Kategórie
Psychologický slovník

Vývoj neurónov

Vývoj nervovej sústavy zahŕňa procesy, ktoré vytvárajú, formujú a pretvárajú nervovú sústavu od najranejších štádií embryogenézy až po posledné roky života. Cieľom štúdia nervového vývoja je opísať bunkový základ vývoja mozgu a zaoberať sa základnými mechanizmami. Táto oblasť čerpá z neurovedy aj vývojovej biológie, aby poskytla pohľad na bunkové a molekulárne mechanizmy, pomocou ktorých sa vyvíjajú zložité nervové systémy. Defekty v nervovom vývoji môžu viesť ku kognitívnemu, motorickému a intelektuálnemu postihnutiu, ako aj k neurologickým poruchám, ako je autizmus, Rettov syndróm a mentálna retardácia.

Prehľad vývoja mozgu

Mozog vzniká počas embryonálneho vývoja z neurálnej trubice, čo je raná embryonálna štruktúra. Najprednejšia časť neurálnej trubice sa nazýva telencefalón, ktorý sa rýchlo rozširuje v dôsledku proliferácie buniek a nakoniec z neho vzniká mozog. Postupne sa niektoré bunky prestanú deliť a diferencujú sa na neuróny a gliové bunky, ktoré sú hlavnými bunkovými zložkami mozgu. Novovzniknuté neuróny migrujú do rôznych častí vyvíjajúceho sa mozgu a samoorganizujú sa do rôznych mozgových štruktúr. Keď neuróny dosiahnu svoje regionálne pozície, predlžujú axóny a dendrity, ktoré im umožňujú komunikovať s inými neurónmi prostredníctvom synapsií. Synaptická komunikácia medzi neurónmi vedie k vytvoreniu funkčných nervových obvodov, ktoré sprostredkúvajú senzorické a motorické procesy a sú základom správania.

Vysoko schematická schéma vývoja ľudského mozgu.

Aspekty nervového vývoja

Niektoré medzníky nervového vývoja zahŕňajú zrod a diferenciáciu neurónov z prekurzorov kmeňových buniek, migráciu nezrelých neurónov z miesta ich zrodu v embryu do ich konečnej polohy, vyrastanie axónov a dendritov z neurónov, vedenie pohyblivého rastového kužeľa embryom smerom k postsynaptickým partnerom, vytváranie synapsií medzi týmito axónmi a ich postsynaptickými partnermi a napokon celoživotné zmeny v synapsiách, ktoré sú považované za základ učenia a pamäti.

Vývojová neuroveda využíva rôzne živočíšne modely vrátane myší Mus musculus , ovocných mušiek Drosophila melanogaster , zebričiek Danio rerio , hlaváčov Xenopus laevis a červov Caenorhabditis elegans a ďalších.

Počas skorého embryonálneho vývoja sa ektoderma špecifikuje tak, aby dala vzniknúť epiderme (koži) a neurálnej platničke. Premena nediferencovaného ektodermu na neuroektoderm si vyžaduje signály z mezodermu. Na začiatku gastrulácie sa predpokladané mezodermálne bunky presúvajú cez dorzálny blastopór a vytvárajú vrstvu medzi endodermom a ektodermom. Tieto mezodermálne bunky, ktoré migrujú pozdĺž dorzálnej stredovej línie, dávajú vzniknúť štruktúre nazývanej notochord. Ektodermálne bunky prekrývajúce notochord sa vyvíjajú do neurálnej platničky ako odpoveď na difúzny signál produkovaný notochordom. Zo zvyšku ektodermy vzniká epiderma (koža). Schopnosť mezodermy premeniť nadložný ektoderm na nervové tkanivo sa nazýva neurálna indukcia.

Neurálna platnička sa v treťom týždni gravidity prehýba smerom von a vytvára neurálnu ryhu. Od budúcej oblasti krku sa neurálne záhyby tejto ryhy uzatvárajú a vytvárajú neurálnu trubicu. Tvorba neurálnej trubice z ektodermy sa nazýva neurulácia. Predná (predná) časť neurálnej trubice sa nazýva bazálna platnička; zadná (zadná) časť sa nazýva alárna platnička. Dutý vnútrajšok sa nazýva neurálny kanál. Koncom štvrtého týždňa tehotenstva sa otvorené konce neurálnej trubice (neuropóry) uzavrú.

