všeobecne uznáva, že maľovanie rúk v 16. a 17. storočí sa riadilo určitými štylizovanými konvenciami, ktoré sú najzreteľnejšie viditeľné v manieristickom hnutí. Konvenčné bolo napríklad zobrazovať zdvihnutú pravú ruku Krista v polohe, ktorá sa dnes javí ako deformovaná. Tieto konvencie sa dajú ľahko nesprávne interpretovať ako zobrazenie choroby. Sú príliš rozšírené na to, aby to bolo vierohodné.

Prvý známy opis reumatoidnej artritídy urobil v roku 1800 francúzsky lekár Dr. Augustin Jacob Landré-Beauvais (1772-1840), ktorý pôsobil v známej parížskej nemocnici Salpêtrière. Samotný názov „reumatoidná artritída“ vytvoril v roku 1859 britský reumatológ Dr. Alfred Baring Garrod.

Septická artritída – Tuberkulózna artritída – Reaktívna artritída (nepriamo)

Osteoartróza: Heberdenov uzol – Bouchardove uzly

krvácanie (Hemartróza) – bolesť (Artralgia) – osteofyt – villonodulárna synovitída (Pigmentovaná villonodulárna synovitída) – stuhnutosť kĺbov

Kategórie
Psychologický slovník

Opiáty

Opioid je analgetikum, ktoré pôsobí tak, že sa viaže na opioidné receptory, ktoré sa nachádzajú najmä v centrálnom nervovom systéme a v gastrointestinálnom trakte. Receptory v týchto dvoch orgánových systémoch sprostredkúvajú priaznivé účinky, ako aj nežiaduce vedľajšie účinky. Existuje niekoľko širokých tried opioidov:

Hoci sa pojem opiát často používa ako synonymum pre opioid, správnejšie je obmedziť ho na prírodné ópiové alkaloidy a z nich odvodené polosyntetické látky.

Niektoré menšie opiové alkaloidy a rôzne látky s opioidným účinkom sa nachádzajú aj inde v prírode, vrátane alkaloidov prítomných v rastlinách Kratom, Corydalis a Salvia a v niektorých druhoch maku okrem Papaver somniferum, a existujú kmene, ktoré produkujú veľké množstvá thebaínu, dôležitej suroviny na výrobu mnohých polosyntetických a syntetických opioidov. Zo všetkých viac ako 120 druhov maku iba dva produkujú morfín.

Zistilo sa, že ľudské telo, ako aj telo niektorých iných živočíchov, prirodzene produkuje okrem dobre známych endogénnych opioidov aj malé množstvá morfínu a kodeínu a pravdepodobne aj niektoré ich jednoduchšie deriváty, ako sú heroín a dihydromorfín. Niektoré baktérie sú schopné produkovať niektoré polosyntetické opioidy, ako napríklad hydromorfón a hydrokodón, keď žijú v roztoku obsahujúcom morfín, resp. kodeín.

Medzi analgetikami je malý počet látok, ktoré pôsobia na centrálny nervový systém, ale nie na opioidný receptorový systém, a preto nemajú žiadne iné (narkotické) vlastnosti opioidov, hoci môžu vyvolávať eufóriu tým, že zmierňujú bolesť – eufóriu, ktorá vzhľadom na spôsob, akým vzniká, nie je základom návyku, fyzickej závislosti alebo závislosti. Medzi tieto látky patrí predovšetkým nefopam, orfenadrín a možno fenyltoloxamín a/alebo niektoré iné antihistaminiká. Zvyšné analgetiká pôsobia periférne. Výskum začína ukazovať, že morfín a príbuzné lieky môžu mať skutočne aj periférne účinky, napríklad morfínový gél pôsobí na popáleniny, ale medzi periférne pôsobiace analgetiká patrí aj aspirín, ibuprofén a podobne. Paracetamol je prevažne centrálne pôsobiace analgetikum (nenarkotikum), ktoré svoj účinok sprostredkúva pôsobením na zostupné serotonínergné (5-hydroxytriptaminergné) dráhy, na zvýšenie uvoľňovania 5-HT (ktorý inhibuje uvoľňovanie mediátorov bolesti). Znižuje tiež aktivitu cyklooxygenázy.

