Kategórie
Psychologický slovník

Ucho

Ucho je zmyslový orgán, ktorý vníma zvuky. Ucho stavovcov má spoločnú biológiu od rýb až po človeka, pričom jeho štruktúra sa líši podľa radu a druhu. Funguje nielen ako prijímač zvuku, ale zohráva významnú úlohu pri vnímaní rovnováhy a polohy tela. Ucho je súčasťou sluchového systému.

Úvod do uší a sluchu

Sluch je vedecký názov pre vnímanie zvuku. Zvuk je forma energie, ktorá sa pohybuje vzduchom, vodou a inou hmotou vo forme tlakových vĺn. Zvuk je prostriedkom sluchovej komunikácie vrátane žabích volaní, vtáčieho spevu a hovorenej reči. Hoci ucho je zmyslový orgán stavovcov, ktorý zvuk rozpoznáva, „počuje“ ho mozog a centrálna nervová sústava. Zvukové vlny vníma mozog prostredníctvom vzplanutia nervových buniek v sluchovej časti centrálneho nervového systému. Ucho mení zvukové tlakové vlny z vonkajšieho sveta na signál nervových impulzov vysielaných do mozgu.

Zvuk sa zhromažďuje vo vonkajšej časti ucha. Tento zvukový tlak sa zosilňuje cez strednú časť ucha a u suchozemských živočíchov prechádza zo vzduchu do kvapalného prostredia. K zmene zo vzduchu na kvapalinu dochádza preto, lebo vzduch obklopuje hlavu a je obsiahnutý v zvukovode a strednom uchu, ale nie vo vnútornom uchu. Vnútorné ucho je duté, uložené v spánkovej kosti, najhustejšej kosti tela. Duté kanáliky vnútorného ucha sú vyplnené tekutinou a obsahujú zmyslový epitel, ktorý je posiaty vláskovými bunkami. Mikroskopické „vlásky“ týchto buniek sú štrukturálne bielkovinové vlákna, ktoré vyčnievajú do tekutiny. Vláskové bunky sú mechanoreceptory, ktoré pri stimulácii uvoľňujú chemický neurotransmiter. Zvukové vlny pohybujúce sa tekutinou tlačia na vlákna; ak sa vlákna dostatočne prehnú, spôsobí to, že vlasové bunky vystrelia. Týmto spôsobom sa zvukové vlny transformujú na nervové impulzy. Pri videní hrajú tyčinky a čapíky sietnice podobnú úlohu pri svetle ako vláskové bunky pri zvuku. Nervové impulzy sa šíria z ľavého a pravého ucha cez ôsmy lebečný nerv do oboch strán mozgového kmeňa a až do časti mozgovej kôry určenej pre zvuk. Táto sluchová časť mozgovej kôry sa nachádza v spánkovom laloku.

Časť ucha, ktorá je určená na vnímanie rovnováhy a polohy, tiež vysiela impulzy prostredníctvom ôsmeho lebečného nervu, VIII. nervu vestibulárnej časti. Tieto impulzy sa posielajú do vestibulárnej časti centrálneho nervového systému.
Ľudské ucho vo všeobecnosti počuje zvuky s frekvenciami od 20 Hz do 20 kHz (zvukový rozsah). Hoci si sluchový vnem vyžaduje neporušenú a funkčnú sluchovú časť centrálneho nervového systému, ako aj funkčné ucho, ľudská hluchota (extrémna necitlivosť na zvuk) sa najčastejšie vyskytuje v dôsledku abnormalít vnútorného ucha, a nie nervov alebo dráh centrálneho sluchového systému.

Netopiere majú rôzne veľkosti a tvary

Tvar vonkajšieho ucha cicavcov sa u rôznych druhov veľmi líši. Vnútorná štruktúra uší cicavcov (vrátane ľudských) je však veľmi podobná.

Vonkajšie ucho (ušnica, zvukovod, povrch bubienka)

Vonkajšie ucho je najvzdialenejšia časť ucha. Vonkajšie ucho zahŕňa ušnicu (nazývanú aj ušnica), zvukovod a najvrchnejšiu vrstvu ušného bubienka (nazývanú aj bubienková blana). U človeka a takmer všetkých stavovcov je jedinou viditeľnou časťou ucha vonkajšie ucho. Hoci slovo „ucho“ sa môže správne vzťahovať na ušnicu (chrupavkový výbežok pokrytý mäsom na oboch stranách hlavy), táto časť ucha nie je pre sluch nevyhnutná. Vonkajšie ucho síce pomáha dostať zvuk (a zavádza filtráciu), ale veľmi dôležitý je zvukovod. Ak nie je zvukovod otvorený, sluch je utlmený. Ušný maz (lekársky názov – cerumen) produkujú žľazy v koži vonkajšej časti zvukovodu. Táto koža vonkajšieho zvukovodu sa prikladá na chrupavku; tenšia koža hlbokého zvukovodu leží na kosti lebky. Iba hrubšia koža zvukovodu produkujúca cerumen má chĺpky. Vonkajšie ucho sa končí na najvrchnejšej vrstve bubienka. Bubienková blana sa bežne nazýva ušný bubienok.

Ľudské vonkajšie ucho a kultúra

Natiahnutie ušného lalôčika a rôzne piercingy chrupaviek

Ušnice majú tiež vplyv na vzhľad tváre. V západných spoločnostiach sa odstávajúce uši (prítomné asi u 5 % etnických Európanov) považujú za neatraktívne, najmä ak sú asymetrické. Prvá operácia na zmenšenie odstávajúcich uší bola v lekárskej literatúre publikovaná v roku 1881.

Uši sa tiež už tisíce rokov zdobia šperkami, tradične prepichovaním ušného lalôčika. V niektorých kultúrach sa ozdoby umiestňujú tak, aby sa ušné lalôčiky roztiahli a zväčšili, aby boli veľmi veľké. Odtrhnutie ušného lalôčika od váhy ťažkých náušníc alebo od traumatického ťahu náušnice (napríklad zachytením o vyzliekaný sveter) je pomerne časté. Oprava takéhoto roztrhnutia zvyčajne nie je náročná.

Kozmetický chirurgický zákrok na zmenšenie veľkosti alebo zmenu tvaru ucha sa nazýva otoplastika. V zriedkavých prípadoch, keď sa ušnica nevytvorí (atrézia) alebo je extrémne malá (mikrotózia), je možná rekonštrukcia ušnice. Najčastejšie sa na vytvorenie matrice ucha používa chrupavkový štep z inej časti tela (zvyčajne rebrová chrupavka) a na krytie kože sa používajú kožné štepy alebo rotačné chlopne. Ak sa však deti narodia bez ušnice na jednej alebo oboch stranách alebo ak je ušnica veľmi malá, zvukovod je zvyčajne malý alebo chýba a stredné ucho má často deformácie. Prvotný lekársky zásah je zameraný na posúdenie sluchu dieťaťa a stavu zvukovodu, ako aj stredného a vnútorného ucha. V závislosti od výsledkov vyšetrení sa postupne vykonáva rekonštrukcia vonkajšieho ucha, pričom sa plánuje aj prípadná oprava zvyšku ucha.

U ľudí a iných suchozemských živočíchov je stredné ucho (podobne ako zvukovod) normálne naplnené vzduchom. Na rozdiel od otvoreného zvukovodu však vzduch v strednom uchu nie je v priamom kontakte s atmosférou mimo tela. Eustachova trubica spája komoru stredného ucha so zadnou časťou hltana. Stredné ucho sa veľmi podobá špecializovanej prínosovej dutine, ktorá sa nazýva bubienková dutina; podobne ako prínosové dutiny je to dutá sliznicou vystlaná dutina v lebke, ktorá sa vetrá nosom. V mastoidnej časti ľudskej spánkovej kosti, ktorú možno nahmatať ako hrbolček v lebke za ušnicou, sa tiež nachádza vzduch, ktorý sa odvetráva cez stredné ucho.

Za normálnych okolností je Eustachova trubica uzavretá, ale pri prehĺtaní aj pri pozitívnom tlaku sa otvára. Pri štarte lietadla sa tlak okolitého vzduchu mení z vyššieho (na zemi) na nižší (na oblohe). Vzduch v strednom uchu sa s pribúdajúcou výškou lietadla rozširuje a tlačí sa do zadnej časti nosa a úst. Pri zostupe sa objem vzduchu v strednom uchu zmenšuje a vzniká mierny podtlak. Na vyrovnanie tlaku medzi stredným uchom a okolitou atmosférou pri klesaní lietadla je potrebné aktívne otváranie Eustachovej trubice. Potápač tiež zažíva túto zmenu tlaku, ale s väčšou rýchlosťou zmeny tlaku; aktívne otváranie Eustachovej trubice je potrebné častejšie, keď potápač ide hlbšie do vyššieho tlaku.

Usporiadanie bubienka a kostičiek účinne spája zvuk z otvoru zvukovodu do slimáka. Existuje niekoľko jednoduchých mechanizmov, ktoré spoločne zvyšujú tlak zvuku. Prvým je „hydraulický princíp“. Povrch bubienkovej membrány je mnohonásobne väčší ako povrch stapesovej nožičky. Zvuková energia dopadá na bubienkovú membránu a sústreďuje sa na menšiu nožičku. Druhým mechanizmom je „pákový princíp“. Rozmery kĺbových ušných kostičiek vedú k zvýšeniu sily pôsobiacej na stapesovu nožičku v porovnaní so silou pôsobiacou na kladivko. Tretí mechanizmus smeruje akustický tlak na jeden koniec slimáka a chráni druhý koniec pred zasiahnutím zvukovými vlnami. U ľudí sa tento proces nazýva „ochrana okrúhleho okna“ a podrobnejšie sa mu budeme venovať v nasledujúcej časti.

Abnormality, ako je zanesený ušný maz (oklúzia vonkajšieho zvukovodu), pevné alebo chýbajúce kostičky alebo diery v bubienkovej membráne, zvyčajne spôsobujú vodivú stratu sluchu. Vodivú stratu sluchu môže spôsobiť aj zápal stredného ucha, ktorý spôsobuje nahromadenie tekutiny v priestore normálne naplnenom vzduchom. Tympanoplastika je všeobecný názov operácie na opravu bubienka a kostičiek stredného ucha. Na obnovu neporušeného bubienka sa zvyčajne používajú štepy zo svalovej fascie. Niekedy sa na miesto poškodených ušných kostí umiestnia umelé kostičky alebo sa obnoví narušený reťazec kostičiek, aby mohol účinne viesť zvuk.

Vnútorné ucho: slimák, predsieň a polokruhové kanáliky

Vláskové bunky sú tiež receptorovými bunkami, ktoré sa podieľajú na rovnováhe, hoci vláskové bunky sluchového a vestibulárneho systému ucha nie sú totožné. Vestibulárne vláskové bunky sú stimulované pohybom tekutiny v polokruhovitých kanálikoch a v uterku a saku. Pálenie vestibulárnych vláskových buniek stimuluje vestibulárnu časť ôsmeho lebečného nervu.

Ušnica sa môže ľahko poškodiť. Keďže ide o chrupavku pokrytú kožou, ktorá má len tenkú výstelku zo spojivového tkaniva, hrubé zaobchádzanie s uchom môže spôsobiť taký opuch, ktorý ohrozí zásobovanie jeho kostry, ušnej chrupavky, krvou. Celá táto chrupavková kostra je vyživovaná tenkou krycou membránou nazývanou perichondrium (čo doslova znamená: okolo chrupavky). Akákoľvek tekutina z opuchu alebo krv z poranenia, ktorá sa hromadí medzi perichondriom a základnou chrupavkou, ohrozuje chrupavku, že bude odlúčená od zásobovania živinami. Ak časti chrupavky vyhladovejú a odumrú, ucho sa už nikdy nezahojí do normálneho tvaru. Namiesto toho sa chrupavka stane hrudkovitou a zdeformovanou. Zápasnícke ucho je jeden z termínov, ktorý sa používa na opis výsledku, pretože zápasenie je jedným z najčastejších spôsobov, ako k takémuto zraneniu dochádza. Karfiolové ucho je ďalší názov pre rovnaký stav, pretože zhrubnutá ušnica môže pripomínať túto zeleninu.

Ušný lalôčik je jediná časť ušnice, ktorá za normálnych okolností neobsahuje chrupavku. Namiesto toho je to klin tukového tkaniva (tuku) pokrytý kožou. Existuje mnoho normálnych variácií tvaru ušného lalôčika, ktorý môže byť malý alebo veľký. Trhliny ušného lalôčika sa dajú spravidla opraviť s dobrými výsledkami. Keďže sa v uchu nenachádza chrupavka, nehrozí deformácia v dôsledku krvnej zrazeniny alebo poranenia ušného lalôčika tlakom.

Iné poranenia vonkajšieho ucha sa vyskytujú pomerne často a môžu zanechať veľkú deformitu. Medzi najčastejšie patria poranenia o sklo, nože, uhryznutia, avulzie, rakovina, omrzliny a popáleniny.

Poranenia zvukovodu môžu spôsobiť petardy a iné výbušniny a mechanické poranenia spôsobené umiestnením cudzích telies do ucha. Ušný kanál sa najčastejšie traumatizuje sám pri čistení ucha. Vonkajšia časť zvukovodu sa opiera o telo hlavy; vnútorná časť sa opiera o otvor kostnatej lebky (tzv. vonkajší zvukovod). Koža je na každej časti veľmi odlišná. Vonkajšia koža je hrubá a obsahuje žľazy aj vlasové folikuly. Žľazy vytvárajú cerumen (nazývaný aj ušný maz). Koža vonkajšej časti sa trochu pohybuje, ak sa ušnica potiahne; je len voľne priložená k podkladovým tkanivám. Na druhej strane koža kostného kanála patrí nielen medzi najjemnejšiu kožu v ľudskom tele, ale je pevne priložená k pod ňou ležiacej kosti. Štíhly predmet používaný na čistenie cerumenu z ucha naslepo často vedie namiesto toho k zatlačeniu vosku dovnútra a kontakt s tenkou kožou kostného kanála môže viesť k poraneniu a krvácaniu.

Podobne ako úraz vonkajšieho ucha, aj úraz stredného ucha najčastejšie vzniká v dôsledku poranenia výbuchom a v dôsledku vniknutia cudzích predmetov do ucha. Zlomeniny lebky, ktoré prechádzajú cez časť lebky obsahujúcu štruktúry ucha (spánková kosť), môžu tiež spôsobiť poškodenie stredného ucha. Malé perforácie bubienkovej membrány sa zvyčajne zahoja samé, ale veľké perforácie si môžu vyžadovať transplantáciu. Posunutie kostičiek spôsobí vodivú stratu sluchu, ktorá sa dá odstrániť len chirurgicky. Násilné posunutie strmienka do vnútorného ucha môže spôsobiť senzorickú nervovú stratu sluchu, ktorá sa nedá upraviť ani vtedy, ak sa kostičky vrátia do správnej polohy. Keďže ľudská koža má vrchnú vodotesnú vrstvu odumretých kožných buniek, ktoré sa neustále odlučujú, posunutie častí bubienka alebo zvukovodu do stredného ucha alebo hlbších oblastí úrazom môže byť obzvlášť traumatizujúce. Ak sa posunutá koža nachádza v uzavretom priestore, odlúpený povrch sa v priebehu mesiacov a rokov nahromadí a vytvorí cholesteatóm. Koncovka -oma v tomto slove označuje v lekárskej terminológii nádor, a hoci cholesteatóm nie je novotvar (ale kožná cysta), môže sa zväčšovať a erodovať štruktúry ucha. Liečba cholesteatómu je chirurgická.

V industrializovanej spoločnosti existujú dva hlavné mechanizmy poškodenia vnútorného ucha, pričom oba poškodzujú vláskové bunky. Prvým je vystavenie zvýšenej hladine zvuku (hluková trauma) a druhým je vystavenie liekom a iným látkam (ototoxicita).

V roku 1972 americká agentúra EPA informovala Kongres, že najmenej 34 miliónov ľudí je denne vystavených hluku, ktorý môže viesť k výraznej strate sluchu. V celosvetovom meradle by sa táto exponovaná populácia v priemyselných krajinách počítala na stovky miliónov.

Porovnávacia anatómia uší primátov: Človek (vľavo) a makak barbarský (vpravo).

Už dlho je známe, že ľudia a aj iné primáty, ako napríklad šimpanz, gorila a orangutan, majú minimálne vyvinuté a nefunkčné ušné svaly, ktoré sú však stále dostatočne veľké na to, aby sa dali ľahko identifikovať. Tieto nevyvinuté svaly sú vestigiálne štruktúry. O svale, ktorý z akéhokoľvek dôvodu nedokáže pohybovať uchom, sa už nedá povedať, že by mal nejakú biologickú funkciu. Slúži to ako dôkaz homológie medzi príbuznými druhmi. U ľudí existuje variabilita týchto svalov, takže niektorí ľudia sú schopní pohybovať ušami rôznymi smermi a hovorí sa, že u iných je možné získať takýto pohyb opakovanými pokusmi.

Orgány sluchu bezstavovcov

Uši majú len stavovce, hoci mnohé bezstavovce dokážu zvuk zachytiť aj inými zmyslovými orgánmi. U hmyzu sa na počúvanie vzdialených zvukov používajú bubienkové orgány. Nie sú obmedzené na hlavu, ale môžu sa vyskytovať na rôznych miestach v závislosti od skupiny hmyzu.

Jednoduchšie štruktúry umožňujú článkonožcom detekovať zvuky v blízkom poli. Napríklad pavúky a šváby majú na nohách chĺpky, ktoré slúžia na detekciu zvuku. Aj húsenice môžu mať na tele chĺpky, ktoré vnímajú vibrácie a umožňujú im reagovať na zvuk.

Pinna (Helix, Antihelix, Tragus, Antitragus, Incisura anterior auris, ušný lalôčik) – Ušný kanál – Ušné svaly

Ušný bubienok (Umbo, Pars flaccida)

Labyrintová stena/medialita: Ovalné okienko – Okrúhle okienko – Sekundárna bubienková membrána – Výbežok tvárového kanála – Výbežok bubienkovej dutiny

Mastoidálna stena/posterior: Aditus k mastoidnému antrum – Pyramidálna eminencia

Tegmentálna stena/strecha: Epitympanický výklenok

Malleus (krčok mallea, horný väz mallea, bočný väz mallea, predný väz mallea) – Incus (horný väz incusu, zadný väz incusu) – Stapes (predný väz stapesu)

Stapedius – Tensor tympani

Kostená časť faryngotympanálnej trubice – Chrupavka faryngotympanálnej trubice (Torus tubarius)

Scala vestibuli – Helicotrema – Scala tympani – Modiolus – Cochlear cupula

Perilymfa – kochleárny akvadukt

Reissnerova/vestibulárna membrána – Bazilárna membrána

Endolymfa – Stria vascularis – Spirálny väz

Cortiho orgán: Stereocílie – Tektóriová membrána – Sulcus spiralis (externus, internus) – Špirálový limbus

Statický/translačný/vestibulárny/endolymfatický kanál: Utrikulum (makula) – sakula (makula, endolymfatický vak) – kinocílium – otolit – vestibulárny akvadukt – canalis reuniens

Kinetika/rotácie: Ampulárna kupula – Ampuly (Crista ampullaris)

Zápal stredného ucha – Mastoiditída (Bezoldov absces) – Cholesteatóm – Perforovaný bubienok

Otoskleróza – Porucha rovnováhy – Ménièrova choroba – Benígne paroxyzmálne polohové závrate – Vestibulárna neuronitída – Vertigo – Labyrintitída – Perilymfofistula – Syndróm dehiscencie horného kanála (SCDS)

Konduktívna strata sluchu – Senzorineurálna strata sluchu – Presbycusis

Kategórie
Psychologický slovník

Vtáky

Moderné vtáky sa vyznačujú perím, zobákom bez zubov, znášaním vajec s tvrdou škrupinou, vysokou rýchlosťou metabolizmu, štvorkomorovým srdcom a ľahkou, ale pevnou kostrou. Všetky vtáky majú krídla, ktoré sa vyvinuli z predných končatín, a väčšina z nich dokáže lietať, až na niektoré výnimky, medzi ktoré patria bežce, tučniaky a množstvo rozmanitých endemických ostrovných druhov. Vtáky majú tiež jedinečný tráviaci a dýchací systém, ktorý je vysoko prispôsobený letu. Niektoré druhy vtákov, najmä vtákovité a papagáje, patria medzi najinteligentnejšie živočíšne druhy; u mnohých druhov vtákov sa pozorovala výroba a používanie nástrojov a u mnohých spoločenských druhov sa prejavuje kultúrny prenos vedomostí medzi generáciami.