Identifikácia nervových induktorov

Transplantovaný blastoporálny pysk môže premeniť ektoderm na nervové tkanivo a hovorí sa, že má indukčný účinok. Neurálne induktory sú molekuly, ktoré môžu indukovať expresiu neurálnych génov v explantátoch ektodermy bez toho, aby indukovali aj mezodermálne gény. Neurálna indukcia sa často študuje na embryách Xenopus, pretože majú jednoduchý telesný vzor a existujú dobré markery na rozlíšenie neurálneho a neurálneho tkaniva. Príkladom neurálnych induktorov sú molekuly Noggin a Chordin.

Keď sa embryonálne ektodermálne bunky kultivujú pri nízkej hustote v neprítomnosti mezodermálnych buniek, podliehajú neurálnej diferenciácii (exprimujú neurálne gény), čo naznačuje, že neurálna diferenciácia je predvoleným osudom ektodermálnych buniek. V explantátových kultúrach (ktoré umožňujú priame interakcie medzi bunkami) sa tie isté bunky diferencujú na epidermu. Je to spôsobené pôsobením BMP4 (proteínu rodiny TGF-β), ktorý indukuje diferenciáciu ektodermálnych kultúr na epidermis. Počas neurálnej indukcie sú Noggin a Chordin produkované dorzálnym mezodermom (notochordom) a difundujú do nadväzujúceho ektodermu, aby inhibovali aktivitu BMP4. Táto inhibícia BMP4 spôsobuje diferenciáciu buniek na neurálne bunky.

Koncom štvrtého týždňa sa horná časť neurálnej trubice ohýba na úrovni budúceho stredného mozgu – mezencefala. Nad mezencefalom je prosencefalon (budúci predný mozog) a pod ním je rombencefalon (budúci zadný mozog).

Optický mechúrik (ktorý sa nakoniec stane zrakovým nervom, sietnicou a dúhovkou) sa vytvára na bazálnej platničke prosencefala. Alárna platňa prosencefala sa rozširuje a vytvára mozgové hemisféry (telencefalon), zatiaľ čo jeho bazálna platňa sa stáva diencefalonom. Nakoniec sa optický mechúrik zväčší a vytvorí optický výrastok.

Vzorkovanie nervového systému

U chordátov tvorí dorzálny ektoderm celé nervové tkanivo a nervovú sústavu. K modelovaniu dochádza v dôsledku špecifických podmienok prostredia – rôznych koncentrácií signálnych molekúl

Ventrálnu polovicu neurálnej platničky ovláda notochord, ktorý funguje ako „organizátor“. Dorzálnu polovicu ovláda ektodermová platnička, ktorá lemuje neurálnu platničku z oboch strán.

Ektoderm sa štandardnou cestou stáva nervovým tkanivom. Dôkazom toho sú jednotlivé kultivované bunky ektodermy, z ktorých sa vytvorí nervové tkanivo. Predpokladá sa, že je to spôsobené nedostatkom BMP, ktoré sú blokované organizátorom. Organizátor môže produkovať molekuly ako follistatín, noggin a chordin, ktoré inhibujú BMP.

Ventrálna neurálna trubica je modelovaná Shh z notochordu, ktorý funguje ako indukčné tkanivo. Induktor Shh spôsobuje diferenciáciu podlahovej dosky. Shh-nulové tkanivo nedokáže vytvoriť všetky typy buniek ventrálnej trubice, čo naznačuje, že Shh je potrebný na jej indukciu. Predpokladaný mechanizmus naznačuje, že Shh viaže patch, čím zmierňuje inhibíciu patch hladkého konca, čo vedie k aktivácii transkripčných faktorov gli.

V tomto kontexte Shh pôsobí ako morfogén – indukuje diferenciáciu buniek v závislosti od svojej koncentrácie. Pri nízkych koncentráciách vytvára ventrálne interneuróny, pri vyšších koncentráciách indukuje vývoj motorických neurónov a pri najvyšších koncentráciách indukuje diferenciáciu dnových platničiek. Zlyhanie diferenciácie modulovanej Shh spôsobuje haloprosencefáliu.

Dorzálna neurálna trubica sa formuje pomocou BMP z epidermálneho ektodermu, ktorý obklopuje neurálnu platničku. Tie indukujú senzorické interneuróny aktiváciou Sr/Thr kináz a zmenou hladín transkripčných faktorov SMAD.