Mnohé alkaloidy a iné deriváty maku siateho nie sú opioidy ani narkotiká; najlepším príkladom je relaxant hladkých svalov papaverín. Noskapín je okrajový prípad, pretože má účinky na CNS, ale nie nevyhnutne podobné morfínu, a pravdepodobne patrí do samostatnej kategórie. Dextrometorfán (stereoizomér levometorfánu, polosyntetický opioidný agonista) a jeho metabolit dextroorfán napriek podobnosti štruktúry s inými opioidmi nemajú vôbec žiadne opioidné agonistické účinky, namiesto toho sú silnými NMDA antagonistami a agonistami sigma 1 a 2 a používajú sa v mnohých voľnopredajných liekoch proti kašľu.

Opioidy sa viažu na špecifické opioidné receptory v centrálnom nervovom systéme a v iných tkanivách. Existujú tri hlavné triedy opioidných receptorov, μ, κ, δ (mu, kappa a delta), hoci ich bolo zaznamenaných až sedemnásť a zahŕňajú receptory ε, ι, λ a ζ (epsilon, iota, lambda a zeta). Alternatívne sa σ (Sigma) receptory už nepovažujú za opioidné receptory, pretože: nie sú reverzibilné opioidným inverzným agonistom naloxónom, nevykazujú vysokoafinitnú väzbu pre ketamín a fencyklidín a sú stereoselektívne pre dextro-rotačné izoméry, zatiaľ čo ostatné opioidné receptory sú stereoselektívne pre laevo-rotačné izoméry. Okrem toho existujú tri podtypy μ receptorov: μ1 a μ2 a novoobjavený μ3. Ďalším receptorom s klinickým významom je receptor podobný opioidným receptorom 1 (ORL1), ktorý sa podieľa na reakciách na bolesť, ako aj má významnú úlohu pri rozvoji tolerancie na μ-opioidné agonisty používané ako analgetiká. Všetky tieto receptory sú viazané na G-proteín a pôsobia na GABAergickú neurotransmisiu. Farmakodynamická odpoveď na opioid závisí od toho, na ktorý receptor sa viaže, od jeho afinity k tomuto receptoru a od toho, či je opioid agonista alebo antagonista. Napríklad supraspinálne analgetické vlastnosti opioidného agonistu morfínu sú sprostredkované aktiváciou receptora μ1, respiračná depresia a fyzická závislosť (dependencia) receptorom μ2 a sedácia a spinálna analgézia receptorom κ. Každá skupina opioidných receptorov vyvoláva odlišný súbor neurologických reakcií, pričom podtypy receptorov (ako napríklad μ1 a μ2) poskytujú ešte [merateľne] špecifickejšie reakcie. Jedinečnou vlastnosťou každého opioidu je ich odlišná väzbová afinita k skupine (skupinám) opioidných receptorov (napr. opioidné receptory μ, κ a δ sa aktivujú v rôznej miere podľa špecifickej väzbovej afinity opioidu, napr. účinky opioidného receptora μ sú primárnou odpoveďou na opioid morfín alebo opioidný receptor κ sa zdržiava ako primárny väzbový receptor na ketazocín). Práve tento primárny mechanizmus umožňuje existenciu takej širokej triedy opioidov a molekulárnych konštrukcií, ako aj ich zloženie s mierne odlišnými účinkami a vedľajšími účinkami, ktoré súvisia s ich individuálnou molekulárnou štruktúrou/zložením (ktoré je samo o sebe zodpovedné za trvanie účinku, pričom metabolické odbúravanie je primárnym spôsobom trvania opioidov).