Mnohé druhy sa každoročne sťahujú na dlhé vzdialenosti a mnohé ďalšie sa sťahujú nepravidelne na kratšie vzdialenosti. Vtáky sú spoločenské; komunikujú pomocou vizuálnych signálov, volania a spevu a zúčastňujú sa na spoločenskom správaní vrátane kooperatívneho rozmnožovania a lovu, kŕdľov a prenasledovania predátorov. Prevažná väčšina vtáčích druhov je spoločensky monogamná, zvyčajne na jedno hniezdne obdobie, niekedy na roky, ale zriedkavo na celý život. Iné druhy majú rozmnožovacie systémy polygynné („veľa samíc“) alebo zriedkavo polyandrické („veľa samcov“). Vajíčka sa zvyčajne znášajú do hniezda a inkubujú ich rodičia. Väčšina vtákov má po vyliahnutí dlhšie obdobie rodičovskej starostlivosti.

Klasifikácia vtákov je sporná otázka. Fylogenéza a klasifikácia vtákov od Sibleyho a Ahlquista (1990) je prelomovým dielom v oblasti klasifikácie vtákov, hoci sa o nej často diskutuje a neustále sa reviduje. Zdá sa, že väčšina dôkazov naznačuje, že zaradenie radov je presné, ale vedci sa nezhodujú v otázke vzťahov medzi samotnými radmi; do problému boli zapojené dôkazy z anatómie moderných vtákov, fosílií a DNA, ale nedošlo k žiadnemu pevnému konsenzu. V poslednom čase nové fosílne a molekulárne dôkazy poskytujú čoraz jasnejší obraz o vývoji moderných vtáčích radov.

Moderné vtáčie poriadky: Klasifikácia

Mnohé druhy vtákov vytvorili hniezdne populácie v oblastiach, do ktorých ich zaviedol človek. Niektoré z týchto introdukcií boli zámerné; napríklad bažant krúžkovaný bol introdukovaný po celom svete ako lovný vták. Iné boli náhodné, ako napríklad usídlenie voľne žijúcich papagájov mníchov v niekoľkých severoamerických mestách po ich úteku zo zajatia. Niektoré druhy, vrátane volavky popolavej, karakary žltohlavej a gala, sa prirodzene rozšírili ďaleko za hranice svojich pôvodných areálov, pretože poľnohospodárske postupy vytvorili vhodné nové biotopy.

Vonkajšia anatómia vtáka: 1 zobák, 2 hlava, 3 dúhovka, 4 zrenica, 5 plášť, 6 menšie krovky, 7 lopatky, 8 stredné krovky, 9 tretinové krovky, 10 zadok, 11 primárne krovky, 12 prieduch, 13 stehno, 14 tarzálny kĺb, 15 tarzus, 16 chodidlo, 17 tibia, 18 brucho, 19 boky, 20 hruď, 21 hrdlo, 22 krk

V porovnaní s ostatnými stavovcami majú vtáky telesný plán, ktorý vykazuje mnoho nezvyčajných prispôsobení, väčšinou na uľahčenie letu.

Kostra sa skladá z veľmi ľahkých kostí. Majú veľké dutiny naplnené vzduchom (tzv. pneumatické dutiny), ktoré sú spojené s dýchacím systémom. Kosti lebky sú zrastené a nevykazujú lebečné švy. Očnice sú veľké a oddelené kostenou priehradkou. Chrbtica má krčnú, hrudnú, bedrovú a chvostovú oblasť, pričom počet krčných (šijových) stavcov je veľmi variabilný a najmä ohybný, ale pohyb je obmedzený v predných hrudných stavcoch a chýba v neskorších stavcoch. Niekoľko posledných stavcov je zrastených s panvou a tvoria synsacrum. Rebrá sú sploštené a hrudná kosť je kýlovitá pre uchytenie letových svalov s výnimkou nelietavých vtákov. Predné končatiny sú upravené na krídla.

Podobne ako plazy, aj vtáky sú primárne urikotické, to znamená, že ich obličky odvádzajú dusíkaté odpadové látky z krvného obehu a vylučujú ich vo forme kyseliny močovej namiesto močoviny alebo amoniaku cez močovody do čreva. Vtáky nemajú močový mechúr ani vonkajší otvor močovej trubice a kyselina močová sa vylučuje spolu s výkalmi ako polotuhý odpad. Vtáky, ako napríklad kolibríky, však môžu byť fakultatívne amoniakálne a väčšinu dusíkatých odpadov vylučujú ako amoniak. Vylučujú aj kreatín, a nie kreatinín ako cicavce. Tento materiál, ako aj výstup z čriev, vychádza z kloaky vtákov. Kloaka je viacúčelový otvor: vylučujú sa cez ňu odpady, vtáky sa cez ňu pária a samice z nej znášajú vajíčka. Okrem toho mnohé druhy vtákov vyvrhujú pelety. Tráviaca sústava vtákov je jedinečná, s obilím na uskladnenie a žalúdkom, ktorý obsahuje prehltnuté kamene na mletie potravy, aby sa nahradil nedostatok zubov. Väčšina vtákov je vysoko prispôsobená na rýchle trávenie, ktoré im pomáha pri lete. Niektoré sťahovavé vtáky sa prispôsobili tak, že počas migrácie využívajú bielkoviny z mnohých častí tela vrátane bielkovín z čriev ako dodatočnú energiu.

Vtáky majú jeden z najzložitejších dýchacích systémov zo všetkých skupín živočíchov. Pri vdychovaní 75 % čerstvého vzduchu obchádza pľúca a prúdi priamo do zadného vzdušného vaku, ktorý vychádza z pľúc, spája sa so vzdušnými priestormi v kostiach a napĺňa ich vzduchom. Zvyšných 25 % vzduchu sa dostáva priamo do pľúc. Keď vták vydychuje, použitý vzduch odchádza z pľúc a uložený čerstvý vzduch zo zadného vzduchového vaku sa súčasne vtláča do pľúc. Pľúca vtáka tak dostávajú stály prísun čerstvého vzduchu počas vdychu aj výdychu. Zvuk sa vydáva pomocou syrinxu, svalovej komory s viacerými bubienkami, ktorá sa oddeľuje od dolného konca priedušnice. Srdce vtákov má štyri komory a pravý oblúk aorty je zdrojom systémového obehu (na rozdiel od cicavcov, u ktorých je to ľavý oblúk). Do postkavy sa dostáva krv z končatín cez portálny systém obličiek. Na rozdiel od cicavcov majú červené krvinky vtákov jadro.

Nervová sústava je vzhľadom na veľkosť vtáka veľká. Najvyvinutejšia časť mozgu riadi funkcie súvisiace s letom, mozoček koordinuje pohyb a mozgovňa riadi vzorce správania, navigáciu, párenie a stavbu hniezda. Väčšina vtákov má slabý čuch až na významné výnimky, medzi ktoré patria kivi, supy Nového sveta a tuberózy. Vtáčí zrakový systém je zvyčajne vysoko vyvinutý. Vodné vtáky majú špeciálne ohybné šošovky, ktoré umožňujú videnie vo vzduchu a vo vode. Niektoré druhy majú aj dvojitú foveu. Vtáky sú tetrachromatické, majú v oku čapíkové bunky citlivé na ultrafialové (UV) žiarenie, ako aj zelené, červené a modré bunky. To im umožňuje vnímať ultrafialové svetlo, ktoré sa podieľa na dvorení. Mnohé vtáky vykazujú v ultrafialovom svetle vzory na perí, ktoré sú pre ľudské oko neviditeľné; niektoré vtáky, ktorých pohlavia sa voľným okom javia ako podobné, sa odlišujú prítomnosťou ultrafialových reflexných škvŕn na perí. Samce sýkoriek modrých majú ultrafialovú reflexnú škvrnu na temene, ktorá sa prejavuje pri dvorení postojom a zdvíhaním peria na zátylku. Ultrafialové svetlo sa využíva aj pri hľadaní potravy – ukázalo sa, že poštolky hľadajú korisť pomocou UV reflexných stôp moču, ktoré zanechávajú hlodavce na zemi. Očné viečka vtákov sa pri žmurkaní nepoužívajú. Namiesto toho sa oko maže nikotínovou membránou, tretím viečkom, ktoré sa pohybuje horizontálne. Nikitujúca membrána tiež pokrýva oko a u mnohých vodných vtákov funguje ako kontaktná šošovka. Vtáčia sietnica má vejárovitý systém zásobovania krvou, ktorý sa nazýva pecten. Väčšina vtákov nemôže hýbať očami, hoci existujú výnimky, ako napríklad kormorán veľký. Vtáky s očami po stranách hlavy majú široké zorné pole, zatiaľ čo vtáky s očami na prednej strane hlavy, ako napríklad sovy, majú binokulárne videnie a dokážu odhadnúť hĺbku ostrosti. Vtáčie ucho nemá vonkajšie ušnice, ale je pokryté perím, hoci u niektorých vtákov, ako sú sovy Asio, Bubo a Otus, tieto perá tvoria chumáče, ktoré pripomínajú uši. Vnútorné ucho má kochleu, ale nie je špirálovité ako u cicavcov.

Niekoľko druhov je schopných používať chemickú obranu proti predátorom; niektoré druhy rodu Procellariiformes dokážu proti agresorovi vypúšťať nepríjemný olej a niektoré druhy pitohuis z Novej Guiney majú v koži a perí silný neurotoxín.

U takmer všetkých druhov vtákov sa pohlavie jedinca určuje pri oplodnení. Jedna z nedávnych štúdií však preukázala určenie pohlavia v závislosti od teploty u austrálskych korytnačiek krovinných, u ktorých vyššie teploty počas inkubácie viedli k vyššiemu pomeru pohlavia samíc a samcov.

Perie, operenie a šupiny

Opeřenie africkej sovy umožňuje jej splynutie s okolím.

Perie je charakteristickým znakom vtákov (hoci sa vyskytuje aj u niektorých dinosaurov, ktoré sa v súčasnosti nepovažujú za pravé vtáky). Uľahčujú let, poskytujú izoláciu, ktorá pomáha pri termoregulácii, a používajú sa na predvádzanie, maskovanie a signalizáciu. Existuje niekoľko druhov peria, pričom každé slúži na iné účely. Perie je epidermálny výrastok pripojený ku koži a vzniká len v špecifických dráhach kože nazývaných pteryly. Vzor rozmiestnenia týchto perových dráh (pterylóza) sa používa v taxonómii a systematike. Usporiadanie a vzhľad peria na tele, nazývané operenie, sa môže v rámci druhu líšiť podľa veku, sociálneho postavenia a pohlavia.

Opeřenie sa pravidelne mení; štandardné opeření vtáka, ktorý sa po hniezdení vyliahol, sa nazýva „nehniezdne“ opeření alebo – v Humphrey-Parkesovej terminológii – „základné“ opeření; hniezdne opeření alebo variácie základného opeření sa v Humphrey-Parkesovom systéme nazývajú „alternatívne“ opeření. Preperovanie je u väčšiny druhov každoročné, hoci niektoré môžu mať dve preperovania ročne a veľké dravce môžu preperovať len raz za niekoľko rokov. Vzory preperovania sa u jednotlivých druhov líšia. U vrabcovitých vtákov sa letové perá vymieňajú postupne, pričom ako prvé sa vymieňa najvnútornejšie primárne perie. Po výmene piateho alebo šiesteho primárneho peria sa začnú vymieňať krajné terciárne perá. Po výmene najvnútornejších terciárnych perí sa začnú vymieňať sekundárne perá počnúc najvnútornejšími a pokračuje sa k vonkajším perám (odstredivé vymieňanie). Väčšie primárne perá sa lúpajú synchrónne s primárnymi, ktoré sa prekrývajú. Malý počet druhov, ako sú kačice a husi, stráca všetky letové perá naraz a dočasne sa stáva nelietavým. Všeobecne platí, že chvostové perá sa vypelichávajú a nahrádzajú počnúc najvnútornejším párom. U čeľade Phasianidae sa však vyskytuje centripetálna zmena chvostového peria. Centrifugálna výmena chvostových pier je modifikovaná u ďatľov a stromových vtákov v tom zmysle, že sa začína druhým najvnútornejším párom pier a končí sa stredným párom pier, takže vták si zachováva funkčný stúpajúci chvost. Všeobecný vzor pozorovaný u vtákopyskov je taký, že primárne perá sa nahrádzajú smerom von, druhé perá smerom dovnútra a chvost od stredu smerom von. Pred hniezdením získavajú samice väčšiny druhov vtákov holú liahnu stratou peria v blízkosti brucha. Koža je tam dobre zásobená krvnými cievami a pomáha vtákovi pri inkubácii.

Perie si vyžaduje údržbu a vtáky si ho denne upravujú, pričom tomu venujú v priemere približne 9 % svojho denného času. Zobák slúži na čistenie peria od cudzích častíc a na nanášanie voskových výlučkov z uropygiálnej žľazy; tieto výlučkové látky chránia pružnosť peria a pôsobia ako antimikrobiálne činidlo, ktoré bráni rastu baktérií rozkladajúcich perie. Na odstraňovanie parazitov z peria sa môžu používať aj mravčie sekréty, ktoré vtáky prijímajú prostredníctvom správania známeho ako mravčenie.

Šupiny vtákov sa skladajú z rovnakého keratínu ako zobáky, pazúry a ostrohy. Nachádzajú sa najmä na prstoch na nohách a metatarzoch, ale u niektorých vtákov sa môžu nachádzať aj ďalej na členku. Väčšina vtáčích šupín sa výrazne neprekrýva, s výnimkou prípadov rybárikov a ďatľov.
Predpokladá sa, že šupiny vtákov sú homologické so šupinami plazov a cicavcov.

Nepokojný muchárik počas letu s mávaním

Väčšina vtákov je denných, ale niektoré druhy vtákov, ako napríklad mnohé druhy sov a nočných vtákov, sú nočné alebo krepuskulárne (aktívne počas súmraku) a mnohé pobrežné bahniaky sa kŕmia počas prílivu a odlivu, vo dne alebo v noci.

Prispôsobenie zobákov na kŕmenie

Potrava vtákov je pestrá a často zahŕňa nektár, ovocie, rastliny, semená, zdochliny a rôzne drobné živočíchy vrátane iných vtákov. Keďže vtáky nemajú zuby, ich tráviaci systém je prispôsobený na spracovanie nerozhryzených potravín, ktoré sa prehĺtajú celé.

Vtáky, ktoré využívajú mnoho stratégií na získavanie potravy alebo sa živia rôznymi potravnými položkami, sa nazývajú generalisti, zatiaľ čo iné, ktoré sústreďujú čas a úsilie na konkrétne potravné položky alebo majú jedinú stratégiu na získavanie potravy, sa považujú za špecialistov. Stratégie vtákov pri získavaní potravy sa líšia podľa druhu. Mnohé vtáky zbierajú hmyz, bezstavovce, ovocie alebo semená. Niektoré lovia hmyz náhlym útokom z vetvy. Nektárom sa živia okrem iného kolibríky, slniečkovité vtáky, loriovia a loríkovia, ktorí majú špeciálne prispôsobené štetinové jazyky a v mnohých prípadoch aj zobáky navrhnuté tak, aby sa hodili na spolupôsobiace kvety. Kivi a pobrežníky s dlhým zobákom sledujú bezstavovce; rôznorodá dĺžka zobáka a spôsoby kŕmenia pobrežníkov vedú k oddeleniu ekologických ník. Loky, potápavé kačice, tučniaky a alky prenasledujú svoju korisť pod vodou, pričom na pohon používajú krídla alebo nohy, zatiaľ čo vzdušné dravce, ako sú lastovičky, rybáriky a rybáriky, sa za svojou korisťou ponárajú. Plameniaky, tri druhy prion a niektoré kačice sa živia filtrami. Husi a kačice potápavé sú predovšetkým pastiermi.

Niektoré druhy vrátane fregát, čajok a chochlačiek sa venujú kleptoparazitizmu, teda kradnutiu potravy iným vtákom. Predpokladá sa, že kleptoparazitizmus je skôr doplnkom potravy získanej lovom, než významnou súčasťou potravy niektorého druhu; v štúdii o fregatách veľkých kradnúcich maskám sa odhaduje, že fregaty kradli najviac 40 % potravy a v priemere ukradli len 5 %. Ostatné vtáky sú mrchožrúti; niektoré z nich, ako napríklad supy, sú špecializovaní požierači zdochlín, zatiaľ čo iné, ako napríklad čajky, krkavcovité vtáky alebo iné dravé vtáky, sú oportunisti.

Vodu potrebujú mnohé vtáky, hoci spôsob vylučovania a nedostatok potných žliaz znižuje ich fyziologické nároky. Niektoré púštne vtáky môžu svoju potrebu vody získať výlučne z vlhkosti v potrave. Môžu mať aj iné adaptácie, ako napríklad umožnenie zvýšenia telesnej teploty, čím sa šetrí strata vlhkosti pri evaporačnom ochladzovaní alebo dýchaní. Morské vtáky môžu piť morskú vodu a vo vnútri hlavy majú soľné žľazy, ktoré odstraňujú prebytočnú soľ z nozdier.

Niektoré druhy vtákov podnikajú kratšie migrácie a cestujú len tak ďaleko, aby sa vyhli zlému počasiu alebo získali potravu. Takouto skupinou sú napríklad boreálne pinky, ktoré sa v jednom roku bežne vyskytujú na určitom mieste a v ďalšom roku sa tam nenachádzajú. Tento typ migrácie je zvyčajne spojený s dostupnosťou potravy. Druhy môžu cestovať aj na kratšie vzdialenosti v časti svojho areálu, pričom jedince z vyšších zemepisných šírok cestujú do existujúceho areálu konspecifických druhov; iné druhy podnikajú čiastočné migrácie, keď migruje len časť populácie, zvyčajne samice a subdominantné samce. Čiastočná migrácia môže v niektorých regiónoch tvoriť veľké percento migračného správania vtákov; v Austrálii sa prieskumami zistilo, že 44 % vtákov, ktoré nie sú vtáky sťahovavé, a 32 % vtákov sťahovavých je čiastočne migračných. Výšková migrácia je forma migrácie na krátke vzdialenosti, pri ktorej vtáky trávia hniezdnu sezónu vo vyšších nadmorských výškach a počas suboptimálnych podmienok sa presúvajú do nižších. Najčastejšie je vyvolaná zmenami teplôt a zvyčajne k nej dochádza vtedy, keď sa aj bežné teritóriá stanú nehostinnými v dôsledku nedostatku potravy. 80 Niektoré druhy môžu byť aj nomádske, nedržia žiadne pevné teritórium a presúvajú sa podľa počasia a dostupnosti potravy. Papagáje ako čeľaď nie sú v drvivej väčšine ani sťahovavé, ani usadlé, ale považujú sa buď za disperzné, irruptívne, nomádske, alebo podnikajú malé a nepravidelné migrácie[81].

Prekvapujúce prejavy slnečnice napodobňujú veľkého dravca.