Dorzoventrálna indukcia ventrálneho tkaniva exprimuje charakteristické predné tkanivo. Diferenciáciu zadných tkanív riadia aj iné signály vrátane FGF a kyseliny retinovej.

Napríklad zadný mozog je modelovaný Hox génmi, ktoré sa exprimujú v prekrývajúcich sa oblastiach pozdĺž prednej a zadnej osi. 5′ gény v tomto zoskupení a exprimujú sa najviac vzadu. Hoxb-1 je exprimovaný v rhombomere 4 a dáva vznik tvárovému nervu. Bez expresie tohto Hoxb-1 vzniká nerv, ktorý je podobný trojklannému nervu.

Kortikogenéza: mladšie neuróny migrujú za staršími pomocou radiálnych glií ako lešenia. Cajalove-Retziove bunky (červené) uvoľňujú reelín (oranžový).

Migrácia neurónov je spôsob, akým sa neuróny presúvajú z miesta svojho vzniku alebo zrodu na konečné miesto v mozgu. Existuje niekoľko spôsobov, ako to môžu robiť, napr. radiálnou migráciou alebo tangenciálnou migráciou. (pozri časozberné sekvencie radiálnej migrácie (známej aj ako gliové vedenie) a somálnej translokácie).

Tangenciálna migrácia interneurónov z gangliovej eminencie.

Radiálna migrácia
Neuronálne prekurzorové bunky sa množia vo ventrikulárnej zóne vyvíjajúceho sa neokortexu. Prvé postmitotické bunky, ktoré migrujú, tvoria preplát, ktorý je určený na to, aby sa stal Cajal-Retziovými bunkami a subplátovými neurónmi. Tieto bunky tak robia somálnou translokáciou. Neuróny migrujúce týmto spôsobom lokomócie sú bipolárne a pripájajú sa predným okrajom procesu k pia. Soma sa potom transportuje na povrch pionu nukleokinézou, čo je proces, pri ktorom sa mikrotubulárna „klietka“ okolo jadra predlžuje a kontrahuje v spojení s centrozómom, aby viedla jadro na konečné miesto určenia. Radiálna glia, ktorej vlákna slúžia ako lešenie pre migrujúce bunky, sa môže sama deliť alebo premiestniť na kortikálnu platničku a diferencovať sa buď na astrocyty, alebo na neuróny. K somálnej translokácii môže dôjsť kedykoľvek počas vývoja.

Následné vlny neurónov rozdeľujú preplatňu migráciou pozdĺž radiálnych gliových vlákien a vytvárajú kortikálnu platňu. Každá vlna migrujúcich buniek sa pohybuje okolo svojich predchodcov a vytvára vrstvy smerom dovnútra, čo znamená, že najmladšie neuróny sú najbližšie k povrchu. Odhaduje sa, že migrácia vedená gliou predstavuje 90 % migrujúcich neurónov u ľudí a približne 75 % u hlodavcov.

Tangenciálna migrácia
Väčšina interneurónov migruje tangenciálne prostredníctvom viacerých spôsobov migrácie, aby sa dostali na príslušné miesto v kôre. Príkladom tangenciálnej migrácie je pohyb interneurónov z gangliovej eminencie do mozgovej kôry. Jedným z príkladov prebiehajúcej tangenciálnej migrácie v zrelom organizme, pozorovanej u niektorých zvierat, je rostrálny migračný prúd spájajúci subventrikulárnu zónu a čuchový bulbus.

Iné spôsoby migrácie
Existuje aj spôsob migrácie neurónov nazývaný multipolárna migrácia. Tá sa prejavuje v multipolárnych bunkách, ktoré sú hojne zastúpené v kortikálnej intermediálnej zóne. Nepodobajú sa na bunky migrujúce lokomóciou alebo somálnou translokáciou. Namiesto toho tieto multipolárne bunky exprimujú neuronálne markery a vysúvajú početné tenké výbežky rôznymi smermi nezávisle od radiálnych gliových vlákien.

Nervový rastový faktor (NGF): Rita Levi Montalcini a Stanley Cohen purifikovali prvý trofický faktor, nervový rastový faktor (NGF), za čo dostali Nobelovu cenu. Existujú tri trofické faktory súvisiace s NGF: BDNF, NT3 a NT4, ktoré regulujú prežívanie rôznych populácií neurónov. Proteíny Trk fungujú ako receptory pre NGF a príbuzné faktory. Trk je receptorová tyrozínkináza. Dimerizácia a fosforylácia Trk vedie k aktivácii rôznych vnútrobunkových signálnych dráh vrátane dráh MAP kinázy, Akt a PKC.