Opioidy sa už dlho používajú na liečbu akútnej bolesti (napríklad pooperačnej bolesti). Zistilo sa, že sú neoceniteľné aj v paliatívnej starostlivosti na zmiernenie silnej, chronickej, invalidizujúcej bolesti pri terminálnych stavoch, ako je rakovina. Na rozdiel od všeobecného presvedčenia nie sú na zvládnutie bolesti pri pokročilom alebo konečnom štádiu ochorenia potrebné vysoké dávky, pričom medián dávky u takýchto pacientov je len 15 mg perorálneho morfínu každé štyri hodiny (90 mg/24 hodín), t. j. 50 % pacientov zvládne nižšie dávky a požiadavky sa môžu vyrovnať na mnoho mesiacov napriek skutočnosti, že opioidy majú jeden z najväčších potenciálov tolerancie zo všetkých kategórií liekov.

V posledných rokoch sa v liečbe nenádorovej chronickej bolesti čoraz častejšie používajú opioidy. Táto prax vyplynula z viac ako 30-ročných skúseností v paliatívnej starostlivosti s dlhodobým používaním silných opioidov, ktoré ukázali, že pri používaní lieku na zmiernenie bolesti je závislosť zriedkavá. Základom toho, že výskyt iatrogénnej závislosti od opioidov v tomto prostredí je o niekoľko rádov nižší ako v bežnej populácii, je kombinácia viacerých faktorov. Jedným z nich je otvorená a rozsiahla komunikácia a dôkladná dokumentácia medzi pacientom, všetkými opatrovateľmi, lekármi a lekárnikmi (farmaceutmi); agresívne a dôsledné používanie opioidných rotácií, adjuvantných analgetík, potenciátorov a liekov, ktoré riešia iné prvky bolesti (NSAIDS) a vedľajšie účinky opioidov (stimulanciá v niektorých prípadoch antihistaminiká), zlepšujú prognózu pacienta a zrejme prispievajú k zriedkavosti závislosti v týchto prípadoch.

Jediné klinické indikácie opioidov v Spojených štátoch podľa publikácie Drug Facts and Comparisons z roku 2005 sú:

V USA lekári prakticky nikdy nepredpisujú opiáty na psychickú úľavu (s úzkou výnimkou úzkosti spôsobenej dýchavičnosťou), a to napriek ich rozsiahlemu uvádzanému psychologickému prínosu a rozšírenému používaniu opiátov pri depresii a úzkosti až do polovice 50. rokov 20. storočia. Z tejto praxe neexistujú prakticky žiadne výnimky, a to ani za okolností, keď výskumníci uvádzajú, že opiáty sú obzvlášť účinné a kde je možnosť závislosti alebo zneužitia veľmi nízka – napríklad pri liečbe stareckej demencie, geriatrickej depresie a psychického stresu v dôsledku chemoterapie alebo terminálnej diagnózy (pozri Abse; Berridge; Bodkin; Callaway; Emrich; Gold; Gutstein; Mongan; Portenoy; Reynolds; Takano; Verebey; Walsh; Way).

Používanie opioidov v paliatívnej starostlivosti

Súčasným kľúčovým textom pre paliatívnu starostlivosť je Oxford Textbook of Palliative Medicine, 3. vydanie (Doyle, D., Hanks, G., Cherney, I., and Calman, K., eds., Oxford University Press, 2004). V nej sa uvádza, že indikácie na podávanie opioidov v paliatívnej starostlivosti sú:

V paliatívnej starostlivosti sa opioidy vždy používajú v kombinácii s adjuvantnými analgetikami (lieky, ktoré majú nepriamy účinok na bolesť) a ako neoddeliteľná súčasť starostlivosti o celú osobu.

Kontraindikácie pre opioidy

V paliatívnej starostlivosti sa opioidy neodporúčajú na sedáciu alebo úzkosť, pretože podľa skúseností sú v týchto úlohách neúčinné. Niektoré opioidy sú relatívne kontraindikované pri zlyhaní obličiek z dôvodu hromadenia materského liečiva alebo ich aktívnych metabolitov (napr. morfín a oxykodón). Vek (mladý alebo starý) nie je kontraindikáciou silných opioidov. Niektoré syntetické opioidy, napr. petidín, majú metabolity, ktoré sú skutočne neurotoxické, a preto by sa mali používať len v akútnych situáciách.