Vtáky sa dorozumievajú predovšetkým vizuálnymi a zvukovými signálmi. Signály môžu byť medzidruhové (medzi druhmi) a vnútrodruhové (v rámci druhu).

Vtáky niekedy používajú operenie na hodnotenie a potvrdenie sociálnej dominancie,[85] na preukázanie stavu v rozmnožovaní u pohlavne vybraných druhov alebo na výhražné prejavy, ako je to v prípade slnečnice, ktorá napodobňuje veľkého dravca, aby odohnala jastraba a ochránila mladé mláďatá.[86] Rozdiely v operení umožňujú aj identifikáciu vtákov, najmä medzi jednotlivými druhmi. Vizuálna komunikácia medzi vtákmi môže zahŕňať aj ritualizované prejavy, ktoré sa vyvinuli z nesignalizovaných činností, ako je napríklad preliezanie, úprava polohy peria, ďobanie alebo iné správanie. Tieto prejavy môžu signalizovať agresiu alebo podriadenosť alebo môžu prispievať k vytváraniu párových väzieb. Najprepracovanejšie prejavy sa vyskytujú počas pytačiek, kde sa „tance“ často tvoria zo zložitých kombinácií mnohých možných pohybov;[87] od kvality takýchto prejavov môže závisieť reprodukčný úspech samcov[88].

Volanie spevavca domového, bežného severoamerického spevavca

Vtáčie volania a spevy, ktoré sa vytvárajú v syrinxe, sú hlavným prostriedkom, ktorým vtáky komunikujú pomocou zvuku. Táto komunikácia môže byť veľmi zložitá; niektoré druhy môžu používať obe strany syrinxu nezávisle, čo umožňuje súčasné vydávanie dvoch rôznych piesní.
Volania sa používajú na rôzne účely, vrátane priťahovania partnerov, hodnotenia potenciálnych partnerov,[89] vytvárania väzieb, nárokovania si a udržiavania teritórií, identifikácie iných jedincov (napríklad keď rodičia hľadajú mláďatá v kolóniách alebo keď sa pár spája na začiatku hniezdneho obdobia)[90] a varovania iných vtákov pred potenciálnymi predátormi, niekedy s konkrétnymi informáciami o povahe hrozby[91]. niektoré vtáky používajú na zvukovú komunikáciu aj mechanické zvuky. Novozélandské bekasíny Coenocorypha poháňajú vzduch cez perie,[92] ďatle bubnujú teritoriálne a kakadu palmový používa na bubnovanie nástroje[93].

Flocking a iné združenia

Najpočetnejší druh vtákov, kvíčaly červenokrídle,[94] tvoria obrovské kŕdle – niekedy až desaťtisícové.

Vtáky niekedy vytvárajú združenia aj s nepôvodnými druhmi. Morské vtáky, ktoré sa potápajú, sa spájajú s delfínmi a tuniakmi, ktoré vytláčajú na hladinu vyplavené ryby.[97] Roháče majú mutualistický vzťah s mongolmi trpasličími, v ktorom sa spoločne živia a navzájom sa varujú pred blízkymi dravcami a inými predátormi.[98]

Mnohé vtáky, ako napríklad tento plameniak americký, si počas spánku schovávajú hlavu na chrbát.

Vysokú rýchlosť metabolizmu vtákov počas aktívnej časti dňa dopĺňa odpočinok v ostatných obdobiach. Spiace vtáky často využívajú typ spánku známy ako bdelý spánok, pri ktorom sa obdobia odpočinku striedajú s rýchlymi „pohľadmi“ s otvorenými očami, čo im umožňuje citlivo reagovať na vyrušovanie a umožňuje rýchly únik pred hrozbami [99].[100] Predpokladá sa, že môžu existovať určité druhy spánku, ktoré sú možné aj počas letu.“[101] Niektoré vtáky tiež preukázali schopnosť upadnúť do spánku s pomalými vlnami jednej mozgovej hemisféry naraz. Vtáky majú tendenciu uplatňovať túto schopnosť v závislosti od svojej polohy vzhľadom na vonkajšiu časť kŕdľa. To môže umožniť oku oproti spiacej hemisfére zostať ostražité voči predátorom tým, že sleduje vonkajšie okraje kŕdľa. Táto adaptácia je známa aj u morských cicavcov. 102] Spoločné hniezdenie je bežné, pretože znižuje straty telesného tepla a znižuje riziká spojené s predátormi. 103] Miesta hniezdenia sa často vyberajú s ohľadom na termoreguláciu a bezpečnosť. 104

Mnohé spiace vtáky skláňajú hlavu nad chrbát a zastrkujú zobák do chrbtového peria, iné si ho však dávajú medzi prsné perá. Mnohé vtáky odpočívajú na jednej nohe, zatiaľ čo niektoré si môžu nohy stiahnuť do peria, najmä v chladnom počasí. Ostriežovité vtáky majú šľachový blokovací mechanizmus, ktorý im pomáha udržať sa na bidle, keď spia. Mnohé pozemné vtáky, napríklad prepelice a bažanty, hniezdia na stromoch. Niekoľko papagájov rodu Loriculus hniezdi zavesených dolu hlavou. 105 Niektoré kolibríky prechádzajú do nočného stavu torporu sprevádzaného znížením rýchlosti metabolizmu. 106 Táto fyziologická adaptácia sa prejavuje u takmer stovky ďalších druhov, vrátane sovy nočnej, nočných vtákov a lelkov. Jeden druh, chochláč obyčajný, dokonca prechádza do stavu hibernácie.[107] Vtáky nemajú potné žľazy, ale môžu sa ochladzovať presunom do tieňa, státím vo vode, dýchaním, zväčšovaním povrchu tela, chvením hrdla alebo špeciálnym správaním, ako je urohidróza, aby sa ochladili.

Podobne ako ostatné druhy z tejto čeľade má samec rajského vtáka Raggiana prepracované hniezdne operanie, ktorým chce zapôsobiť na samičky.[108]

Deväťdesiatpäť percent vtáčích druhov je spoločensky monogamných. Tieto druhy tvoria páry minimálne počas celej hniezdnej sezóny alebo – v niektorých prípadoch – počas niekoľkých rokov alebo až do smrti jedného z partnerov.[109] Monogamia umožňuje dvojpárovú starostlivosť, ktorá je dôležitá najmä pre druhy, u ktorých samice potrebujú pomoc samcov pri úspešnej výchove mláďat.[110] Medzi mnohými spoločensky monogamnými druhmi je bežná mimopárová kopulácia (nevera).[111] Takéto správanie sa zvyčajne vyskytuje medzi dominantnými samcami a samicami spárovanými s podriadenými samcami, ale môže byť aj výsledkom vynútenej kopulácie u kačíc a iných anatidov. 112] Pre samice je možným prínosom mimopárovej kopulácie získanie lepších génov pre jej potomstvo a poistenie sa proti možnosti neplodnosti u jej partnera. 113] Samce druhov, ktoré sa zapájajú do mimopárových kopulácií, si starostlivo strážia svoje partnerky, aby zabezpečili rodičovstvo potomstva, ktoré vychovávajú. 114

Vyskytujú sa aj iné systémy párenia vrátane polygýnie, polyandrie, polygamie, polygynandrie a promiskuity. Polygamné systémy rozmnožovania vznikajú vtedy, keď sú samice schopné vychovávať potomstvo bez pomoci samcov. Niektoré druhy môžu v závislosti od okolností používať viac ako jeden systém.

Hniezdenie zvyčajne zahŕňa určitú formu dvorenia, ktorú zvyčajne predvádza samec.Väčšina prejavov je pomerne jednoduchá a zahŕňa určitý druh spevu. Niektoré prejavy sú však pomerne komplikované. V závislosti od druhu môžu zahŕňať bubnovanie krídlami alebo chvostom, tancovanie, vzdušné lety alebo spoločný lekking. Samice sú vo všeobecnosti tými, ktoré riadia výber partnera,[116] hoci u polyandrických falárov je to opačne: jednoduchšie samce si vyberajú pestro sfarbené samice.[117] Námluvy, kŕmenie, účtovanie a alopreening sa bežne vykonávajú medzi partnermi, spravidla po tom, ako sa vtáky spárujú a spárujú.

Teritóriá, hniezdenie a inkubácia

Samce tkáčov zlatohrdlých si stavajú zložité závesné hniezda z trávy.

Všetky vtáky znášajú amniotické vajcia s tvrdou škrupinou, ktorá sa skladá prevažne z uhličitanu vápenatého. Druhy hniezdiace v dierach a norách znášajú zvyčajne biele alebo svetlé vajcia, zatiaľ čo druhy hniezdiace v otvorených hniezdach znášajú maskované vajcia. Z tohto vzorca však existuje mnoho výnimiek; noční vtáci hniezdiaci na zemi majú bledé vajcia a kamufláž im namiesto toho zabezpečuje operenie. Druhy, ktoré sú obeťami parazitov na mláďatách, majú rôzne farby vajec, aby sa zvýšila šanca spozorovať vajce parazita, čo núti samičky parazitov prispôsobiť svoje vajcia vajciam hostiteľa[119].

Vtáčie vajcia sa zvyčajne znášajú do hniezda. Väčšina druhov si vytvára trochu komplikované hniezda, ktoré môžu mať podobu šálok, kupolí, dosiek, škrabancov, kopcov alebo nôr.Niektoré vtáčie hniezda sú však veľmi primitívne, napríklad hniezda albatrosov sú len škrabance na zemi. Väčšina vtákov si stavia hniezda na chránených, skrytých miestach, aby sa vyhli predátorom, ale veľké alebo koloniálne vtáky – ktoré sú schopnejšie obrany – si môžu stavať otvorenejšie hniezda. Pri stavbe hniezda niektoré druhy vyhľadávajú rastlinnú hmotu z rastlín s toxínmi znižujúcimi výskyt parazitov, aby zlepšili prežitie mláďat,[121] a na izoláciu hniezda sa často používa perie. 120 Niektoré druhy vtákov nemajú hniezda; lastovička obyčajná hniezdiaca na útesoch kladie vajcia na holú skalu a samce tučniaka cisárskeho držia vajcia medzi telom a nohami. Absencia hniezd je obzvlášť častá u druhov hniezdiacich na zemi, kde sú čerstvo vyliahnuté mláďatá predkociálne.

Hniezdo penice východnej, na ktorom parazitoval vták hnedohlavý

Rodičovská starostlivosť a vyletenie

Mláďatá sa v čase vyliahnutia vyvíjajú od bezmocných až po samostatné, v závislosti od druhu. Bezmocné mláďatá sa označujú ako altriciálne a rodia sa malé, slepé, nepohyblivé a nahé; mláďatá, ktoré sú po vyliahnutí pohyblivé a operené, sa označujú ako prekociálne. Altriciálne mláďatá potrebujú pomoc pri termoregulácii a musia byť chované dlhšie ako prekociálne mláďatá. Mláďatá, ktoré sa nenachádzajú ani v jednom z týchto extrémov, môžu byť poloprekociálne alebo poloaltríciálne.

Samička kolibríka Calliope kŕmi dospelé mláďatá

Dĺžka a charakter rodičovskej starostlivosti sa v jednotlivých radoch a druhoch veľmi líši. Na jednej strane sa rodičovská starostlivosť končí vyliahnutím mláďaťa; čerstvo vyliahnuté mláďa sa samo vyhrabáva z hniezdnej kopy bez pomoci rodičov a dokáže sa o seba okamžite postarať[124]. Na druhej strane majú mnohé morské vtáky dlhšie obdobie rodičovskej starostlivosti, najdlhšie u fregatky veľkej, ktorej mláďatá sa liahnu až šesť mesiacov a rodičia ich kŕmia až ďalších 14 mesiacov[125].

U niektorých druhov sa o mláďatá a mláďatá starajú obaja rodičia, u iných je táto starostlivosť len na jednom pohlaví. U niektorých druhov pomáhajú s výchovou mláďat aj iní príslušníci toho istého druhu – zvyčajne blízki príbuzní hniezdiaceho páru, napríklad potomkovia z predchádzajúcich znášok.[126] Takéto aloparentálne rodičovstvo je bežné najmä u čeľade Corvida, do ktorej patria také vtáky ako pravé vrany, austrálske straky a víly,[127] ale bolo pozorované aj u tak odlišných druhov, ako sú strelec a kane červené. Medzi väčšinou skupín zvierat je rodičovská starostlivosť samcov zriedkavá. U vtákov je však celkom bežná – viac ako u ktorejkoľvek inej triedy stavovcov. Hoci obrana teritória a hniezdiska, inkubácia a kŕmenie mláďat sú často spoločné úlohy, niekedy dochádza k deľbe práce, pri ktorej jeden z partnerov preberá všetky alebo väčšinu konkrétnych povinností[128].

Moment vyletenia mláďat sa výrazne líši. Mláďatá murárikov synthliboramphus, podobne ako murárik starobylý, opúšťajú hniezdo v noci po vyliahnutí a nasledujú svojich rodičov do mora, kde sú vychovávané mimo dosahu suchozemských predátorov.[129] Niektoré iné druhy, ako napríklad kačice, presúvajú svoje mláďatá z hniezda v ranom veku. U väčšiny druhov mláďatá opúšťajú hniezdo tesne pred tým, ako sú schopné lietať, alebo krátko po tom, ako sú schopné lietať. Mláďatá albatrosov opúšťajú hniezdo samé a nedostávajú žiadnu ďalšiu pomoc, zatiaľ čo iné druhy pokračujú v určitom prikrmovaní aj po vyletení[130]. Mláďatá môžu nasledovať svojich rodičov aj počas ich prvej migrácie[131].

Trsteniarik pestujúci kukučku obyčajnú, parazita na mláďatách.

Parazitizmus na mláďatách, pri ktorom znáška zanecháva svoje vajíčka v mláďatách iného jedinca, je medzi vtákmi bežnejší ako u iných druhov organizmov.[132] Po tom, čo parazitujúci vták znesie vajíčka do hniezda iného vtáka, hostiteľ ich často prijme a vychová na úkor vlastných mláďat. Vývržky môžu byť buď obligátne vývržky, ktoré musia klásť vajíčka do hniezd iných druhov, pretože nie sú schopné vychovať vlastné mláďatá, alebo neobligátne vývržky, ktoré niekedy kladú vajíčka do hniezd konspecifických druhov, aby zvýšili svoju reprodukčnú produkciu, hoci by mohli vychovať vlastné mláďatá.[133] Obligátnymi parazitmi je sto druhov vtákov vrátane medozvestiek, ikterov, estrildidných pěnkav a kačíc, hoci najznámejšie sú kukučky. niektoré brojlerové parazity sú prispôsobené na to, aby sa vyliahli skôr ako mláďatá hostiteľa, čo im umožňuje zničiť hostiteľove vajcia ich vytlačením z hniezda alebo zabiť hostiteľove mláďatá; tým sa zabezpečí, že všetka potrava prinesená do hniezda sa dostane k parazitickým mláďatám[134].

Skua južná (vľavo) je univerzálny dravec, ktorý loví vajcia iných vtákov, ryby, zdochliny a iné zvieratá. Táto skua sa pokúša vytlačiť tučniaka adelského (vpravo) z jeho hniezda

Vtáky zaujímajú širokú škálu ekologických pozícií.Niektoré vtáky sú generalisti, iné sú vysoko špecializované z hľadiska svojich životných podmienok alebo potravných nárokov. Dokonca aj v rámci jedného biotopu, ako je les, sa niky obsadené rôznymi druhmi vtákov líšia, pričom niektoré druhy sa živia v korunách lesov, iné pod korunami a ďalšie na lesnej pôde. Lesné vtáky môžu byť hmyzožravce, frugožravce a nektarivožravce. Vodné vtáky sa spravidla živia rybolovom, konzumáciou rastlín a pirátstvom alebo kleptoparazitizmom. Dravé vtáky sa špecializujú na lov cicavcov alebo iných vtákov, zatiaľ čo supy sú špecializovaní mrchožrúti. Avivory sú živočíchy, ktoré sa špecializujú na lovenie vtákov.

Niektoré vtáky, ktoré sa živia nektárom, sú dôležitými opeľovačmi a mnohé frugivory zohrávajú kľúčovú úlohu pri šírení semien.Rastliny a opeľujúce vtáky sa často vyvíjajú spoločne[136] a v niektorých prípadoch je primárny opeľovač kvetu jediným druhom, ktorý je schopný dosiahnuť jeho nektár[137].

Vtáky sú často dôležité pre ostrovnú ekológiu. Vtáky sa často dostali na ostrovy, kam sa cicavce nedostali, a na týchto ostrovoch môžu plniť ekologické úlohy, ktoré zvyčajne plnia väčšie zvieratá. Napríklad na Novom Zélande boli moa dôležitými prehliadačmi, rovnako ako dnes Kereru a Kokako[135]. Dnes si rastliny Nového Zélandu zachovali obranné adaptácie, ktoré sa vyvinuli na ich ochranu pred vyhynutými moa[136]. hniezdiace morské vtáky môžu tiež ovplyvniť ekológiu ostrovov a okolitých morí, najmä prostredníctvom koncentrácie veľkého množstva guána, ktoré môže obohatiť miestnu pôdu[137] a okolité moria[138].

Na výskum ekológie vtákov sa používa široká škála terénnych metód vrátane sčítania, monitorovania hniezd, odchytu a označovania.

Priemyselný chov kurčiat

Keďže vtáky sú dobre viditeľné a bežné živočíchy, ľudia s nimi majú vzťahy od úsvitu ľudstva.Niekedy sú tieto vzťahy mutualistické, ako napríklad spoločné zbieranie medu medzi medovníkmi a africkými národmi, napríklad Boranmi.Niekedy môžu byť komenzálne, ako keď druhy, ako napríklad vrabec domový[143], profitujú z ľudských aktivít. Niektoré druhy vtákov sa stali komerčne významnými poľnohospodárskymi škodcami[144] a niektoré predstavujú nebezpečenstvo pre letectvo[145].

Náboženstvo, folklór a kultúra

„Vtáčia trojka“ od Majstra hracích kariet, 15. storočie, Nemecko

Vtáky hrajú významnú a rôznorodú úlohu vo folklóre, náboženstve a ľudovej kultúre. V náboženstve môžu vtáky slúžiť buď ako poslovia, alebo ako kňazi a vodcovia božstva, ako napríklad v kulte Makemake, v ktorom Tangata manu z Veľkonočného ostrova slúžili ako náčelníci,[146] alebo ako sprievodcovia, ako v prípade Hugina a Munina, dvoch havranov, ktorí šepkali správy do uší severského boha Odina.[147] Kňazi sa zaoberali veštením alebo výkladom slov vtákov, zatiaľ čo „auspex“ (od ktorého je odvodené slovo „priaznivý“) sledoval ich činnosť, aby predpovedal udalosti.[148] Mohli slúžiť aj ako náboženské symboly, ako keď Jonáš (hebr. יוֹנָה, holubica) stelesňoval strach, pasivitu, smútok a krásu, ktoré sa tradične spájajú s holubicami.[149] Samotné vtáky boli zbožštené, ako v prípade páva obyčajného, ktorého indickí Drávidi vnímajú ako Matku Zem.[150] Niektoré vtáky boli vnímané aj ako príšery, vrátane mytologického Roca a maorského legendárneho Pouākai, obrovského vtáka schopného chytiť človeka.[151]

Vtáky sa v kultúre a umení objavovali už od praveku, keď boli zobrazené na prvých jaskynných maľbách.Neskôr sa vtáky používali v náboženskom alebo symbolickom umení a dizajne, ako napríklad veľkolepý páví trón mughalských a perzských cisárov.S príchodom vedeckého záujmu o vtáky sa mnohé obrazy vtákov objednávali pre knihy. Medzi najznámejších umelcov vtákov patril John James Audubon, ktorého maľby severoamerických vtákov mali v Európe veľký komerčný úspech a ktorý neskôr prepožičal svoje meno Národnej Audubonovej spoločnosti.154 Vtáky sú tiež dôležitými postavami v poézii; napríklad Homér zakomponoval slávika do svojej Odysey a Catullus použil vrabca ako erotický symbol v diele Catullus 2.[155] Vzťah medzi albatrosom a námorníkom je ústredným motívom diela Samuela Taylora Coleridgea The Rime of the Ancient Mariner, čo viedlo k použitiu tohto termínu ako metafory pre „bremeno“[156]. Ďalšie anglické metafory pochádzajú z vtákov; napríklad fondy vulture funds a vulture investors majú svoj názov od mrchožravého supa[157].