Neklinické užívanie bolo v USA kriminalizované Harrisonovým zákonom o dani z omamných látok z roku 1914 a ďalšími zákonmi na celom svete. Odvtedy bolo takmer každé neklinické užívanie opiátov hodnotené nulou na stupnici súhlasu takmer všetkých spoločenských inštitúcií. V Spojenom kráľovstve však správa rezortného výboru pre morfín a heroínovú závislosť z roku 1926 pod vedením predsedu Kráľovskej lekárskej akadémie opätovne potvrdila lekársku kontrolu a zaviedla „britský systém“ kontroly – ktorý trval až do 60. rokov 20. storočia; v USA zákon o kontrolovaných látkach z roku 1970 výrazne zmiernil tvrdosť Harrisonovho zákona.

Pred dvadsiatym storočím bolo inštitucionálne schválenie často vyššie, dokonca aj v Európe a Amerike. V niektorých kultúrach bolo schvaľovanie opiátov výrazne vyššie ako schvaľovanie alkoholu.

Celosvetový nedostatok liekov na báze maku

Svetová zdravotnícka organizácia označila morfín a iné lieky na báze maku za nevyhnutné pri liečbe silnej bolesti. Avšak iba šesť krajín využíva 77 % svetových zásob morfínu, takže mnohé rozvíjajúce sa krajiny nemajú dostatok liekov na zmiernenie bolesti. Súčasný systém dodávok makových surovín na výrobu liekov na báze maku reguluje Medzinárodný úrad pre kontrolu omamných látok na základe ustanovenia Jednotného dohovoru o omamných látkach z roku 1961. Množstvo surového maku, ktoré môže každá krajina ročne požadovať na základe týchto ustanovení, musí zodpovedať odhadu potrieb krajiny, ktoré sa odvíjajú od národnej spotreby za predchádzajúce dva roky. V mnohých krajinách sa rozmáha nedostatočné predpisovanie morfínu z dôvodu vysokých cien a nedostatočnej odbornej prípravy v oblasti predpisovania liekov na báze maku. Svetová zdravotnícka organizácia v súčasnosti spolupracuje s národnými správami rôznych krajín na školení zdravotníckych pracovníkov a na vypracovaní vnútroštátnych predpisov týkajúcich sa predpisovania liekov s cieľom uľahčiť väčšie predpisovanie liekov na báze maku.

Ďalšiu myšlienku na zvýšenie dostupnosti morfínu navrhuje Rada Senlis, ktorá vo svojom návrhu afganského morfínu navrhuje, aby Afganistan poskytoval lacný morfín na zmiernenie bolesti rozvíjajúcim sa krajinám ako súčasť systému dodávok druhej úrovne, ktorý by dopĺňal súčasný regulovaný systém INCB tým, že by zachoval rovnováhu a uzavretý systém, ktorý zavádza, a zároveň by poskytoval hotový morfín tým, ktorí trpia silnými bolesťami a nemajú prístup k liekom na báze maku v rámci súčasného systému.

Viac informácií nájdete v online formulári paliatívnej starostlivosti (dostupnom na stránke Palliativedrugs.com).

Bežné nežiaduce reakcie u pacientov užívajúcich opioidy na úľavu od bolesti:

Zriedkavé nežiaduce reakcie u pacienta užívajúceho opioidy na zmiernenie bolesti:

U niektorých pacientov bola pozorovaná opioidmi indukovaná hyperalgézia, pri ktorej môžu osoby užívajúce opioidy na zmiernenie bolesti paradoxne pociťovať väčšiu bolesť v dôsledku užívania liekov. Tento jav, hoci je zriedkavý, sa pozoruje u niektorých pacientov v paliatívnej starostlivosti, najčastejšie pri rýchlom zvyšovaní dávky. Ak sa vyskytne, striedanie viacerých rôznych opioidných analgetík môže zmierniť vznik hyperalgézie.

Terapeutické aj chronické užívanie opioidov môže narušiť funkciu imunitného systému. Opioidy znižujú proliferáciu progenitorových buniek makrofágov a lymfocytov a ovplyvňujú diferenciáciu buniek (Roy a Loh, 1996). Opioidy môžu tiež inhibovať migráciu leukocytov. Význam tejto skutočnosti v kontexte zmierňovania bolesti však nie je známy.

Liečba nežiaducich účinkov opioidov

Väčšinu nežiaducich účinkov možno úspešne zvládnuť. (Úplnejšie informácie nájdete na stránke Palliativedrugs.com a v online formulári paliatívnej starostlivosti.)

Nevoľnosť: tolerancia sa dostaví do 7-10 dní, počas ktorých sú veľmi účinné antiemetiká (napr. nízka dávka haloperidolu 1,5-3 mg raz na noc). Silnejšie antiemetiká, ako je ondansetrón alebo tropisetrón, môžu byť indikované, ak je nevoľnosť závažná alebo trvá dlhšie obdobie, hoci sa im zvyčajne vyhýbame kvôli ich vysokej cene, pokiaľ nie je nevoľnosť skutočne problematická.

Zvracanie: ak je príčinou žalúdočná stáza (zvracanie veľkého objemu, krátka nevoľnosť vystriedaná zvracaním, reflux pažeráka, plnosť v epigastriu, skoré nasýtenie), potom sa dá zvládnuť prokinetikom (napr. domperidónom alebo metoklopramidom 10 mg každých 8 hodín), ale zvyčajne sa musí začať podávať neorálnou cestou (napr. subkutánne v prípade metoklopramidu, rektálne v prípade domperidónu).

Ospalosť: tolerancia sa zvyčajne vyvinie v priebehu 5-7 dní, ale ak je obťažujúca, často pomôže prechod na alternatívny opioid. Niektoré opioidy, ako napríklad diamorfín, majú tendenciu byť obzvlášť sedatívne, zatiaľ čo iné, ako napríklad oxykodón a meperidín (petidín), majú tendenciu vyvolávať menšiu sedáciu, ale reakcie jednotlivých pacientov sa môžu výrazne líšiť a na nájdenie najvhodnejšieho lieku pre konkrétneho pacienta môže byť potrebná určitá miera pokusov a omylov.

Svrbenie: pri použití opioidov na úľavu od bolesti nebýva závažným problémom, ale v prípade potreby sú antihistaminiká užitočné na potlačenie svrbenia. Uprednostňujú sa nesedatívne antihistaminiká, ako napríklad fexofenadín, aby sa zabránilo zvýšeniu ospalosti vyvolanej opioidmi, hoci niektoré sedatívne antihistaminiká, ako napríklad orfenadrín, môžu byť užitočné, pretože vyvolávajú synergický analgetický účinok, ktorý umožňuje použitie menších dávok opioidov, pričom stále vyvolávajú účinnú analgéziu. Z tohto dôvodu boli na trh uvedené niektoré kombinácie opioidov a antihistaminík, ako napríklad Meprozine (meperidín/prometazín) a Diconal (dipipanón/cyklizín), ktorých ďalšou výhodou môže byť aj zníženie nevoľnosti.

Zápcha: vzniká u 99 % pacientov užívajúcich opioidy, a keďže sa na tento problém nevyvíja tolerancia, takmer všetci pacienti užívajúci opioidy budú potrebovať laxatívum. Viac ako 30-ročné skúsenosti v paliatívnej starostlivosti ukázali, že väčšine opioidných zápch sa dá úspešne predchádzať: „Zápcha … sa lieči [laxatívami a liekmi na zmäkčenie stolice]“ (Burton 2004, 277). Podľa Abseho „je veľmi dôležité dávať pozor na zápchu, ktorá môže byť závažná“ a „môže byť veľmi výraznou komplikáciou“ (Abse 1982, 129), ak sa ignoruje. V súčasnosti sa vyvíjajú periférne pôsobiace antagonisty opioidov, ako sú alvimopan a metylnaltrexón (Relistor), o ktorých sa zistilo, že účinne zmierňujú zápchu vyvolanú opioidmi bez toho, aby ovplyvnili analgéziu alebo vyvolali abstinenčné príznaky.