Vnímanie rôznych druhov vtákov sa v rôznych kultúrach často líši. Sovy sa v niektorých častiach Afriky spájajú so smolou, čarodejníctvom a smrťou,[158] ale vo veľkej časti Európy sa považujú za múdre[159]. Dudky sa v starovekom Egypte považovali za posvätné a v Perzii za symboly cnosti, ale vo veľkej časti Európy sa považovali za zlodejov a v Škandinávii za predzvesť vojny[160].

Kategórie
Psychologický slovník

Inteligencia psov

Mnohé psy sa dajú ľahko vycvičiť na aportovanie predmetov, ako je táto palica.

Psia inteligencia je schopnosť psa učiť sa, premýšľať a riešiť problémy. Tréneri, majitelia a výskumníci psov majú rovnaké problémy dohodnúť sa na metóde testovania inteligencie psov ako v prípade ľudskej inteligencie. Jedným zo špecifických problémov je zamieňanie genetických vlastností plemena a výcviku poslušnosti psa s inteligenciou.

O niektorých plemenách, ako sú border kolie, pudlíci, nemeckí ovčiaci, shetlandskí ovčiaci, rotvajleri, dobermani, labradorskí retrieveri, papillon, austrálske dobytkárske psy a zlatí retrieveri, niektorí tvrdia, že sú to „inteligentnejšie“ plemená psov, pretože sú poslušní. Schopnosť a ochota učiť sa a poslúchať povely však nie je jediným možným meradlom inteligencie. Iné plemená, ako sú napríklad sánkarské psy a vidiecke psy, preukazujú inteligenciu inými spôsobmi

Psy sú stádové zvieratá. Rozumejú sociálnej štruktúre a povinnostiam a sú schopné komunikovať s ostatnými členmi svorky. Dospelé psy cvičia svoje mláďatá tak, že ich „opravujú“, keď sa správajú neprijateľne (napríklad príliš silno hryzú alebo jedia mimo radu), a odmeňujú ich za prijateľné správanie tým, že sa s nimi hrajú, kŕmia ich alebo ich čistia.

Sú to tiež brlohové zvieratá. To znamená, že sa môžu ľahko naučiť správaniu súvisiacemu s udržiavaním čistoty v brlohu (ako je napríklad vychovávanie) a odpočinku v uzavretom priestore (napríklad v prepravke počas cestovania alebo pri výcviku).

Niektoré plemená boli selektívne šľachtené stovky alebo tisíce rokov pre kvalitu rýchleho učenia. U iných plemien sa táto vlastnosť bagatelizovala v prospech iných vlastností, ako je schopnosť stopovať alebo loviť zver alebo bojovať s inými zvieratami. Schopnosť naučiť sa základnú poslušnosť a komplikované správanie je však vlastná všetkým psom. Majitelia musia byť jednoducho pri niektorých plemenách trpezlivejší ako pri iných.

Napriek tomu dedičné správanie nemusí byť nevyhnutne ukazovateľom inteligencie. Napríklad od ovčiarskeho plemena, ako je border kólia, sa očakáva, že sa veľmi rýchlo naučí pásť ovce a môže túto prácu vykonávať aj bez výcviku. To isté plemeno by však bolo náročné vycvičiť na ukazovanie a prinášanie zveri. Pointer často inštinktívne ukazuje na zver a prirodzene ju aportuje bez toho, aby ju poškodil, ale vycvičiť ho na pasenie oviec by bolo ťažké, ak nie nemožné.

Hodnotenie spravodajských informácií

Význam pojmu „inteligencia“ vo všeobecnosti, nielen v súvislosti so psami, je ťažké definovať. Niektoré testy merajú schopnosť riešiť problémy a iné testujú schopnosť učiť sa v porovnaní s inými psami rovnakého veku. Definovať ju pre psov je rovnako ťažké. Je pravdepodobné, že psy nemajú schopnosť vopred premyslieť činnosť na vyriešenie problému. Niektoré psy však môžu mať väčšiu snahu neustále skúšať rôzne veci, kým náhodou nedosiahnu riešenie, a iné môžu mať väčšiu schopnosť vytvoriť si spojenie medzi „náhodou“ a výsledkom [potrebná citácia].

Napríklad schopnosť rýchlo sa učiť môže byť znakom inteligencie. Mohlo by sa to interpretovať ako znak slepej podriadenosti a túžby zapáčiť sa. Naopak, niektoré psy, ktoré sa neučia veľmi rýchlo, môžu mať iné talenty. Príkladom sú plemená, ktoré nemajú osobitný záujem potešiť svojich majiteľov, ako napríklad sibírsky husky. Husky sú často fascinované nespočetnými možnosťami úniku z dvorov a chytania malých zvierat, pričom samy prichádzajú na početné a často vynaliezavé spôsoby, ako oboje robiť.

Od asistenčných psov sa tiež vyžaduje, aby boli vždy poslušní. To znamená, že sa musia naučiť obrovské množstvo povelov, pochopiť, ako sa správať v najrôznejších situáciách, a rozpoznať hrozby pre svojich ľudských spoločníkov, s niektorými z nich sa nikdy predtým nemuseli stretnúť.

Mnohí majitelia plemien strážcov hospodárskych zvierat sa domnievajú, že plemená, ako sú pyrenejský palácový pes alebo kuvajt, sa nedajú ľahko vycvičiť, pretože ich nezávislá povaha im bráni vidieť zmysel povelov ako „sedni“ alebo „ľahni“. O moloserských plemenách sa hovorí, že sú obzvlášť citlivé na fyzickú alebo hlasovú agresiu, a preto sa vo všeobecnosti predpokladá, že reagujú na metódy výcviku založené na pozitívnom posilňovaní. Psíkovia (ako napríklad bígl, bloodhound a baset) sa v zozname „Inteligencia psov“ umiestňujú na spodných priečkach, ale pravdepodobne trpia určitým prístupom k hodnoteniu inteligencie [potrebná citácia] Tieto psy sú vyšľachtené na húževnaté stopovanie, pričom využívajú svoj ostrý čuch, a majú menšie schopnosti pri „riešení problémov“, čo je hlavnou úlohou pracovných a pastierskych psov. Okrem toho si mnohé psie „autority“ neuvedomujú mimoriadnu schopnosť scenthounda vnímať a vyhodnocovať aj iné veci ako pachy. Okrem iného dokážu rozpoznať feromóny a môžu mať schopnosť vyhodnotiť osobnosť alebo povahu človeka alebo iného psa až na vzdialenosť 300 metrov. Toto možno opísať ako „podmienenú inteligenciu“, keď sa zviera rýchlo učí niektoré veci, zatiaľ čo sa zdá, že sa zdráha učiť iné [potrebná citácia].

Niektoré testy inteligencie zahŕňajú schopnosť psa rozpoznať a reagovať na širokú slovnú zásobu povelov. Iné testy sa týkajú ich túžby alebo schopnosti reagovať na rôzne situácie. Rovnako ako v prípade ľudí, aj v prípade psov existuje široká škála interpretácií toho, čo robí psa „inteligentným“.

Rôzne štúdie sa pokúšali o dôslednú klasifikáciu inteligencie psov. Nedávnym príkladom je článok zvieracej psychologičky Juliane Kaminski v časopise Science, ktorý dokázal, že Rico, border kolia, sa naučil viac ako 200 slov. Rico si dokázal zapamätať názvy niekoľkých predmetov až štyri týždne po ich poslednom vystavení (Kaminskiová vylúčila efekt Clever Hans pomocou prísnych protokolov). Rico tiež dokázal interpretovať frázy, ako napríklad „prines ponožku“, v zmysle ich zložených slov (namiesto toho, aby ich vyslovenie považoval za jedno slovo). Rico tiež dokázal dať ponožku určenej osobe. V roku 2008 sa Betsy, tiež border kolia, objavila na obálke časopisu National Geographic. Betsy svojou inteligenciou konkurovala Ricovi v tom, že poznala viac ako 340 slov a dokázala priradiť predmet k fotografickému obrázku predmetu napriek tomu, že ani jeden z nich predtým nevidela.

Etológ Frans de Waal vo svojej knihe Good Natured z roku 1996 rozoberá experiment o vine a pokarhaní, ktorý vykonal na samičke sibírskeho huskyho. Pes mal vo zvyku skartovať noviny, a keď sa jej majiteľ vrátil domov a našiel skartované papiere, pes sa správal previnilo. Keď však majiteľ sám skartoval papiere bez vedomia psa, pes „sa správal rovnako ‚previnilo‘, ako keď sama vytvorila neporiadok“. De Waal dospel k záveru, že „vina“, ktorú psy prejavujú, nie je skutočnou vinou, ale skôr anticipáciou správania nahnevaného nadriadeného v danej situácii.

Nedávna štúdia v časopise PNAS ukázala, že psy dokážu cítiť zložité emócie, ako je napríklad žiarlivosť.

Psychologický výskum ukázal, že ľudské tváre sú asymetrické a pohľad sa pri stretnutí s inými ľuďmi inštinktívne presúva na pravú stranu tváre, aby získal informácie o ich emóciách a stave. Výskum na univerzite v Lincolne (2008) ukázal, že psy zdieľajú tento inštinkt pri stretnutí s človekom, a to len pri stretnutí s človekom (t. j. nie s inými zvieratami alebo inými psami). Ako také sú jediným neprimátskym druhom, o ktorom je známe, že to robí.

Školská psychologička Kathy Coonová vypracovala prvý test inteligencie pre psov v roku 1976 , pričom táto práca bola priebežne revidovaná až do roku 2003. Boli vyvinuté testy na testovanie krátkodobej pamäte, obratnosti, schopnosti prispôsobiť sa, riešenia problémov, jedinečných obchádzkových problémov a na zistenie, ako pes reaguje na podmienky, ktoré sú pre neho neprijateľné. Výkony jednotlivých psov sa porovnávali s viac ako 100 psami, na ktorých bol test štandardizovaný. Ďalšie normy pre plemená boli vypracované v jej knihe The Dog Intelligence Test.

Stanley Coren vo svojej knihe The Intelligence of Dogs (Inteligencia psov) zoradil plemená psov podľa inteligencie na základe prieskumov vykonaných medzi cvičiteľmi psov, pričom článok k tejto knihe obsahuje zhrnutie získaných rebríčkov.

Komunikácia zvierat – Porovnávacie poznávanie – Kognitívna etológia – Neuroetológia – Emócie u zvierat – Bolesť u zvierat – Pozorovacie učenie – Používanie nástrojov zvieratami – Hlasové učenie

Vták – mačka – hlavonožec – veľryba – pes – slon – ryba – hominid – primát – inteligencia roja

Kategórie
Psychologický slovník

Chromozóm 22 (človek)

Chromozóm 22 je jedným z 23 párov chromozómov u ľudí. Ľudia majú zvyčajne dve kópie tohto chromozómu. Chromozóm 22 je druhý najmenší ľudský chromozóm, ktorý obsahuje približne 49 miliónov párov báz (stavebný materiál DNA) a predstavuje 1,5 až 2 % celkovej DNA v bunkách.

V roku 1999 vedci pracujúci na projekte ľudského genómu oznámili, že určili sekvenciu párov báz, ktoré tvoria tento chromozóm. Chromozóm 22 bol prvým ľudským chromozómom, ktorý bol úplne sekvenovaný.

Identifikácia génov na jednotlivých chromozómoch je aktívnou oblasťou genetického výskumu. Keďže výskumníci používajú rôzne prístupy na predpovedanie počtu génov na každom chromozóme, odhadovaný počet génov sa líši. Chromozóm 22 pravdepodobne obsahuje 500 až 800 génov.

Na chromozóme 22 sa nachádzajú niektoré gény:

Nasledujúce ochorenia sú niektoré z tých, ktoré súvisia s génmi na chromozóme 22:

Nasledujúce stavy sú spôsobené zmenami v štruktúre alebo počte kópií chromozómu 22:

{1}
{2}
{3}
{4}
{5}
{6}
{7}
{8}
{9}
{10}
{11}
{12}
{13}
{14}
{15}
{16}
{17}
{18}
{19}
{20}
{21}
{22}
{X}
{Y}

Kategórie
Psychologický slovník

Metylfenyltetrahydropyridín

MPTP (1-metyl-4-fenyl-1,2,3,6-tetrahydropyridín) je neurotoxín, ktorý spôsobuje trvalé príznaky Parkinsonovej choroby tým, že ničí určité neuróny v substantia nigra mozgu. Používa sa na štúdium tejto choroby u opíc.

Hoci MPTP sám o sebe nemá opioidné účinky, je príbuzný MPPP, syntetickej opioidnej droge s účinkami podobnými účinkom heroínu a morfínu. MPTP sa môže náhodne vyrobiť pri nelegálnej výrobe MPPP, a tak sa prvýkrát zistili jeho účinky vyvolávajúce Parkinsona.

Injekcia MPTP spôsobuje rýchly nástup parkinsonizmu, preto sa u užívateľov MPPP kontaminovaného MPTP vyvinú tieto príznaky.

MPTP sám o sebe nie je toxický a ako lipofilná zlúčenina môže prechádzať cez hematoencefalickú bariéru. Po vstupe do mozgu sa MPTP metabolizuje na toxický katión 1-metyl-4-fenylpyridínium (MPP+) pomocou enzýmu MAO-B gliových buniek. MPP+ zabíja predovšetkým neuróny produkujúce dopamín v časti mozgu nazývanej pars compacta substantia nigra. MPP+ zasahuje do komplexu I elektrónového transportného reťazca, ktorý je súčasťou mitochondriálneho metabolizmu, čo vedie k bunkovej smrti a spôsobuje hromadenie voľných radikálov, toxických molekúl, ktoré ďalej prispievajú k ničeniu buniek.

Keďže samotný MPTP nie je priamo škodlivý, toxické účinky akútnej otravy MPTP možno zmierniť podávaním inhibítorov monoaminooxidázy (MAOI), ako je selegilín. MAOI zabraňujú metabolizmu MPTP na MPP+ tým, že inhibujú účinok MAO-B, čím minimalizujú toxicitu a zabraňujú nervovej smrti.

MPTP má pomerne selektívne schopnosti spôsobovať smrť neurónov v dopaminergných bunkách, zrejme prostredníctvom procesu vychytávania s vysokou afinitou v nervových zakončeniach, ktoré sa zvyčajne používajú na spätné vychytávanie dopamínu po jeho uvoľnení do synaptickej štrbiny. Dopamínový transportér premiestňuje MPP+ dovnútra bunky.

Výsledné hrubé vyčerpanie dopaminergných neurónov má závažné dôsledky na kortikálnu kontrolu komplexných pohybov. Smer komplexných pohybov vychádza zo substantia nigra do putamen a kaudátového jadra, ktoré potom prenášajú signály do zvyšku mozgu. Táto dráha je riadená prostredníctvom neurónov využívajúcich dopamín, ktoré MPTP selektívne ničí, čo časom vedie k parkinsonizmu.

MPTP spôsobuje parkinsonizmus u primátov vrátane ľudí. Hlodavce sú oveľa menej náchylné. Potkany sú voči nepriaznivým účinkom MPTP takmer imúnne. Myši trpia odumieraním buniek v substantia nigra (v rôznej miere podľa použitého kmeňa myší), ale nevykazujú parkinsonské príznaky. Predpokladá sa, že za to môže byť zodpovedná nižšia hladina MAO B v kapilárach mozgu hlodavcov.

Zistenie u užívateľov nelegálnych drog

Neurotoxicita MPTP bola naznačená v roku 1976 po tom, čo Barry Kidston, 23-ročný absolvent chémie v Marylande, nesprávne syntetizoval MPPP a výsledok si vstrekol. Bol kontaminovaný MPTP a do troch dní sa u neho začali prejavovať príznaky Parkinsonovej choroby. Národný inštitút duševného zdravia našiel v jeho laboratóriu stopy MPTP a iných analógov meperidínu. Látky testovali na potkanoch, ale vzhľadom na toleranciu hlodavcov na tento typ neurotoxínu sa nič nezistilo. Kidstonov parkinsonizmus bol úspešne liečený levo-dopou, ale o 18 mesiacov neskôr zomrel na predávkovanie kokaínom. Pri pitve sa zistila deštrukcia dopamínových neurónov v substantia nigra.

V roku 1982 bol v okrese Santa Clara v Kalifornii diagnostikovaný parkinsonizmus u siedmich ľudí po použití MPPP kontaminovaného MPTP. Neurológ J. William Langston v spolupráci s NIH vypátral príčinu vzniku MPTP a skúmal jeho účinky na primátoch. Nakoniec sa motorické symptómy dvoch zo siedmich pacientov úspešne liečili v Lundskej univerzitnej nemocnici vo Švédsku pomocou neurálnych transplantátov kmeňových buniek z potratených ľudských plodov.

Langston tento prípad zdokumentoval vo svojej knihe The Case of the Frozen Addicts (1995, ISBN 0-679-42465-2), ktorú neskôr uviedla televízia PBS v dvoch reláciách NOVA.

Prínos MPTP k výskumu Parkinsonovej choroby

Langston et al.(1984)
zistili, že injekcie MPTP opiciam veveričkám viedli k parkinsonizmu, ktorého príznaky sa následne znížili pomocou levo-dopy, prekurzora neurotransmitera dopamínu, ktorý je v súčasnosti liekom voľby pri liečbe Parkinsonovej choroby. Príznaky a mozgové štruktúry Parkinsonovej choroby vyvolanej MPTP sú pomerne nerozoznateľné do tej miery, že MPTP možno použiť na simuláciu choroby s cieľom študovať fyziológiu Parkinsonovej choroby a možné spôsoby liečby v laboratóriu. Štúdie na myšiach ukázali, že citlivosť na MPTP sa zvyšuje s vekom.

Poznatky o MPTP a jeho použití pri spoľahlivej rekonštrukcii Parkinsonovej choroby v experimentálnych modeloch inšpirovali vedcov k skúmaniu možností chirurgického nahradenia straty neurónov prostredníctvom implantátov fetálneho tkaniva, subtalamickej elektrickej stimulácie a výskumu kmeňových buniek, ktoré preukázali prvé, predbežné úspechy.

Predpokladá sa, že Parkinsonovu chorobu môžu spôsobovať nepatrné množstvá zlúčenín podobných MPP+ z požitia alebo exogénne prostredníctvom opakovanej expozície a že tieto látky sú príliš nepatrné na to, aby sa dali významne zistiť epidemiologickými štúdiami.

V roku 2000 bol objavený ďalší zvierací model Parkinsonovej choroby. Ukázalo sa, že pesticíd a insekticíd rotenón spôsobuje parkinsonizmus u potkanov tým, že ničí dopaminergné neuróny v substantia nigra. Podobne ako MPP+, aj rotenón zasahuje do komplexu I elektrónového transportného reťazca.

MPTP bol prvýkrát syntetizovaný ako analgetikum v roku 1947 Zieringom a spol. Môže vzniknúť zmiešaním formaldehydu, metylamínu a alfa-metylstyrénu.
Testoval sa ako liek na rôzne ochorenia, ale testy sa zastavili, keď sa u opíc objavili príznaky podobné Parkinsonovej chorobe. Pri jednom testovaní látky zomreli dvaja zo šiestich ľudských subjektov.