Respiračná depresia: Hoci ide o najzávažnejšiu nežiaducu reakciu spojenú s užívaním opioidov, zvyčajne sa vyskytuje pri použití jednorazovej intravenóznej dávky u pacienta, ktorý nie je závislý od opioidov. U pacientov pravidelne užívajúcich opioidy na úľavu od bolesti sa tolerancia na respiračnú depresiu dostaví rýchlo, takže nepredstavuje klinický problém. Bolo vyvinutých niekoľko liekov, ktoré dokážu úplne zablokovať respiračnú depresiu aj pri vysokých dávkach silných opioidov bez ovplyvnenia analgézie, hoci jediným respiračným stimulátorom v súčasnosti schváleným na tento účel je doxapram, ktorý má v tejto aplikácii len obmedzenú účinnosť. Novšie lieky, ako napríklad BIMU-8 a CX-546, však môžu byť oveľa účinnejšie.

Zvrátenie účinku opioidov: Účinok opioidov možno rýchlo zvrátiť pomocou antagonistu opioidov (doslova inverzného agonistu), ako je naloxón alebo naltrexón. Títo kompetitívni antagonisti sa viažu na opioidné receptory s vyššou afinitou ako agonisti, ale neaktivujú receptory. Tým vytláčajú agonistu, čím oslabujú a/alebo rušia účinky agonistu. Eliminačný polčas naloxónu však môže byť kratší ako polčas samotného opioidu, preto môže byť potrebné opakované dávkovanie alebo kontinuálna infúzia, prípadne sa môže použiť dlhšie pôsobiaci antagonista, ako je nalmefén. U pacientov, ktorí užívajú opioidy pravidelne, je nevyhnutné, aby sa opioid zrušil len čiastočne, aby sa predišlo závažnej a nepríjemnej reakcii prebúdzania sa v neznesiteľnej bolesti. To sa dosiahne tak, že sa nepodá plná dávka (napr. naloxón 400 μg), ale podáva sa v malých dávkach (napr. naloxón 40 μg), kým sa nezlepší frekvencia dýchania. Potom sa začne infúzia, aby sa reverzná dávka udržala na tejto úrovni a zároveň sa zachovala úľava od bolesti.

Ako bezpečné sú opioidy? Pohľad na svet

O opioidoch existuje viacero paradoxných názorov:

Štúdie na celom svete za posledných 20 rokov však opakovane preukázali, že opioidy sú pri správnom používaní bezpečné. V Spojenom kráľovstve dve štúdie ukázali, že dvojnásobné dávky morfínu pred spaním nezvýšili počet úmrtí počas noci a že zvýšenie dávky sedatív nebolo spojené so skrátením prežívania (n=237). Ďalšia štúdia v Spojenom kráľovstve ukázala, že frekvencia dýchania sa nezmenila pri morfíne podávanom na dýchanie pacientom so slabou respiračnou funkciou (n=15). V Austrálii sa nezistila žiadna súvislosť medzi dávkami opioidov, benzodiazepínov alebo haloperidolu a prežívaním. Na Taiwane štúdia ukázala, že podávanie morfínu na liečbu dýchavice pri prijatí a v posledných 48 hodinách neovplyvnilo prežívanie. Prežívanie japonských pacientov, ktorí dostávali vysoké dávky opioidov a sedatív v posledných 48 hodinách, bolo rovnaké ako u pacientov, ktorí takéto lieky nedostávali. U amerických pacientov, ktorým boli odňaté ventilátory, opioidy neurýchlili smrť, zatiaľ čo benzodiazepíny viedli k dlhšiemu prežívaniu (n=75).
Morfín podávaný starším pacientom vo Švajčiarsku pri dýchavičnosti nevykazoval žiadny vplyv na dýchacie funkcie (n=9, randomizovaná kontrolovaná štúdia). Injekcie morfínu podané subkutánne kanadským pacientom s reštriktívnym respiračným zlyhaním nezmenili ich dychovú frekvenciu, dychové úsilie, arteriálnu hladinu kyslíka ani hladinu oxidu uhličitého na konci dychu. Ani pri intravenóznom podávaní opioidov sa nepozorovala respiračná depresia.