Kategórie
Psychologický slovník

Farebné modely

Farebný model je abstraktný matematický model opisujúci spôsob, akým možno farby reprezentovať ako tuply čísel, zvyčajne ako tri alebo štyri hodnoty alebo farebné zložky. Ak je tento model spojený s presným opisom toho, ako sa majú zložky interpretovať (podmienky zobrazenia atď.), výsledná množina farieb sa nazýva farebný priestor. V tejto časti sa opisujú spôsoby, ktorými možno modelovať ľudské farebné videnie.

3D reprezentácia ľudského farebného priestoru.

Tento priestor si môžeme predstaviť ako oblasť v trojrozmernom euklidovskom priestore, ak osi x, y a z stotožníme s podnetmi pre receptory s dlhou (L), strednou (M) a krátkou vlnovou dĺžkou (S). Počiatok (S,M,L) = (0,0,0) zodpovedá čiernej farbe. Biela farba nemá v tomto diagrame definovanú pozíciu; je skôr definovaná podľa požadovanej teploty farieb alebo vyváženia bielej farby alebo podľa toho, ako je k dispozícii z okolitého osvetlenia. Ľudský farebný priestor je kužeľ v tvare podkovy, ako je znázornené tu (pozri tiež diagram chromatickosti CIE nižšie), ktorý sa tiahne od počiatku v zásade do nekonečna. V praxi sa ľudské farebné receptory pri extrémne vysokých intenzitách svetla nasýtia alebo dokonca poškodia, ale takéto správanie nie je súčasťou farebného priestoru CIE a ani zmena vnímania farieb pri nízkych úrovniach osvetlenia (pozri: Kruithofova krivka).

Ľudský tristimulový priestor má tú vlastnosť, že aditívne miešanie farieb zodpovedá sčítaniu vektorov v tomto priestore. Vďaka tomu je napríklad jednoduché opísať možné farby (gamut), ktoré možno vytvoriť z červenej, zelenej a modrej primárnej farby na displeji počítača.

CIE1931 Štandardné kolorimetrické funkcie pozorovateľa medzi 380 nm a 780 nm (v intervaloch po 5 nm).

Jedným z prvých matematicky definovaných farebných priestorov je farebný priestor CIE XYZ (známy aj ako farebný priestor CIE 1931), ktorý vytvorila Medzinárodná komisia pre osvetlenie v roku 1931. Tieto údaje boli namerané pre ľudských pozorovateľov a zorné pole 2 stupne. V roku 1964 boli uverejnené doplňujúce údaje pre 10 stupňové zorné pole.

Na obrázku vľavo je znázornený príslušný diagram chromatickosti s vlnovými dĺžkami v nanometroch.

V tomto diagrame sú x a y spojené s hodnotami tristimulu X, Y a Z v rámci ľudského tristimulového farebného priestoru podľa:

Z matematického hľadiska sú x a y projektívne súradnice a farby chromatického diagramu zaberajú oblasť reálnej projektívnej roviny. Keďže krivky citlivosti CIE majú rovnaké plochy pod krivkami, svetlo s plochým energetickým spektrom zodpovedá bodu (x,y) = (0,333,0,333).

Hodnoty X, Y a Z sa získavajú integráciou súčinu spektra svetelného lúča a uverejnených funkcií porovnávania farieb. Modré a červené vlnové dĺžky neprispievajú výrazne k svietivosti, čo ilustruje nasledujúci príklad:

Pre človeka s normálnym farebným videním je zelená farba jasnejšia ako červená, ktorá je jasnejšia ako modrá. Aj keď sa čistá modrá zdá byť veľmi tmavá a pri pozorovaní z diaľky ju sotva rozoznáte od čiernej, modrá má silnú farebnú silu, keď sa zmieša so zelenou alebo červenou.

Pri niektorých formách „červeno-zelenej farbosleposti“ je zelená farba o niečo jasnejšia ako modrá a červená je taká tmavá, že ju sotva rozoznáte. Červené semafory sa za jasného denného svetla javia ako rozbité (bez svetla). Zelené semafory sa javia ako špinavo biele a ťažko rozlíšiteľné od nočných pouličných svetiel.

Farebný priestor CIE-xyz je hranol, na rozdiel od vyššie uvedeného kužeľovitého tristimulového priestoru. V dvojrozmernom zobrazení xy tvoria všetky možné aditívne zmesi dvoch farieb A a B priamku. Aditívna zmes dvoch farieb však vo všeobecnosti neleží v strede tejto priamky.

Médiá, ktoré prenášajú svetlo (napríklad televízia), používajú aditívne miešanie farieb so základnými farbami červenou, zelenou a modrou, z ktorých každá stimuluje jeden z troch typov očných farebných receptorov s čo najmenšou stimuláciou ostatných dvoch. Toto sa nazýva farebný priestor „RGB“ – pozri tiež farebný model RGB. Zmesi svetla týchto základných farieb pokrývajú veľkú časť ľudského farebného priestoru, a tak vytvárajú veľkú časť ľudských farebných zážitkov. Preto farebné televízne prijímače alebo farebné počítačové monitory musia produkovať len zmesi červeného, zeleného a modrého svetla. Pozri časť Aditívna farba.

V zásade by sa mohli použiť aj iné základné farby, ale pomocou červenej, zelenej a modrej možno zachytiť najväčšiu časť ľudského farebného priestoru. Nanešťastie neexistuje presná zhoda v tom, aké miesta v chromatickom diagrame by mali mať červená, zelená a modrá farba, takže rovnaké hodnoty RGB môžu na rôznych obrazovkách vytvárať mierne odlišné farby.

Zobrazenia HSV a HSL

Keďže výskumníci v oblasti počítačovej grafiky si uvedomili, že geometria modelu RGB nie je dostatočne zosúladená s atribútmi vytvárania farieb rozpoznávanými ľudským zrakom, koncom 70. rokov 20. storočia vyvinuli dve alternatívne reprezentácie RGB, HSV a HSL (odtieň, sýtosť, hodnota a odtieň, sýtosť, svetlosť), ktoré boli formálne definované a opísané v článku Alvyho Raya Smitha „Páry transformácie farebného gamutu“ z roku 1978. HSV a HSL vylepšujú reprezentáciu farebnej kocky RGB usporiadaním farieb každého odtieňa do radiálneho rezu okolo centrálnej osi neutrálnych farieb, ktorá siaha od čiernej v spodnej časti po bielu v hornej časti. Plne sýte farby každého odtieňa potom ležia v kruhu, farebnom kolese.

HSV sa modeluje podľa zmesi farieb, pričom jeho rozmery sýtosti a hodnoty sa podobajú zmesiam jasne sfarbenej farby s bielou a čiernou. HSL sa snaží podobať viac percepčným farebným modelom, ako sú NCS alebo Munsell. Umiestňuje plne nasýtené farby do kruhu svetlosti ½, takže svetlosť 1 vždy znamená bielu a svetlosť 0 vždy znamená čiernu.

HSV aj HSL sa široko používajú v počítačovej grafike, najmä ako výber farieb v softvéri na úpravu obrázkov. Matematická transformácia z RGB do HSV alebo HSL sa dala vypočítať v reálnom čase aj na počítačoch zo 70. rokov a existuje ľahko pochopiteľné mapovanie medzi farbami v ktoromkoľvek z týchto priestorov a ich prejavom na fyzickom zariadení RGB.

Porovnanie farebných modelov RGB a CMYK.

Kombináciou azurových, purpurových a žltých transparentných farbív na bielom podklade je možné dosiahnuť veľký nesprávny rozsah farieb, ktoré človek vidí. Ide o subtraktívne základné farby. Často sa pridáva štvrtá čierna na zlepšenie reprodukcie niektorých tmavých farieb. Tento farebný priestor sa nazýva „CMY“ alebo „CMYK“.

Azúrový atrament odráža všetko svetlo okrem červeného, žltý atrament odráža všetko svetlo okrem modrého a purpurový atrament odráža všetko svetlo okrem zeleného. Je to preto, že azúrové svetlo je rovnakou zmesou zelenej a modrej farby, žlté svetlo je rovnakou zmesou červenej a zelenej farby a purpurové svetlo je rovnakou zmesou červenej a modrej farby.

Existujú rôzne typy farebných systémov, ktoré klasifikujú farby a analyzujú ich účinky. Americký Munsellov farebný systém, ktorý navrhol Albert H. Munsell, je známa klasifikácia, ktorá usporadúva rôzne farby do farebných telies na základe odtieňa, sýtosti a hodnoty. Medzi ďalšie dôležité farebné systémy patrí švédsky systém prirodzených farieb (NCS) od Škandinávskeho farebného inštitútu, jednotný farebný priestor Americkej optickej spoločnosti (OSA-UCS) a maďarský systém Coloroid, ktorý vyvinul Antal Nemcsics z Budapeštianskej technickej a ekonomickej univerzity. Z týchto systémov je NCS založený na farebnom modeli oponentského procesu, zatiaľ čo Munsell, OSA-UCS a Coloroid sa snažia modelovať jednotnosť farieb. Americký systém Pantone a nemecký komerčný systém porovnávania farieb RAL sa od predchádzajúcich systémov líšia tým, že ich farebné priestory nie sú založené na základnom farebnom modeli.

Ďalšie použitia pojmu „farebný model“

Modely mechanizmu farebného videnia

„Farebný model“ používame aj na označenie modelu alebo mechanizmu farebného videnia na vysvetlenie toho, ako sa farebné signály spracúvajú zo zrakových čapíkov do gangliových buniek. Pre zjednodušenie nazývame tieto modely modely farebných mechanizmov. Klasickými modelmi farebných mechanizmov sú Young-Helmholtzov trichromatický model a Heringov model oponentného procesu. Hoci sa spočiatku predpokladalo, že tieto dve teórie sú v rozpore, neskôr sa dospelo k poznaniu, že mechanizmy zodpovedné za farebnú opozíciu prijímajú signály z troch typov čapíkov a spracúvajú ich na zložitejšej úrovni.

Vývoj farebného videnia stavovcov

Obratlovce boli pôvodne tetrachromatické. Mali čapíky s krátkou, strednou a dlhou vlnovou dĺžkou a čapíky citlivé na ultrafialové žiarenie. Dnes sú tetrachromatické ryby, plazy a vtáky. Placentálne cicavce stratili čapíky s krátkou aj strednou vlnovou dĺžkou. Väčšina cicavcov teda nemá komplexné farebné videnie, ale je citlivá na ultrafialové svetlo. Ľudské trichromatické farebné videnie je nedávnou evolučnou novinkou, ktorá sa prvýkrát vyvinula u spoločného predka primátov Starého sveta. Naše trichromatické farebné videnie sa vyvinulo duplikáciou opsínu citlivého na dlhé vlnové dĺžky, ktorý sa nachádza na chromozóme X. Jedna z týchto kópií sa vyvinula ako citlivá na zelené svetlo a predstavuje náš opsín strednej vlnovej dĺžky. Zároveň sa náš opsín pre krátke vlnové dĺžky vyvinul z ultrafialového opsínu našich predkov z radov stavovcov a cicavcov.

Ľudská červeno-zelená farbosleposť vzniká preto, lebo dve kópie génov pre červený a zelený opsín zostávajú na chromozóme X v tesnej blízkosti. V dôsledku častej rekombinácie počas meiózy sa tieto génové páry môžu ľahko prestavať, čím sa vytvoria verzie génov, ktoré nemajú odlišnú spektrálnu citlivosť.

Kategórie
Psychologický slovník

Syndróm necitlivosti na androgény

Ženy s AIS a súvisiacimi stavmi DSD

Syndróm necitlivosti na androgény (AIS) je stav, ktorý vedie k čiastočnej alebo úplnej neschopnosti bunky reagovať na androgény. Nereagovanie bunky na prítomnosť androgénnych hormónov môže narušiť alebo zabrániť maskulinizácii mužských genitálií u vyvíjajúceho sa plodu, ako aj rozvoju mužských sekundárnych pohlavných znakov v puberte, ale výrazne nenarušuje ženský pohlavný alebo sexuálny vývoj. Necitlivosť na androgény ako taká je klinicky významná len vtedy, keď sa vyskytuje u genetických mužov (t. j. jedincov s chromozómom Y, presnejšie s génom SRY). Klinické fenotypy u týchto jedincov sa pohybujú od normálneho mužského habitu s miernym spermatogénnym defektom alebo zníženým sekundárnym terminálnym ochlpením až po úplne ženský habitus napriek prítomnosti Y-chromozómu.

AIS sa delí do troch kategórií, ktoré sa rozlišujú podľa stupňa maskulinizácie genitálií: syndróm úplnej androgénnej necitlivosti (CAIS) sa indikuje vtedy, keď sú vonkajšie genitálie normálne ženské; syndróm miernej androgénnej necitlivosti (MAIS) sa indikuje vtedy, keď sú vonkajšie genitálie normálne mužské, a syndróm čiastočnej androgénnej necitlivosti (PAIS) sa indikuje vtedy, keď sú vonkajšie genitálie čiastočne, ale nie úplne maskulinizované.

Syndróm androgénnej necitlivosti je najväčšou jednotkou, ktorá vedie k 46,XY nedosiahnuteľným genitáliám.

AIS sa rozdeľuje do troch tried na základe fenotypu: syndróm úplnej necitlivosti na androgény (CAIS), syndróm čiastočnej necitlivosti na androgény (PAIS) a syndróm miernej necitlivosti na androgény (MAIS). Doplňujúci systém fenotypového triedenia, ktorý používa sedem tried namiesto tradičných troch, navrhla pediatrická endokrinologička Charmian A. Quigley a kol. v roku 1995. Prvých šesť tried stupnice, triedy 1 až 6, sa rozlišuje podľa stupňa maskulinizácie genitálií; trieda 1 sa uvádza, keď sú vonkajšie genitálie úplne maskulinizované, trieda 6 sa uvádza, keď sú vonkajšie genitálie úplne feminizované, a triedy 2 až 5 kvantifikujú štyri stupne klesajúcej maskulinizácie genitálií, ktoré ležia v medzistupni. Stupeň 7 je nerozlíšiteľný od stupňa 6 až do puberty a potom sa rozlišuje podľa prítomnosti sekundárneho terminálneho ochlpenia; stupeň 6 sa uvádza, keď je prítomné sekundárne terminálne ochlpenie, zatiaľ čo stupeň 7 sa uvádza, keď chýba. Quigleyho stupnica sa môže použiť v spojení s tradičnými tromi triedami AIS na poskytnutie dodatočných informácií týkajúcich sa stupňa maskulinizácie genitálií a je obzvlášť užitočná v prípade diagnózy PAIS.

Umiestnenie a štruktúra ľudského androgénneho receptora. Hore, gén AR sa nachádza na proximálnom dlhom ramienku chromozómu X. Uprostred, osem exónov je oddelených intronmi rôznej dĺžky. Dole: Ilustrácia proteínu AR s vyznačenými primárnymi funkčnými doménami (nezodpovedá skutočnej trojrozmernej štruktúre).

Ľudský androgénny receptor (AR) je proteín kódovaný génom, ktorý sa nachádza na proximálnom dlhom ramienku chromozómu X (lokus Xq11-Xq12). Oblasť kódujúca proteín pozostáva z približne 2 757 nukleotidov (919 kodónov), ktoré pokrývajú osem exónov označených 1 – 8 alebo A – H. Introny majú veľkosť od 0,7 do 26 kb. Podobne ako iné jadrové receptory, aj proteín androgénového receptora sa skladá z niekoľkých funkčných domén: transaktivačnej domény (nazývanej aj doména regulácie transkripcie alebo amino/ NH2-koncová doména), domény viažucej DNA, oblasti závesu a domény viažucej steroidy (nazývanej aj karboxylovo-koncová doména viažuca ligand). Transaktivačná doména je kódovaná exónom 1 a tvorí viac ako polovicu proteínu AR. Exóny 2 a 3 kódujú doménu viažucu DNA, zatiaľ čo 5′ časť exónu 4 kóduje oblasť závesu. Zvyšok exónu 4 až exón 8 kóduje doménu viažucu ligand.

Dĺžky trinukleotidových satelitov a transkripčná aktivita AR

Gén pre androgénny receptor obsahuje dva polymorfné trinukleotidové mikrosatelity v exóne 1. Prvý mikrosatelit (najbližšie k 5′ koncu) obsahuje 8 až 60 opakovaní glutamínového kodónu „CAG“, a preto je známy ako polyglutamínový trakt. Druhý mikrosatelit obsahuje 4 až 31 opakovaní glycínového kodónu „GGC“ a je známy ako polyglycínový trakt. Priemerný počet opakovaní sa líši podľa etnickej príslušnosti, pričom belosi majú v priemere 21 opakovaní CAG a černosi 18. U mužov sú chorobné stavy spojené s extrémnymi hodnotami dĺžky polyglutamínového traktu; rakovina prostaty, hepatocelulárny karcinóm a mentálna retardácia sú spojené s príliš malým počtom opakovaní, zatiaľ čo spinálna a bulbárna svalová atrofia (SBMA) je spojená s dĺžkou 40 a viac opakovaní CAG. Niektoré štúdie naznačujú, že dĺžka polyglutamínového traktu je nepriamo úmerná transkripčnej aktivite v proteíne AR a že dlhšie polyglutamínové trakty môžu byť spojené s mužskou neplodnosťou a nedostatočne maskulínnymi genitáliami u mužov. Iné štúdie však naznačili, že takáto korelácia neexistuje. Komplexná metaanalýza tejto témy uverejnená v roku 2007 podporuje existenciu korelácie a dospela k záveru, že tieto rozpory by sa mohli vyriešiť, ak sa zohľadní veľkosť vzorky a dizajn štúdie. Niektoré štúdie naznačujú, že väčšia dĺžka polyglycínového traktu súvisí aj s defektmi maskulinizácie genitálií u mužov. Iné štúdie takúto súvislosť nezistili.

Od roku 2010 bolo v databáze mutácií AR nahlásených viac ako 400 mutácií AR a ich počet neustále rastie. Dedičnosť je typicky materská a prebieha podľa recesívneho modelu viazaného na chromozóm X; u jedincov s karyotypom 46,XY sa mutovaný gén vždy prejaví, pretože majú len jeden chromozóm X, zatiaľ čo nositelia chromozómu 46,XX budú postihnutí minimálne. V 30 % prípadov je mutácia AR spontánnym výsledkom a nie je dedičná. Takéto de novo mutácie sú výsledkom mutácie zárodočných buniek alebo mozaiky zárodočných buniek v gonádach jedného z rodičov alebo mutácie v samotnom oplodnenom vajíčku. V jednej štúdii sa zistilo, že 3 z 8 de novo mutácií sa vyskytli v postzygotickom štádiu, čo viedlo k odhadu, že až jedna tretina de novo mutácií je výsledkom somatického mozaicizmu. Je potrebné poznamenať, že nie každá mutácia génu AR vedie k necitlivosti na androgény; jedna konkrétna mutácia sa vyskytuje u 8 až 14 % genetických mužov a predpokladá sa, že pri prítomnosti iných genetických faktorov nepriaznivo ovplyvňuje len malý počet jedincov.

Niektorí jedinci s CAIS alebo PAIS nemajú žiadne mutácie AR napriek klinickým, hormonálnym a histologickým znakom, ktoré sú dostatočným dôvodom na diagnózu AIS; až 5 % žien s CAIS nemá mutáciu AR, rovnako ako 27 % až 72 % jedincov s PAIS.

U jedného pacienta sa ukázalo, že príčinou predpokladaného PAIS bol mutovaný proteín steroidogénneho faktora-1 (SF-1). U iného pacienta sa ukázalo, že CAIS je dôsledkom deficitu prenosu transaktivačného signálu z N-terminálnej oblasti normálneho androgénového receptora do základného transkripčného mechanizmu bunky. Predpokladalo sa, že u tohto pacienta bol deficitný koaktivátorový proteín interagujúci s transaktivačnou doménou 1 (AF-1) androgénového receptora. Narušenie signálu sa nedalo korigovať doplnením žiadneho v tom čase známeho koaktivátora, ani sa nepodarilo charakterizovať chýbajúci koaktivátorový proteín, čo niektorých odborníkov nepresvedčilo o tom, že by mutovaný koaktivátor vysvetľoval mechanizmus rezistencie na androgény u pacientov s CAIS alebo PAIS s normálnym génom AR.

V závislosti od mutácie môže mať osoba s karyotypom (46,XY) a AIS buď mužský (MAIS), alebo ženský (CAIS) fenotyp, alebo môže mať genitálie len čiastočne maskulínne (PAIS). Gonády sú testes bez ohľadu na fenotyp v dôsledku vplyvu Y-chromozómu. Žena 46,XY teda nemá vaječníky ani maternicu a nemôže prispieť vajíčkom k počatiu ani vynosiť dieťa.

Bolo publikovaných niekoľko štúdií prípadov plodných mužov 46,XY s androgénnou necitlivosťou, hoci sa predpokladá, že táto skupina je menšinová. Okrem toho niektorí neplodní muži s MAIS boli schopní splodiť deti po zvýšení počtu spermií pomocou doplnkového testosterónu. Genetický muž počatý mužom s necitlivosťou na androgény by nedostal otcov chromozóm X, a teda by nezdedil ani nenosil gén pre tento syndróm. Genetická žena počatá takýmto spôsobom by dostala otcov chromozóm X, a stala by sa tak jeho nositeľkou.

Genetické ženy (karyotyp 46,XX) majú dva chromozómy X, a teda dva gény AR. Výsledkom mutácie v jednom (ale nie v oboch) génoch AR je minimálne postihnutá, plodná nositeľka. U niektorých nositeliek bolo zaznamenané mierne znížené ochlpenie, oneskorená puberta a/alebo vysoký vzrast, pravdepodobne v dôsledku skreslenej aktivácie X. Nositeľky prenášajú postihnutý gén AR na svoje deti v 50 % prípadov. Ak je geneticky postihnuté dieťa ženského pohlavia, aj ono bude nositeľkou. Postihnuté dieťa 46,XY bude mať syndróm androgénnej necitlivosti.

Genetická žena s mutáciami v oboch génoch AR by teoreticky mohla vzniknúť spojením plodného muža s androgénnou necitlivosťou a nositeľky génu alebo mutáciou de novo. Vzhľadom na nedostatok plodných mužov necitlivých na androgény a nízky výskyt mutácie AR je však pravdepodobnosť takéhoto výskytu malá. Fenotyp takéhoto jedinca je predmetom špekulácií; od roku 2010 nebol publikovaný žiadny takýto zdokumentovaný prípad.

Korelácia genotypu a fenotypu

Jedinci s čiastočnou androgénnou necitlivosťou, na rozdiel od jedincov s úplnou alebo miernou formou, majú pri narodení nejednoznačné genitálie a rozhodnutie vychovávať dieťa ako muža alebo ženu často nie je zrejmé. Nanešťastie sa často stáva, že z presnej znalosti samotnej mutácie AR možno získať len málo informácií týkajúcich sa fenotypu; je dobre známe, že tá istá mutácia AR môže spôsobiť výrazné rozdiely v stupni maskulinizácie u rôznych jedincov, dokonca aj medzi členmi tej istej rodiny. Čo presne spôsobuje túto variabilitu, nie je úplne jasné, hoci faktory, ktoré k nej prispievajú, by mohli zahŕňať dĺžky polyglutamínových a polyglycínových dráh, citlivosť na vnútromaternicové endokrinné prostredie a rozdiely v ňom, vplyv koregulačných proteínov, ktoré sú aktívne v Sertoliho bunkách, somatický mozaicizmus, expresia génu 5RD2 v genitálnych kožných fibroblastoch, znížená transkripcia a translácia AR spôsobená inými faktormi ako mutáciami v kódujúcej oblasti AR, neidentifikovaný koaktivátorový proteín, nedostatky enzýmov, ako je nedostatok 21-hydroxylázy, alebo iné genetické variácie, ako je mutovaný proteín steroidogénneho faktora-1 (SF-1). Zdá sa však, že stupeň variability nie je konštantný vo všetkých mutáciách AR a v niektorých prípadoch je oveľa extrémnejší. Je známe, že missense mutácie, ktoré vedú k zámene jednej aminokyseliny, spôsobujú najväčšiu fenotypovú rozmanitosť.

Normálna funkcia androgénneho receptora. Testosterón (T) vstupuje do bunky a ak je prítomná 5-alfa-reduktáza, mení sa na dihydrotestón (DHT). Po naviazaní steroidu prechádza androgénny receptor (AR) konformačnou zmenou a uvoľňuje proteíny tepelného šoku (hsps). Fosforylácia (P) nastáva pred alebo po naviazaní steroidov. AR sa premiestni do jadra, kde dochádza k dimerizácii, väzbe na DNA a náboru koaktivátorov. Cieľové gény sa transkribujú (mRNA) a prekladajú do proteínov.

Androgény a androgénny receptor

Účinky, ktoré majú androgény na ľudské telo — virilizácia, maskulinizácia, anabolizmus atď. — nie sú spôsobené samotnými androgénmi, ale sú skôr výsledkom androgénov viazaných na androgénne receptory; androgénny receptor sprostredkúva účinky androgénov v ľudskom tele. Podobne za normálnych okolností je samotný androgénny receptor v bunke neaktívny, kým nedôjde k väzbe androgénov.

Nasledujúca séria krokov znázorňuje, ako androgény a androgénny receptor spolupracujú pri vytváraní androgénnych účinkov:

Takto androgény viazané na androgénne receptory regulujú expresiu cieľových génov, a tým vyvolávajú androgénne účinky.

Teoreticky je možné, aby niektoré mutantné androgénne receptory fungovali bez androgénov; štúdie in vitro preukázali, že mutantný proteín androgénového receptora môže indukovať transkripciu bez prítomnosti androgénov, ak sa odstráni jeho doména viažuca steroidy. Naopak, doména viažuca steroidy môže pôsobiť na potlačenie transaktivačnej domény AR, možno v dôsledku konformácie AR bez väzby.

Sexuálna diferenciácia. Ľudské embryo má indiferentné pohlavné prídavné kanáliky až do siedmeho týždňa vývoja.

Androgény vo vývoji plodu

Ľudské embryá sa počas prvých šiestich týždňov vyvíjajú podobne, bez ohľadu na genetické pohlavie (karyotyp 46,XX alebo 46,XY); jediný spôsob, ako v tomto období rozlíšiť embryá 46,XX alebo 46,XY, je hľadať Barrove telieska alebo chromozóm Y. [80] Pohlavné žľazy sa začínajú ako vypukliny tkaniva nazývané genitálne hrebene v zadnej časti brušnej dutiny, v blízkosti stredovej čiary. Do piateho týždňa sa pohlavné hrebene diferencujú na vonkajšiu kôru a vnútornú dreň a nazývajú sa indiferentné gonády.[80] Do šiesteho týždňa sa indiferentné gonády začínajú diferencovať podľa genetického pohlavia. Ak je karyotyp 46,XY, semenníky sa vyvíjajú vplyvom génu SRY chromozómu Y. Tento proces si nevyžaduje prítomnosť androgénu ani funkčného androgénového receptora.

Približne do siedmeho týždňa vývoja má embryo indiferentné pohlavné prídavné kanáliky, ktoré sa skladajú z dvoch párov kanálikov: Müllerových kanálikov a Wolffových kanálikov.Približne v tomto období semenníky vylučujú anti-Müllerov hormón, ktorý potláča vývoj Müllerových kanálikov a spôsobuje ich degeneráciu.Bez tohto anti-Müllerovho hormónu sa Müllerove kanáliky vyvíjajú do ženských vnútorných pohlavných orgánov (maternica, krčok maternice, vajíčkovody a horný vaginálny súdok).[80] Na rozdiel od Müllerových kanálikov sa Wolffove kanáliky štandardne ďalej nevyvíjajú.[81] V prítomnosti testosterónu a funkčných androgénnych receptorov sa Wolffove kanáliky vyvíjajú do nadsemenníkov, vasa deferentia a semenných vačkov.[82] Ak semenníky nevylučujú testosterón alebo androgénne receptory nefungujú správne, Wolffove kanáliky degenerujú.

Maskulinizácia mužských genitálií závisí od testosterónu aj dihydrotestosterónu.

Maskulinizácia vonkajších genitálií (penisu, penisovej uretry a mieška), ako aj prostaty, závisí od androgénu dihydrotestosterónu [83] [84] [85] [86] Testosterón sa premieňa na dihydrotestosterón pomocou enzýmu 5-alfa reduktázy.[87] Ak tento enzým chýba alebo je nedostatočný, dihydrotestosterón sa nevytvorí a vonkajšie mužské pohlavné orgány sa nevyvinú správne.[83][84][85][86][87] Podobne ako v prípade vnútorných mužských pohlavných orgánov je potrebný funkčný androgénny receptor, aby dihydrotestosterón reguloval transkripciu cieľových génov podieľajúcich sa na vývoji.

Patogenéza syndrómu necitlivosti na androgény

Mutácie v géne pre androgénny receptor môžu spôsobiť problémy v ktoromkoľvek z krokov zapojených do androgenizácie, od syntézy samotného proteínu androgénneho receptora až po transkripčnú schopnosť dimerizovaného komplexu androgén-AR. AIS môže vzniknúť, ak je čo i len jeden z týchto krokov výrazne narušený, pretože každý krok je potrebný na to, aby androgény úspešne aktivovali AR a regulovali expresiu génov. Ktoré kroky konkrétna mutácia naruší, sa dá do určitej miery predpovedať na základe identifikácie oblasti AR, v ktorej sa mutácia nachádza. Táto predpovedná schopnosť má predovšetkým retrospektívny pôvod; rôzne funkčné oblasti génu AR boli objasnené analýzou účinkov špecifických mutácií v rôznych oblastiach AR. Napríklad je známe, že mutácie v doméne viažucej steroidy ovplyvňujú afinitu k androgénom alebo retenciu, mutácie v oblasti závesu ovplyvňujú jadrovú translokáciu, mutácie v doméne viažucej DNA ovplyvňujú dimerizáciu a väzbu na cieľovú DNA a mutácie v transaktivačnej doméne ovplyvňujú reguláciu transkripcie cieľového génu.[81] Bohužiaľ, aj keď je známa postihnutá funkčná doména, je ťažké predpovedať fenotypové dôsledky konkrétnej mutácie (pozri Korelácia genotypu a fenotypu).

Niektoré mutácie môžu mať negatívny vplyv na viac ako jednu funkčnú doménu. Napríklad mutácia v jednej funkčnej doméne môže mať škodlivé účinky na inú doménu tým, že zmení spôsob, akým tieto domény interagujú.Jedna mutácia môže ovplyvniť všetky nadväzujúce funkčné domény, ak vznikne predčasný stop kodón alebo chyba v orámovaní; výsledkom takejto mutácie môže byť úplne nepoužiteľný (alebo nesyntetizovateľný) proteín androgénového receptora. Steroidná väzbová doména je obzvlášť zraniteľná voči účinkom predčasného stop kodónu alebo chyby v orámovaní, pretože sa vyskytuje na konci génu, a preto je pravdepodobnejšie, že jej informácia bude skrátená alebo nesprávne interpretovaná ako u iných funkčných domén.

V dôsledku mutácie AR boli pozorované aj iné, zložitejšie vzťahy; niektoré mutácie spojené s mužskými fenotypmi boli spojené s rakovinou prsníka, rakovinou prostaty alebo v prípade spinálnej a bulbárnej svalovej atrofie s ochorením centrálneho nervového systému.[88][89][90] Forma rakoviny prsníka, ktorá sa vyskytuje u niektorých mužov so syndrómom čiastočnej androgénnej necitlivosti, je spôsobená mutáciou vo väzbovej doméne AR na DNA. 88][90] Predpokladá sa, že táto mutácia spôsobuje narušenie interakcie cieľového génu AR, čo mu umožňuje pôsobiť na určité ďalšie ciele, pravdepodobne v spojení s proteínom estrogénového receptora, a spôsobovať tak rakovinový rast. Etiológia spinálnej a bulbárnej svalovej atrofie (SBMA) dokazuje, že aj samotný mutovaný proteín AR môže viesť k patológii. Rozšírenie polyglutamínového traktu génu AR o trinukleotidové opakovanie, ktoré je spojené so SBMA, vedie k syntéze nesprávne zloženého proteínu AR, ktorý bunka nedokáže správne proteolyzovať a rozptýliť[91]. Tieto nesprávne zložené proteíny AR tvoria agregáty v cytoplazme bunky a v jadre[91]. V priebehu 30 až 50 rokov sa tieto agregáty hromadia a majú cytotoxický účinok, čo nakoniec vedie k neurodegeneratívnym príznakom spojeným so SBMA[91].

Fenotypy, ktoré sú výsledkom necitlivosti na androgény, nie sú pre AIS jedinečné, a preto si diagnóza AIS vyžaduje dôkladné vylúčenie iných príčin. Klinické nálezy svedčiace o AIS zahŕňajú prítomnosť krátkej vagíny [92] alebo nedostatočne maskulinizovaných genitálií, [83] čiastočnú alebo úplnú regresiu Müllerových štruktúr, [93] bilaterálne nedysplastické semenníky [94] a poruchu spermatogenézy a/alebo virilizáciu. Laboratórne nálezy zahŕňajú karyotyp 46,XY a normálne alebo zvýšené postpubertálne hladiny testosterónu, luteinizačného hormónu a estradiolu. Väzbová aktivita androgénov kožných fibroblastov genitálií je zvyčajne znížená,[95] hoci boli hlásené aj výnimky[96].[97] Môže byť narušená premena testosterónu na dihydrotestosterón. Diagnóza AIS sa potvrdí, ak sa sekvenovaním génu pre androgénny receptor odhalí mutácia, hoci nie všetci jedinci s AIS (najmä PAIS) budú mať mutáciu AR (pozri časť Iné príčiny).

Liečba AIS je v súčasnosti obmedzená na symptomatickú liečbu; metódy na odstránenie nefunkčného proteínu androgénneho receptora, ktorý je výsledkom mutácie génu AR, nie sú v súčasnosti k dispozícii. Oblasti manažmentu zahŕňajú pridelenie pohlavia, genitoplastiku, gonadektómiu vo vzťahu k riziku vzniku nádoru, hormonálnu substitučnú liečbu a genetické a psychologické poradenstvo.

Odhady výskytu syndrómu necitlivosti na androgény vychádzajú z relatívne malej populácie, a preto sú známe ako nepresné. Odhaduje sa, že CAIS sa vyskytuje u 1 z každých 20 400 narodených detí 46,XY. [100] Celonárodný prieskum v Holandsku založený na pacientoch s geneticky potvrdenou diagnózou odhaduje, že minimálny výskyt CAIS je 1 z 99 000. Výskyt PAIS sa odhaduje na 1 zo 130 000.[101] Vzhľadom na jeho nenápadný prejav sa MAIS zvyčajne nevyšetruje, s výnimkou prípadov mužskej neplodnosti,[83] a preto jeho skutočný výskyt nie je známy.

Popisy účinkov syndrómu androgénnej necitlivosti sa datujú už stovky rokov, hoci k významnému pochopeniu histopatológie, ktorá je jeho základom, došlo až v 50. rokoch 20. storočia. Taxonómia a názvoslovie spojené s necitlivosťou na androgény prešli významným vývojom, ktorý bol paralelný s týmto pochopením.

Časová os hlavných míľnikov

Prvé opisy účinkov androgénnej necitlivosti sa objavili v lekárskej literatúre ako jednotlivé kazuistiky alebo ako súčasť komplexného opisu intersexuálnych telesných znakov. V roku 1839 škótsky pôrodník Sir James Young Simpson uverejnil jeden takýto opis [111] v rozsiahlej štúdii o intersexualite, ktorá sa zaslúžila o pokrok v chápaní tejto témy v lekárskej komunite.[112] Simpsonov taxonomický systém však nebol zďaleka prvý; taxonómie/opisy na klasifikáciu intersexuality vypracovali taliansky lekár a fyzik Fortuné Affaitati v roku 1549,[113][114] francúzsky chirurg Ambroise Paré v roku 1573,[112][115] francúzsky lekár a priekopník sexuológie Nicolas Venette v roku 1687 (pod pseudonymom Vénitien Salocini)[116][117] a francúzsky zoológ Isidore Geoffroy St. Hilaire v roku 1832.[118] Všetci piati spomínaní autori používali hovorový termín „hermafrodit“ ako základ svojich taxonómií, hoci sám Simpson vo svojej publikácii spochybnil správnosť tohto slova.[111] Používanie slova „hermafrodit“ v lekárskej literatúre pretrváva dodnes,[119][120] hoci jeho správnosť je stále spochybňovaná. Nedávno bol navrhnutý alternatívny systém pomenovania,[121] ale téma, ktoré slovo alebo slová by sa mali presne používať namiesto neho, je stále predmetom mnohých diskusií[98][122][123][124][125].

„Pudenda pseudo-hermafroditi ovini.“ Ilustrácia nejednoznačných genitálií z diela Thesaurus Anitomicus Octavius Frederika Ruyscha z roku 1709 [126].

Nemecko-švajčiarsky patológ Edwin Klebs je niekedy známy tým, že v roku 1876 použil vo svojej taxonómii intersexuality slovo „pseudohermafroditizmus“,[127] hoci toto slovo zjavne nie je jeho vynález, ako sa niekedy uvádza; história slova „pseudohermafrodit“ a príslušná snaha oddeliť „pravé“ hermafrodity od „falošných“, „nepravých“ alebo „pseudo“ hermafroditov siaha prinajmenšom do roku 1709, keď ho holandský anatóm Frederik Ruysch použil v publikácii opisujúcej subjekt s testes a prevažne ženským fenotypom.[126] „Pseudohermafrodit“ sa objavil aj v Acta Eruditorum neskôr v tom istom roku v recenzii Ruyschovej práce. 127] Existujú aj dôkazy, že toto slovo používala nemecká a francúzska lekárska komunita už dávno predtým, ako ho použil Klebs; nemecký fyziológ Johannes Peter Müller prirovnal „pseudohermafroditizmus“ k podtriede hermafroditizmu zo Sv. Hilaira v publikácii z roku 1834[129] a v 40. rokoch 19. storočia sa „pseudohermafroditizmus“ objavil vo viacerých francúzskych a nemeckých publikáciách vrátane slovníkov[130][131][132][133].

V roku 1953 americký gynekológ John Morris poskytol prvý úplný opis toho, čo nazval „syndróm testikulárnej feminizácie“, na základe 82 prípadov zozbieraných z lekárskej literatúry, vrátane dvoch jeho vlastných pacientov.Termín „testikulárna feminizácia“ bol vytvorený ako odraz Morrisovho pozorovania, že semenníky týchto pacientov produkovali hormón, ktorý mal na telo feminizačný účinok, čo je jav, ktorý je v súčasnosti chápaný ako dôsledok nečinnosti androgénov a následnej aromatizácie testosterónu na estrogén. Niekoľko rokov pred tým, ako Morris publikoval svoju prelomovú prácu, Lawson Wilkins vlastnými experimentmi dokázal, že nereagovanie cieľovej bunky na pôsobenie androgénnych hormónov je príčinou „mužského pseudohermafroditizmu“[102]. Wilkinsova práca, ktorá jasne preukázala nedostatok terapeutického účinku pri liečbe 46,XY žien androgénmi, spôsobila postupný posun v názvosloví z „feminizácie semenníkov“ na „androgénnu rezistenciu“[83].