Princíp dvojitého účinku sa v paliatívnej starostlivosti nepoužíva. Lekári nečelia dileme, či podať potenciálne smrteľnú dávku lieku pacientovi v núdzi.

Lekár poskytujúci paliatívnu starostlivosť podáva opakovane malé dávky jedného alebo viacerých liekov, pričom každá z nich je individuálne titrovaná až do zmiernenia príznakov, pričom robí všetko pre to, aby zabránil toxicite. Lekári, ktorí podávajú 30- až 60-násobok požadovanej dávky morfínu alebo diamorfínu, zvyčajne ako jednorazovú intravenóznu dávku, konajú buď nedbanlivo, alebo zlomyseľne.“ [Ako odkazovať a odkazovať na zhrnutie alebo text] Keďže pre opioidy by mali existovať záznamy o liekoch, existuje jasná auditná stopa, ktorú možno sledovať v prípade potreby následného vyšetrovania.

Až na výnimky, ako je Shipman, sú britskí lekári veľmi opatrní pri skracovaní života. Pretrvávajúce presvedčenie, že opioidy a sedatíva skracujú život alebo urýchľujú smrť, pramení zo skúseností so zlou praxou pri používaní týchto liekov. Dôkazy za posledných 20 rokov ukázali, že opioidy a sedatíva sú pri dodržiavaní protokolov paliatívnej starostlivosti bezpečné. Lekári, ktorí sú presvedčení o opaku, by mali byť vyzvaní, aby poskytli spoľahlivé klinické dôkazy na podporu svojho názoru.

Tolerancia je proces, pri ktorom dochádza k neuroadaptácii (prostredníctvom desenzibilizácie receptorov), čo vedie k zníženiu účinku lieku. Tolerancia je pri niektorých účinkoch výraznejšia ako pri iných – tolerancia sa rýchlo objavuje pri účinkoch na náladu, svrbenie, zadržiavanie moču a útlm dýchania, ale pomalšie sa objavuje pri analgézii a iných fyzikálnych vedľajších účinkoch. Tolerancia sa však nevyvíja na zápchu alebo miózu.

Toleranciu na opioidy oslabujú viaceré látky vrátane blokátorov kalciových kanálov, intratekálneho horčíka a zinku a antagonistov NMDA, ako je ketamín. Na zníženie tolerancie na opioidy sa používa aj antagonista cholecystokinínu proglumid a na toto použitie sa skúmali aj novšie látky, ako je inhibítor fosfodiesterázy ibudilast.

Nedostatok horčíka a zinku urýchľuje rozvoj tolerancie na opioidy [Ako odkazovať a odkazovať na zhrnutie alebo text] a relatívny nedostatok týchto minerálov je pomerne častý v dôsledku nízkeho obsahu horčíka/zinku v potravinách a užívania látok, ktoré ich vyčerpávajú, vrátane diuretík (ako je alkohol, kofeín/teofylín) a fajčenia. Zníženie príjmu týchto látok a užívanie doplnkov zinku/horčíka môže spomaliť rozvoj tolerancie na opiáty.

Závislosť je charakterizovaná mimoriadne nepríjemnými abstinenčnými príznakmi, ktoré sa objavia, ak sa užívanie opioidov náhle preruší po vzniku tolerancie. Abstinenčné príznaky zahŕňajú silnú dysfóriu, potenie, nevoľnosť, nádchu, depresiu, silnú únavu, vracanie a bolesť. Pomalé znižovanie príjmu opioidov v priebehu niekoľkých dní a týždňov zníži alebo odstráni abstinenčné príznaky. Rýchlosť a závažnosť abstinencie závisí od polčasu rozpadu opioidu – odvykanie od heroínu a morfínu prebieha rýchlejšie a je závažnejšie ako odvykanie od metadónu, ale odvykanie od metadónu trvá dlhšie. Po akútnej fáze abstinencie často nasleduje zdĺhavá fáza depresie a nespavosti, ktorá môže trvať aj niekoľko mesiacov. Príznaky abstinencie od opiátov sa dajú liečiť aj inými liekmi, ale s nízkou účinnosťou.

Závislosť je proces, pri ktorom vzniká fyzická a/alebo psychická závislosť od drogy – vrátane opioidov. Abstinenčné príznaky môžu posilniť závislosť a viesť užívateľa k tomu, aby v užívaní drogy pokračoval. Psychická závislosť je častejšia u ľudí užívajúcich opioidy rekreačne, zriedkavá je u pacientov užívajúcich opioidy na úľavu od bolesti. Ukázalo sa, že niekoľko liekov účinne blokuje závislosť od opioidných drog, najmä rastlinný extrakt ibogain a jeho novší derivát 18-metoxykoronaridín.

Zneužívanie drog je nesprávne užívanie drog, ktoré má negatívne následky.

β-endorfín je exprimovaný v proopiomelanokortínových (POMC) bunkách v arcuátnom jadre a v malej populácii neurónov v mozgovom kmeni a pôsobí prostredníctvom μ-opioidných receptorov. β-endorfín má mnoho účinkov vrátane vplyvu na sexuálne správanie a chuť do jedla. β-endorfín sa vylučuje do obehu aj z kortikotropov a melanotropov hypofýzy. α-neoendorfín je tiež exprimovaný v bunkách POMC v arcuátnom jadre.

[met]-enkefalín je široko rozšírený v CNS; [met]-enkefalín je produktom génu proenkefalínu a pôsobí prostredníctvom μ a δ-opioidných receptorov. [leu]-enkefalín, tiež produkt génu proenkefalínu, pôsobí prostredníctvom δ-opioidných receptorov.

Dynorfín pôsobí prostredníctvom κ-opioidných receptorov a je široko rozšírený v CNS vrátane miechy a hypotalamu, najmä v arcuátnom jadre a v oxytocínových a vazopresínových neurónoch v supraoptickom jadre.

Endomorfín pôsobí prostredníctvom μ-opioidných receptorov a je na týchto receptoroch silnejší ako iné endogénne opioidy.

Fenantrény prirodzene sa vyskytujúce v ópiu:

Prípravky zo zmesí ópiových alkaloidov vrátane papaveretu sa stále príležitostne používajú.

Deriváty difenylpropylamínu

{Alfentanil}
{Buprenorfín}
{Karfentanil}
{Codeine}
{Codeinone}
{dextropropoxyfény}
{Diamorfíny (heroín)}
{Dihydrokodeín}
{Fentanyl}
{hydrokodóny}
{Hydromorfón}
{Metadón}
{Morfín}
{Morfinón}
{Oxykodón}
{Oxymorphone}
{Pethidine (Meperidine)}
{Remifentanil}
{Sufentanil}
{Tramadol}

Buprenorfín, butorfanol, kodeín, dextropropoxyfén, diamorfín, dihydrokodeín, fentanyl, hydrokodón, hydromorfón, ketobemidón, levorfanol, metadón, morfín, nikomorfín, ópium, oxykodón, oxymorfón, petidín, tramadol, tapentadol

Aminofenazón, metamizol, fenazón

Konope, tetrahydrokanabinol, AM404

Paracetamol (paracetamol), fenacetín

Zikonotid, ibuprofén, ketoprofén, kyselina mefenamová, naproxén, diklofenak, flurbiprofén, diflunisal, indometacín, ketorolak, meloxikam, piroxikam