Mnohé z rôznych prejavov syndrómu necitlivosti na androgény dostali osobitný názov, napríklad Reifensteinov syndróm (1947),[135] Goldbergov-Maxwellov syndróm (1948),[136] Morrisov syndróm (1953),[134] Gilbertov-Dreyfusov syndróm (1957),[137] Lubov syndróm (1959),[138] „neúplná feminizácia semenníkov“ (1963),[139] Rosewaterov syndróm (1965),[140] a Aimanov syndróm (1979).[141] Keďže sa nechápalo, že všetky tieto rôzne prejavy sú spôsobené rovnakým súborom mutácií v géne pre androgénny receptor, každej novej kombinácii príznakov sa dal jedinečný názov, čo viedlo ku komplikovanej stratifikácii zdanlivo odlišných porúch[142].

V priebehu posledných 60 rokov, keď sa objavili správy o nápadne odlišných fenotypoch dokonca aj medzi členmi tej istej rodiny a keď sa dosiahol neustály pokrok smerom k pochopeniu základnej molekulárnej patogenézy AIS, sa ukázalo, že tieto poruchy sú rôznymi fenotypovými prejavmi jedného syndrómu spôsobeného molekulárnymi defektmi v géne pre androgénny receptor [142].

Syndróm androgénnej necitlivosti (AIS) je v súčasnosti uznávaná terminológia pre syndrómy vyplývajúce z nedostatočnej reakcie cieľovej bunky na pôsobenie androgénnych hormónov. AIS sa rozdeľuje do troch tried na základe fenotypu: syndróm úplnej necitlivosti na androgény (CAIS), syndróm čiastočnej necitlivosti na androgény (PAIS) a syndróm miernej necitlivosti na androgény (MAIS). CAIS zahŕňa fenotypy, ktoré boli predtým opísané ako „testikulárna feminizácia“, Morrisov syndróm a Goldbergov-Maxwellov syndróm;[143] PAIS zahŕňa Reifensteinov syndróm, Gilbertov-Dreyfusov syndróm, Lubov syndróm, „neúplnú testikulárnu feminizáciu“ a Rosewaterov syndróm;[142][144][145] a MAIS zahŕňa Aimanov syndróm[146].

Virilizovanejšie fenotypy AIS sa niekedy označovali ako „syndróm neplodného muža“, „syndróm neplodného muža“, „syndróm neplodného fertilného muža“ atď., kým sa objavil dôkaz, že tieto stavy sú spôsobené mutáciami v géne pre androgénny receptor. Tieto diagnózy sa používali na opis rôznych miernych porúch virilizácie; v dôsledku toho fenotypy niektorých mužov, ktorí boli takto diagnostikovaní, lepšie opisuje PAIS (napr. mikropenis, hypospadia a nezostúpené semenníky), zatiaľ čo iné lepšie opisuje MAIS (napr. izolovaná neplodnosť alebo gynekomastia)[145][147][148].

hypotyreóza štítnej žľazy (nedostatok jódu, kretenizmus, vrodená hypotyreóza, struma) – hypertyreóza (Gravesova-Basedowova choroba, toxická multinodulárna struma) – tyreoiditída (De Quervainova tyreoiditída, Hashimotova tyreoiditída)
pankreas Diabetes mellitus (typ 1, typ 2, kóma, angiopatia, neuropatia, retinopatia) – Zollingerov-Ellisonov syndróm
prištítne telieska hypoparatyreóza – hyperparatyreóza hyperfunkcia hypofýzy (akromegália, hyperprolaktinémia, ) – hypopituitarizmus Kallmannov syndróm, nedostatok rastového hormónu) – hypotalamo-hypofyzárna dysfunkcia
Cushingov syndróm nadobličiek) – Vrodená hyperplázia nadobličiek (v dôsledku deficitu 21-hydroxylázy) – Bartterov syndróm) – Adrenálna insuficiencia (Addisonova choroba)
gonády – nedostatok 5-alfa-reduktázy – hypogonadizmus – oneskorená puberta – predčasná puberta
iné – – – Psychogénny trpasličí vzrast – Syndróm necitlivosti na androgény –

Chronická granulomatózna choroba (CYBB) – Wiskottov-Aldrichov syndróm – X-viazaná ťažká kombinovaná imunodeficiencia – X-viazaná agammaglobulinémia – Hyper-IgM syndróm typu 1 – IPEX

Hemofília A – Hemofília B – X-viazaná sideroblastická anémia – X-viazaná lymfoproliferatívna choroba

Syndróm necitlivosti na androgény/Kennedyho choroba – Diabetes insipidus

aminokyseliny: Deficit ornitíntranskarbamylázy – okulocerebrorenálny syndróm

dyslipidémia: adrenoleukodystrofia

metabolizmus sacharidov: Deficit glukóza-6-fosfátdehydrogenázy – Deficit pyruvátdehydrogenázy – Danonova choroba/choroba uskladnenia glykogénu typ IIb

porucha ukladania lipidov: Fabryho choroba

mukopolysacharidóza: Hunterov syndróm

metabolizmus purínov a pyrimidínov: Leschov-Nyhanov syndróm

Mentálna retardácia viazaná na chromozóm X: Syndróm krehkého X – MASA syndróm – Rettov syndróm

očné poruchy: Očný albinizmus (1) – Norrieho choroba – Choroiderémia

iné: Charcot-Marie-Toothova choroba (CMTX2-3) – Pelizaeus-Merzbacherova choroba

Dyskeratosis congenita – Hypohidrotická ektodermálna dysplázia (EDA) – X-viazaná ichtyóza

Beckerova svalová dystrofia/Duchenne – Centronukleárna myopatia – Myotubulárna myopatia – Conradiho-Hünermannov syndróm

Alportov syndróm – Dentova choroba

Barthov syndróm – McLeodov syndróm – Simpsonov-Golabiho-Behmelov syndróm

Poznámka: existuje len veľmi málo dominantných porúch viazaných na chromozóm X. Patrí medzi ne X-viazaná hypofosfatémia, fokálna dermálna hypoplázia, Aicardiho syndróm, Incontinentia pigmenti a CHILD.

Kategórie
Psychologický slovník

Hypercholesterolémia

Hypercholesterolémia (doslova: vysoká hladina cholesterolu v krvi) je metabolická porucha, prítomnosť vysokej hladiny cholesterolu v krvi. Nie je to choroba, ale metabolická porucha, ktorá môže byť sekundárnou súčasťou mnohých ochorení a môže prispievať k mnohým formám ochorení, predovšetkým kardiovaskulárnych ochorení. Úzko súvisí s pojmami „hyperlipidémia“ (zvýšená hladina lipidov) a „hyperlipoproteinémia“ (zvýšená hladina lipoproteínov).

Zvýšená hladina cholesterolu nevedie k špecifickým príznakom, pokiaľ nie je dlhodobá. Niektoré typy hypercholesterolémie vedú k špecifickým fyzikálnym nálezom: xantóm (zhrubnutie šliach v dôsledku hromadenia cholesterolu), xanthelasma palpabrum (žltkasté škvrny okolo viečok) a arcus senilis (biele sfarbenie periférnej rohovky).

Pri meraní cholesterolu je dôležité zmerať jeho subfrakcie a až potom vyvodiť záver o príčine problému. Subfrakcie sú LDL, HDL a VLDL. V minulosti sa hladiny LDL a VLDL zriedka merali priamo z dôvodu nákladov. Hladiny VLDL sa odrážajú v hladinách triglyceridov (vo všeobecnosti asi 45 % triglyceridov tvoria VLDL). LDL sa zvyčajne odhadoval ako vypočítaná hodnota z ostatných frakcií (celkový cholesterol mínus HDL a VLDL); táto metóda sa nazýva Friedewaldov výpočet; konkrétne LDL ~= celkový cholesterol – HDL – (0,2 x triglyceridy).

Menej nákladné (a menej presné) laboratórne metódy a Friedewaldov výpočet sa dlho používali kvôli zložitosti, prácnosti a nákladnosti elektroforetických metód vyvinutých v 70. rokoch 20. storočia na identifikáciu rôznych lipoproteínových častíc, ktoré transportujú cholesterol v krvi. Od roku 1980 stáli pôvodné metódy vyvinuté výskumnou prácou v polovici 70. rokov približne 5 tisíc amerických dolárov v roku 1980 na vzorku krvi/osobu.

Postupom času sa vyvinuli pokročilejšie laboratórne analýzy, ktoré merajú veľkosť a hladinu častíc LDL a VLDL, a to pri oveľa nižších nákladoch. Tieto boli čiastočne vyvinuté a stali sa populárnejšími v dôsledku pribúdajúcich dôkazov z klinických štúdií, že zámerná zmena vzorcov transportu cholesterolu, vrátane určitých abnormálnych hodnôt v porovnaní s väčšinou dospelých, má často dramatický účinok na zníženie, dokonca čiastočné zvrátenie aterosklerotického procesu. S pokračujúcim výskumom a pokrokom v laboratórnych metódach sa ceny za sofistikovanejšie analýzy výrazne znížili, v niektorých laboratóriách na menej ako 100 USD, USA 2004, a pri súčasnom zvýšení presnosti merania pri niektorých metódach.

Klasifikácia Fredrickson

Klasicky sa hypercholesterolémia klasifikovala pomocou elektroforézy lipoproteínov a Fredricksonovej klasifikácie. Novšie metódy, ako napríklad „analýza podtried lipoproteínov“, ponúkli významné zlepšenie v pochopení súvislosti s progresiou aterosklerózy a klinickými dôsledkami.

Ak je hypercholesterolémia dedičná (familiárna hypercholesterolémia), často sa v rodine vyskytuje predčasný, skorší nástup aterosklerózy, ako aj familiárny výskyt vyššie uvedených príznakov.

Vysoký cholesterol má viacero sekundárnych príčin:

Všetky tieto tri činnosti vykonávané spoločne môžu mať pozitívny vplyv na hladinu cholesterolu v krvi.

Hoci časť cirkulujúceho cholesterolu pochádza zo stravy a obmedzenie príjmu cholesterolu môže znížiť jeho hladinu v krvi, existujú aj iné súvislosti medzi stravovacím režimom a hladinou cholesterolu. Americká asociácia srdca zostavuje aj zoznam prijateľných/neprijateľných potravín pre tých, ktorí majú diagnostikovanú hypercholesterolémiu.

Hromadia sa dôkazy o tom, že konzumácia väčšieho množstva sacharidov – najmä jednoduchších a rafinovanejších sacharidov – zvyšuje hladinu triglyceridov v krvi, znižuje hladinu HDL a môže zmeniť rozloženie častíc LDL na nezdravé aterogénne vzorce. Nízkotučná diéta, ktorá často znamená vyšší príjem sacharidov, tak môže byť v skutočnosti nezdravou zmenou.

Čoraz viac výskumníkov naznačuje, že hlavným rizikovým faktorom kardiovaskulárnych ochorení sú transmastné kyseliny, a nie nasýtené tuky, ako sa predpokladalo vo Framinghamskej štúdii srdca, a FDA plánuje do roku 2007 revidovať označovanie potravín tak, aby obsahovalo údaje o množstve transmastných kyselín. Množstvo transmastných kyselín sa zatiaľ dá vypočítať z označenia potravín tak, že sa od celkového množstva tukov odpočítajú rôzne uvádzané tuky: transmastné kyseliny = ( celkové tuky – nasýtené tuky – mononenasýtené tuky – polynenasýtené tuky).

Liečba závisí od typu hypercholesterolémie. Fredricksonov typ IIa a IIb možno liečiť diétou, statínmi (najčastejšie rosuvastatín, atorvastatín, simvastatín alebo pravastatín), inhibítormi absorpcie cholesterolu (ezetimib), fibrátmi (gemfibrozil, bezafibrát, fenofibrát alebo ciprofibrát), vitamín B3 (kyselina nikotínová), sekvestranty žlčových kyselín (kolestipol, cholestyramín), LDL aferéza a v dedičných ťažkých prípadoch transplantácia pečene. Liečba je zložitejšia, ak sú v endotelovej krvi prítomné zvýšené hladiny asymetrického dimetylarginínu (ADMA), pretože ADMA znižuje produkciu endotelového oxidu dusnatého, a tým zhoršuje rozsah oxidácie LDL.

U pacientov bez iných rizikových faktorov sa stredne závažná hypercholesterolémia často nelieči. Podľa Framingham Heart Study ľudia vo veku nad 50 rokov nemajú zvýšenú celkovú úmrtnosť ani pri vysokých, ani pri nízkych hladinách cholesterolu v sére. Existuje však korelácia medzi poklesom hladiny cholesterolu počas prvých 14 rokov a úmrtnosťou počas nasledujúcich 18 rokov (11 % celkové a 14 % zvýšenie úmrtnosti na KVO na 1 mg/dl ročného poklesu hladiny cholesterolu). To však neznamená, že pokles sérovej hladiny je nebezpečný, keďže v štúdii ešte nebol zaznamenaný infarkt u osoby s celkovým cholesterolom pod 150 mg/dl.

Na druhej strane, aj keď menej dramaticky ako mnohé kardiovaskulárne postupy, niektorí ľudia, najmä vďaka novším a sofistikovanejším informáciám, menia svoje stravovacie návyky a najmä výživové doplnky, pričom mnohé z nich sú stále na lekársky predpis. Aj keď si vo všeobecnosti neuvedomujú vnútorné zmeny svojich vzorcov transportu cholesterolu, nedávne štúdie preukázali rastúci úspech niektorých z týchto stratégií; pozri časti LDL, HDL a IVUS.

Inými slovami, v klinických štúdiách, ktoré sa začali v 70. rokoch minulého storočia, sa opakovane a čoraz častejšie zisťovalo, že normálne hodnoty cholesterolu nemusia nevyhnutne odrážať zdravé hodnoty cholesterolu. To viedlo k čoraz novšiemu pojmu dyslipidémia, napriek normocholesterolémii. Preto sa čoraz viac uznáva význam „analýzy podtried lipoproteínov“ ako dôležitého prístupu na lepšie pochopenie a zmenu súvislosti medzi transportom cholesterolu a progresiou aterosklerózy.

Viaceré klinické štúdie, z ktorých každá podľa plánu skúma len jednu z viacerých relevantných otázok, čoraz častejšie skúmajú súvislosť medzi týmito otázkami a klinickými dôsledkami aterosklerózy. Medzi lepšie nedávne randomizované štúdie výsledkov na ľuďoch patria ASTEROID, ASCOT-LLA, REVERSAL, PROVE-IT, CARDS, Heart Protection Study, HOPE, PROGRESS, COPERNICUS a najmä novší výskumný prístup využívajúci synteticky vyrobený a intravenózne podávaný ľudský HDL, Apo A-I Milano Trial.

Prieskum, ktorý v máji 2004 zverejnilo Národné centrum pre komplementárnu a alternatívnu medicínu, sa zameral na to, kto, čo a prečo v roku 2002 v Spojených štátoch amerických používal doplnkovú a alternatívnu medicínu (CAM). Podľa tohto prieskumu využívalo CAM na liečbu cholesterolu 1,1 % dospelých Američanov, ktorí využívali CAM v roku 2002 ( tabuľka 3 na strane 9). V súlade s predchádzajúcimi štúdiami sa v tejto štúdii zistilo, že väčšina osôb (t. j. 54,9 %) používala CAM v kombinácii s konvenčnou medicínou (strana 6).

Kategórie
Psychologický slovník

Alopécia

Plešatosť je stav, keď chýbajú vlasy tam, kde často rastú, najmä na hlave. Najčastejšou formou plešatosti je postupné rednutie vlasov nazývané androgénna alopécia alebo „mužská plešatosť“, ktorá sa vyskytuje u dospelých mužov ľudí a iných druhov. Závažnosť a povaha plešatosti sa môže veľmi líšiť; siaha od alopécie mužského a ženského typu (androgénna alopécia, nazývaná aj androgénna alopécia alebo alopécia androgenetica), alopécie areata, ktorá zahŕňa stratu časti vlasov na hlave, alopécie totalis, ktorá zahŕňa stratu všetkých vlasov na hlave, až po najextrémnejšiu formu, alopéciu univerzalis, ktorá zahŕňa stratu všetkých vlasov na hlave a na tele. Liečba rôznych foriem alopécie má obmedzený úspech, ale typická mužská plešatosť je v súčasnosti veľmi dobre preventabilná a (do určitej miery) reverzibilná. Tisíce jednotlivcov dnes využívajú klinicky overené liečebné prípravky, ako sú Avacor, Propecia a nová pena Rogaine, ktoré vykazujú výrazný opätovný rast a zabraňujú ďalšiemu vypadávaniu vlasov. Vo všeobecnosti platí, že čím viac vlasov ste stratili, tým ťažšie sa obnovujú, ale liečby pomôžu drvivej väčšine používateľov a v kozmetickej transplantačnej chirurgii a systémoch na náhradu vlasov existujú nové technológie, ktoré sú úplne nezistiteľné.

Existuje niekoľko ďalších druhov plešatosti:

Termín alopécia (al-oh-PEE-she-uh) vznikol z gréckeho αλώπηξ (alopex), čo znamená líška. Pôvod tohto použitia je v tom, že toto zviera zhodí srsť dvakrát ročne.

Výraz plešatý pravdepodobne pochádza z anglického slova balde, čo znamená „biely, bledý“, alebo z keltského ball, čo znamená „biela škvrna alebo plameň“, napríklad na hlave koňa.

Priemerná ľudská hlava má približne 100 000 vlasových folikulov. Z každého folikulu môže počas života človeka vyrásť približne 20 jednotlivých vlasov. Priemerná strata vlasov je približne 100 prameňov denne.

Mužská plešatosť je charakterizovaná ústupom vlasov z bočných strán čela, tzv. „ustupujúcou vlasovou líniou“.

Na vrchole (vertex) sa môže vytvoriť ďalšia lysina. Spúšťačom tohto typu plešatosti (nazývanej androgénna alopécia) je DHT, silný pohlavný hormón a stimulátor rastu vlasov, ktorý môže nepriaznivo ovplyvniť vlasy a prostatu.

Mužská plešatosť sa klasifikuje na Hamiltonovej-Norwoodovej stupnici I-VIII.

Výskyt plešatosti sa v jednotlivých populáciách líši v závislosti od genetického pozadia. Zdá sa, že faktory prostredia nemajú na tento typ plešatosti veľký vplyv. Jedna rozsiahla štúdia v Maryborough v centrálnej časti štátu Victoria (Austrália) ukázala, že výskyt vypadávania vlasov v strednej časti tváre sa zvyšuje s vekom a postihuje 57 % žien a 73,5 % mužov vo veku 80 rokov a viac.

Mechanizmus, ktorým to DHT dosahuje, zatiaľ nie je známy. V geneticky náchylných vlasoch DHT iniciuje proces miniaturizácie folikulov. Procesom miniaturizácie folikulov sa postupne zmenšuje šírka vlasového stvolu, až kým sa vlasy na hlave nepodobajú na krehké vlasy alebo „broskyňové chumáče“, prípadne sa stanú neexistujúcimi. Vypadávanie vlasov sa niekedy začína už na konci puberty a je väčšinou geneticky podmienené.
Predtým sa predpokladalo, že plešatosť je dedičná. Hoci tento názor má svoje opodstatnenie, k pravdepodobnosti vypadávania vlasov u svojich potomkov prispievajú obaja rodičia. S najväčšou pravdepodobnosťou je dedičnosť technicky „autozomálne dominantná so zmiešanou penetranciou“ (pozri „folklór o plešatosti“ nižšie).

Psychologické príčiny vypadávania vlasov

Evolučné teórie mužskej plešatosti

Ohľadom podrobností vývoja mužskej plešatosti nepanuje zhoda. Väčšina teórií ju považuje za dôsledok pohlavného výberu. Aj u mnohých iných druhov primátov dochádza po dosiahnutí pohlavnej zrelosti k vypadávaniu vlasov a niektoré druhy primátov zjavne využívajú zväčšené čelo, ktoré vzniká anatomicky aj prostredníctvom stratégií, ako je napríklad čelná plešina, na vyjadrenie zvýšeného postavenia a zrelosti. Tvrdenie, že MPB má vyjadrovať sociálny odkaz, podporuje skutočnosť, že distribúcia androgénnych receptorov v pokožke hlavy sa u mužov a žien líši a staršie ženy alebo ženy s vysokou hladinou androgénov často vykazujú difúzne rednutie vlasov na rozdiel od mužskej plešatosti.

Jedna z teórií, ktorú rozvíjajú Muscarella a Cunningham, predpokladá, že plešatosť sa u samcov vyvinula v dôsledku pohlavného výberu ako signál starnutia a sociálnej zrelosti, pričom sa znížila agresivita a ochota riskovať a zvýšilo sa opatrovateľské správanie (1).

V štúdii Muscarella a Cunnhinghama si muži a ženy pozerali 6 mužských modelov s rôznou úrovňou ochlpenia na tvári (brada a fúzy alebo čisté) a s ochlpením na lebke (plná hlava, ustupujúce vlasy a pleš). Účastníci hodnotili každú kombináciu na základe 32 prídavných mien týkajúcich sa sociálneho vnímania. Muži s fúzikmi a muži s plešinou alebo ustupujúcimi vlasmi boli hodnotení ako starší ako tí, ktorí boli oholení na čisto alebo mali celú hlavu vlasov. Brady a plná hlava vlasov boli vnímané ako agresívnejšie a menej sociálne zrelé a plešatosť bola spojená s väčšou sociálnou zrelosťou.

Psychologické dôsledky vypadávania vlasov sa u jednotlivcov veľmi líšia. Niektorí ľudia sa na zmenu prispôsobia pohodlne, zatiaľ čo iní majú vážne problémy spojené s úzkosťou, depresiou, sociálnou fóbiou a v niektorých prípadoch aj so zmenou identity.

Astronaut NASA vo výslužbe Story Musgrave.

Uvádza sa, že alopécia vyvolaná chemoterapiou rakoviny spôsobuje zmeny v sebavedomí a obraze tela. Po opätovnom narastení vlasov sa u väčšiny pacientov obraz tela nevráti do pôvodného stavu. V takýchto prípadoch majú pacienti problémy s vyjadrovaním svojich pocitov (čo sa nazýva alexitýmia) a môžu byť náchylnejší vyhýbať sa rodinným konfliktom. Rodinná terapia môže pomôcť rodine vyrovnať sa s týmito psychologickými problémami, ak sa vyskytnú.

Psychické problémy spôsobené plešatosťou, ak sú prítomné, sú zvyčajne najzávažnejšie na začiatku príznakov.

Niektorí plešatí muži môžu byť na svoju plešatosť hrdí a cítiť príbuzenský vzťah so slávnymi charizmatickými plešatými mužmi, ako sú Telly Savalas, Patrick Stewart, Sean Connery, Yul Brynner, Billy Corgan, Vin Diesel, Michael Chiklis, Michael Stipe, Ross Kemp, Jason Alexander, Larry David, Danny De Vito, Ben Kingsley alebo Bruce Willis; alebo politici ako Ed Koch, John Reid, Menzies Campbell a James Carville; alebo športovci ako wrestler Stone Cold Steve Austin, futbalisti Zinedine Zidane, Bobby Charlton alebo tenisová hviezda Andre Agassi. Veľká časť vnímania mužnosti a fešáctva týchto celebrít sa odvíja od ich najviditeľnejšieho rozlišovacieho znaku. Plešatosť sa v posledných rokoch v každom prípade stala menej (údajnou) príťažou, pretože medzi mužmi, aspoň v západných krajinách, je čoraz viac v móde veľmi krátke alebo dokonca úplne vyholené ochlpenie. Platí to dokonca aj pre ženy, ako ukazuje prípad speváčky Sinead O’Connor, ktorá má vyholenú hlavu.

Mnohé spoločnosti vybudovali úspešný biznis na predaji produktov, ktoré zvracajú plešatosť, údajne obnovujú vlasy, transplantujú vlasy alebo predávajú príčesky. Existuje len veľmi málo dôkazov o tom, že niektorý z produktov, ktoré tvrdia, že vlasy rastú, skutočne funguje.

Prevencia a zvrátenie vypadávania vlasov

V USA existujú len 2 liečebné postupy, ktoré schválila FDA (Food and Drug Administration), a jeden produkt, ktorý FDA povolila na liečbu androgénnej alopécie, inak známej ako vypadávanie vlasov u mužov alebo žien. Tieto dve liečby schválené FDA sú finasterid (predávaný na vypadávanie vlasov ako Propecia) a minoxidil.

Spoločnosť Merck Pharmaceuticals sa snažila nájsť najmenšie účinné množstvo finasteridu a otestovať jeho dlhodobé účinky na 1 553 mužoch vo veku 18 až 41 rokov s miernym až stredne silným rednutím vlasov. Na základe ich výskumu bola zvolená dávka 1 mg denne a po 2 rokoch každodennej liečby si viac ako 83 % z 1 553 mužov, u ktorých došlo k vypadávaniu mužských vlasov, skutočne udržalo alebo zvýšilo počet vlasov oproti východiskovému stavu. Vizuálne hodnotenia dospeli k záveru, že u viac ako 80 % sa zlepšil vzhľad.

Minoxidil sa najprv používal vo forme tabliet ako liek na liečbu vysokého krvného tlaku, ale zistilo sa, že u niektorých pacientov liečených minoxidilom sa ako vedľajší účinok objavil nadmerný rast vlasov (hypertrichóza). Ďalší výskum ukázal, že aplikácia Minoxidilu vo forme roztoku priamo na pokožku hlavy by mohla byť prospešná pre tých, ktorí trpia lokálnym vypadávaním vlasov.

Klinické štúdie FDA ukázali, že 65 % mužov s androgénnou alopeciou si pri používaní minoxidilu 5 % v tekutej forme zachovalo alebo zvýšilo počet vlasov. U 54 % týchto mužov došlo k stredne silnému až silnému opätovnému rastu vlasov a u 46 % k stabilizácii vypadávania vlasov a miernemu opätovnému rastu vlasov.

V kontrolovaných klinických štúdiách na ženách vo veku 18-45 rokov 2 z 3 žien so stredným stupňom dedičného vypadávania vlasov po použití 2% minoxidilu zaznamenali opätovný rast vlasov. Počiatočné výsledky sa dostavili po 4 mesiacoch, pričom maximálne výsledky sa dostavili po 8 mesiacoch.

V testovacej správe FDA sa uvádza, že subjekty, ktoré používali liečbu, „mali výrazne väčší nárast priemernej terminálnej hustoty vlasov“ ako subjekty, ktoré v testoch používali placebo.

Ako napovedá názov zariadenia, kombinuje nízkoúrovňový laser s hrebeňom. Keď sa laser pretiahne cez vlasy, zasiahne pokožku hlavy a podporí rast vlasov.

LaserComb je jediný výrobok bez liekov určený na domáce použitie v boji proti vypadávaniu vlasov, ktorý získal súhlas Úradu pre kontrolu potravín a liečiv.

Za najúčinnejšiu formu nechirurgickej liečby vypadávania vlasov sa považuje kombinácia liečby schválenej FDA. [Ako odkazovať a odkazovať na zhrnutie alebo text]

Chirurgický zákrok je ďalšou metódou zvrátenia vypadávania vlasov a plešatosti, hoci sa môže považovať za extrémne opatrenie. Medzi používané chirurgické metódy patrí transplantácia vlasov, pri ktorej sa zo zadnej a bočnej časti hlavy odoberú vlasové folikuly a vstreknú sa do plešatých alebo rednúcich oblastí.

Do budúcnosti sa ukazuje, že perspektívna liečba rozmnožovaním vlasov/klonovaním vlasov, ktorá extrahuje samoreplikujúce sa kmeňové bunky folikulov, mnohonásobne ich rozmnožuje v laboratóriu a mikroinjekčne ich vpravuje do pokožky hlavy, funguje na myšiach a v súčasnosti sa vyvíja, pričom niektorí vedci očakávajú, že bude k dispozícii verejnosti v rokoch 2009 – 2015. Niektorí vedci očakávajú, že následné verzie liečby budú schopné spôsobiť, že tieto folikulárne kmeňové bunky jednoducho vyšlú signál okolitým vlasovým folikulom, aby sa omladili. Pozri časť Liečba plešatosti

V októbri 2006 britská biotechnologická spoločnosť Intercytex oznámila, že úspešne otestovala metódu odoberania vlasových folikulov zo zadnej časti krku, ich množenia a následnej reimplantácie buniek do pokožky hlavy (Hair multiplication). Výsledkom počiatočného testovania bolo, že 70 % pacientov mužského pohlavia znovu narástli vlasy. Očakáva sa, že táto liečebná metóda bude verejnosti k dispozícii do roku 2009 .

V januári 2007 talianski výskumníci zaoberajúci sa kmeňovými bunkami tvrdili, že prišli s novou technikou liečby plešatosti. Pierluigi Santi z kliniky v Janove povedal, že kmeňové bunky by sa mohli použiť na „rozmnoženie“ vlasových korienkov. Povedal, že klinika bude pripravená vykonať prvé transplantácie vlasov prioritným pacientom – tým, ktorí prišli o vlasy pri požiaroch alebo iných nehodách – v priebehu niekoľkých mesiacov. Potom, povedal, „otvoríme dvere platiacim zákazníkom“. Santiho prístup funguje tak, že rozdeľuje korienky a pestuje nové folikuly.

Lokálna aplikácia ketokonazolu, ktorý je protiplesňovým a zároveň silným inhibítorom 5-alfa reduktázy, sa často používa ako doplnok k iným prístupom.1

Jednotlivé nenasýtené mastné kyseliny, ako napríklad kyselina gama linolénová, sú inhibítormi 5 alfa reduktázy, ak sa užívajú vnútorne.

Je zaujímavé, že placebo liečba v štúdiách má často primeranú úspešnosť, hoci nie takú vysokú ako testované produkty, a dokonca aj podobné vedľajšie účinky ako produkty. Napríklad v štúdiách s finasteridom (Propecia) bolo percento pacientov s akoukoľvek sexuálnou nežiaducou skúsenosťou súvisiacou s liekom 3,8 % v porovnaní s 2,0 % v skupine s placebom.

Štúdie vykonané na subjektoch rôzneho veku naznačujú, že samotný silový tréning môže zvýšiť testosterón v štúdiách, v ktorých sa porovnávalo buď aeróbne cvičenie (len) so silovým tréningom (len) alebo mierne sedavým životom;

Jedna štúdia naznačuje, že na zvýšenie voľného testosterónu u silových trénerov je potrebná kombinácia ťažkého cvičenia a zvýšeného príjmu tukov. To by im pomohlo budovať svaly, ale môže spôsobiť, že náchylní jedinci stratia vlasy.

Existuje však aspoň jedna štúdia, ktorá naznačuje pokles voľného testosterónu v kombinácii so zvýšením sily v dôsledku (nešpecifikovaného) silového tréningu.

Zníženie stresu môže byť užitočné pri spomalení vypadávania vlasov. (pozri časť Ľudová slovesnosť o plešatosti)

Bolo preukázané, že imunosupresíva aplikované na pokožku hlavy dočasne zvrátia alopéciu areata, hoci vedľajšie účinky niektorých z týchto liekov robia takúto liečbu spornou.

Saw Palmetto (Serenoa repens) je bylinný inhibítor DHT, o ktorom sa často tvrdí, že je lacnejší a má menej vedľajších účinkov ako finasterid a dutasterid. Na rozdiel od iných inhibítorov 5alfa-reduktázy vyvoláva Serenoa repens svoje účinky bez toho, aby zasahovala do bunkovej schopnosti vylučovať PSA.
Bolo preukázané, že extrakt zo Saw palmetta inhibuje obe izoformy 5-alfa-reduktázy na rozdiel od finasteridu, ktorý inhibuje len (prevažujúci) izoenzým typu 2 5-alfa-reduktázy.

Polygonum Multiflorum je tradičný čínsky liek na vypadávanie vlasov. Bez ohľadu na to, či je samotná rastlina užitočná, všeobecná bezpečnosť a kontrola kvality bylín dovážaných z Číny môže byť otázna.

Beta sitosterol, ktorý je súčasťou mnohých olejov zo semien, môže pomôcť pri liečbe BHP znížením hladiny cholesterolu. Ak sa používa na tento účel, najlepší je extrakt. Konzumácia veľkého množstva oleja na získanie malého množstva beta sitosterolu pravdepodobne zhorší mužskú plešatosť.

Resveratrol zo šupiek hrozna.

Aj keď sú drastické, širokospektrálne antiandrogény, ako je flutamid, sa niekedy používajú lokálne. Flutamid je dostatočne silný na to, aby mal u mužov feminizačný účinok vrátane rastu prsníkov.

V marci 2006 spoločnosť Curis oznámila, že získala prvý predklinický míľnik, platbu v hotovosti vo výške 1 000 000 USD, v rámci svojho programu rastu vlasov so spoločnosťou Procter & Gamble Pharmaceuticals, divíziou spoločnosti The Procter & Gamble Company. Program je zameraný na potenciálny vývoj lokálneho agonistu Hedgehog na poruchy rastu vlasov, ako je napríklad mužská plešatosť a vypadávanie vlasov u žien. Výskumný program curis na liečbu vypadávania vlasov bol v máji 2007 zastavený, pretože proces nespĺňal príslušné bezpečnostné normy.

V máji 2007 americká spoločnosť Follica Inc. oznámila, že získala licenciu od Pensylvánskej univerzity na technológiu, ktorá dokáže regenerovať vlasové folikuly opätovným prebudením génov, ktoré boli kedysi aktívne len v embryonálnom štádiu vývoja človeka.

Jednou z metód zakrytia vypadávania vlasov je „česanie“, ktoré spočíva v úprave zostávajúcich vlasov tak, aby zakryli plešatú oblasť. Zvyčajne ide o dočasné riešenie, ktoré je užitočné len dovtedy, kým je oblasť vypadávania vlasov malá. Keď sa vypadávanie vlasov zväčšuje, hrebeň sa stáva menej účinným. Keď to dosiahne štádium extrémnej námahy s malým účinkom – môže sa stať, že osoba sa stane predmetom posmeškov alebo opovrhovania.

Ďalšou metódou je nosenie klobúka alebo príčesku – parochne alebo príčesku. Parochňa je vrstva umelých alebo prírodných vlasov vyrobená tak, aby pripomínala typický účes. Vo väčšine prípadov sú vlasy umelé. Parochne sa značne líšia kvalitou a cenou. V Spojených štátoch stoja najlepšie parochne – tie, ktoré vyzerajú ako pravé vlasy – až desaťtisíce dolárov. Organizácie ako Wigs for Kids a Locks of Love zbierajú od jednotlivcov ich vlastné prirodzené vlasy, z ktorých sa vyrábajú parochne pre mladých pacientov s rakovinou, ktorí prišli o vlasy v dôsledku chemoterapie alebo inej liečby rakoviny, ako aj akéhokoľvek iného typu straty vlasov.

Hoci to nie je tak časté ako vypadávanie vlasov na hlave, chemoterapia, hormonálna nerovnováha, formy alopécie a iné faktory môžu tiež spôsobiť vypadávanie vlasov v obočí. Na nahradenie chýbajúceho obočia alebo na zakrytie nejednotného obočia sú k dispozícii umelé obočia.

Herec Telly Savalas si počas svojej hereckej kariéry udržiaval vyholenú hlavu a bradu

Samozrejme, namiesto toho, aby ste vypadávanie vlasov skrývali, môžete ho prijať. Na oholenej hlave rastie strnisko rovnakým spôsobom a rovnakou rýchlosťou ako na oholenej tvári. Mnohé celebrity a športovci si holia hlavy. Široká verejnosť tiež prijala oholenú hlavu.

Ženská plešatosť je spoločensky menej akceptovaná.

Gén LIPH vytvára proteín LIPH, ktorý nie je úplne známy, ale zdá sa, že zohráva úlohu pri normálnej tvorbe a raste vlasov.“

„Takzvaný gén pre bezvláskovosť funguje tak, že potláča produkciu proteínu nazývaného wise, ktorý môže brániť rastu vlasov, ak sa nahromadí.“

Kategórie
Psychologický slovník

Čuchový systém

Čuchový systém je zmyslový systém používaný na čuch.

Sú spojené s čuchovými receptormi, ktoré sa viažu s aromatickými zlúčeninami a poskytujú signály, ktoré poskytujú zážitok [[vône]].

Čuchový systém musí plniť niekoľko úloh:

Na plnenie všetkých týchto funkcií využíva čuchový systém mnoho oblastí mozgu. Reprezentácia pachu môže byť zakódovaná priestorovo (vzor aktivovaných neurónov v danej čuchovej oblasti zodpovedá pachu), časovo (vzor akčných potenciálov viacerých neurónov zodpovedá pachu) alebo ich kombináciou. Vedci diskutujú o tom, či je kód pachu primárne časový alebo priestorový.

Vesaliova Fabrica, 1543. Ľudské čuchové cibuľky a čuchové dráhy vyznačené červenou farbou

U cicavcov sa pachové látky vdychujú cez nos, kde sa dostávajú do kontaktu s čuchovým epitelom. Neuróny čuchových receptorov v čuchovom epiteli prenášajú molekulárne vlastnosti pachových látok na elektrické signály, ktoré sa potom šíria čuchovým nervom do čuchového bulbu. Axóny z čuchových senzorických neurónov sa zbiehajú v čuchovom bulbe a vytvárajú spleť nazývanú glomerulus (jednotné číslo glomerulus). Vo vnútri glomuleru sa axóny dotýkajú dendritov mitochondrií a niekoľkých ďalších typov buniek. Mitrálne bunky posielajú svoje axóny do viacerých oblastí mozgu vrátane píriformnej kôry, mediálnej amygdaly a entorhinálnej kôry.

Umiestnenie amygdaly v každej hemisfére ľudského mozgu

Piriformná kôra je pravdepodobne oblasť, ktorá je najviac spojená s identifikáciou zápachu. Mediálna amygdala sa podieľa na sociálnych funkciách, ako je párenie a rozpoznávanie zvierat rovnakého druhu. Entorhinálna kôra je spojená s pamäťou. Presné funkcie týchto vyšších oblastí sú predmetom vedeckého výskumu a diskusií.

K poškodeniu čuchového systému môže dôjsť v dôsledku traumatického poranenia mozgu, rakoviny, vdýchnutia toxických výparov alebo neurodegeneratívnych ochorení, ako je Parkinsonova a Alzheimerova choroba. Tieto stavy môžu spôsobiť anosmiu alebo parosmiu. Lekári môžu zistiť poškodenie čuchového systému tak, že pacientovi predložia pachy prostredníctvom kartičky na škrabanie a čuchanie alebo tak, že pacient zavrie oči a pokúsi sa identifikovať bežne dostupné pachy, ako je káva alebo mätové cukríky.

Prídavný čuchový systém vníma feromóny.

O čuchovom systéme sa často hovorí spolu s chuťovým systémom ako o chemosenzorických zmysloch, pretože oba prenášajú chemické signály na vnemy.

Čuchové žľazy – Čuchová sliznica – Sustentakulárna bunka

Neuróny čuchového receptora (Čuchový receptor) → Čuchový bulbus (Glomeruly)

Mitrálne bunky → Čuchový trakt → Čuchový trigon

Piriformná kôra – systém EC-hipokampus (Entorhinálna kôra, Hipokampálna formácia) – Prepyriformná oblasť – Periamygdaloidná kôra

Stria medullaris → Habenulárne jadrá

Amygdala → Stria terminalis → Hypotalamus

Mediálny zväzok predného mozgu → hypotalamus

Predné čuchové jadro