CNTF: Ciliárny neurotrofický faktor je ďalší proteín, ktorý pôsobí ako faktor prežitia motorických neurónov. CNTF pôsobí prostredníctvom receptorového komplexu, ktorý zahŕňa CNTFRα, GP130 a LIFRβ. Aktivácia receptora vedie k fosforylácii a náboru kinázy JAK, ktorá následne fosforyluje LIFRβ. LIFRβ pôsobí ako dokovacie miesto pre transkripčné faktory STAT. Kináza JAK fosforyluje proteíny STAT, ktoré sa oddeľujú od receptora a premiestňujú sa do jadra, aby regulovali expresiu génov.

GDNF: Gliálny neurotrofický faktor je členom rodiny proteínov TGFb a je silným trofickým faktorom pre striatálne neuróny. Funkčný receptor je heterodimér, ktorý sa skladá z receptorov typu 1 a typu 2. Aktivácia receptora typu 1 vedie k fosforylácii proteínov Smad, ktoré sa premiestňujú do jadra a aktivujú expresiu génov.

Neuromuskulárne spojenie
Veľká časť našich poznatkov o tvorbe synapsií pochádza zo štúdií na neuromuskulárnom spojení. Vysielačom v tejto synapsii je acetylcholín. Acetylcholínový receptor (AchR) je prítomný na povrchu svalových buniek pred vytvorením synapsy. Príchod nervu vyvolá zoskupenie receptorov v synapsii. McMahan a Sanes ukázali, že synaptogénny signál sa sústreďuje na bazálnej lamine. Ukázali tiež, že synaptogénny signál je produkovaný nervom, a tento faktor identifikovali ako agrín. Agrin vyvoláva zoskupenie AchRs na povrchu svalu a u myší s knockoutom agrinu je narušená tvorba synapsií. Agrin prenáša signál cez receptor MuSK na rapsyn. Fischbach a jeho kolegovia ukázali, že receptorové podjednotky sa selektívne prepisujú z jadier vedľa miesta synaptického výskytu. Je to sprostredkované neuregulínmi.

V zrelej synapsii je každé svalové vlákno inervované jedným motorickým neurónom. Počas vývoja sú však mnohé vlákna inervované viacerými axónmi. Lichtman a jeho kolegovia skúmali proces eliminácie synapsií. Ide o udalosť závislú od aktivity. Čiastočné zablokovanie receptora vedie k stiahnutiu príslušných presynaptických terminálov.

synapsie CNS
Agrín zrejme nie je centrálnym mediátorom tvorby synapsií CNS a o identifikáciu signálov, ktoré sprostredkúvajú synaptogenézu CNS, je aktívny záujem. Na neurónoch v kultúre sa vytvárajú synapsie, ktoré sú podobné tým, ktoré sa tvoria in vivo, čo naznačuje, že synaptogénne signály môžu správne fungovať in vitro. Štúdie synaptogenézy CNS sa zameriavajú najmä na glutamátergické synapsie. Zobrazovacie experimenty ukazujú, že dendrity sú počas vývoja veľmi dynamické a často iniciujú kontakt s axónmi. Nasleduje nábor postsynaptických proteínov do miesta kontaktu. Stephen Smith a jeho kolegovia ukázali, že kontakt iniciovaný dendritickými filopódiami sa môže vyvinúť do synapsií.

Indukcia tvorby synáps gliovými faktormi: Barres a jeho kolegovia zistili, že faktory v gliových podmienených médiách indukujú tvorbu synapsií v kultúrach gangliových buniek sietnice. Tvorba synapsií v CNS súvisí s diferenciáciou astrocytov, čo naznačuje, že astrocyty môžu poskytovať synaptogénny faktor. Identita astrocytárnych faktorov zatiaľ nie je známa.

Neuroligíny a SynCAM ako synaptogénne signály: Sudhof, Serafini, Scheiffele a ich kolegovia preukázali, že neuroligíny a SynCAM môžu pôsobiť ako faktory, ktoré indukujú presynaptickú diferenciáciu. Neuroligíny sú koncentrované v postsynaptickom mieste a pôsobia prostredníctvom neurexínov koncentrovaných v presynaptických axónoch. SynCAM je adhezívna bunková molekula, ktorá je prítomná v pre- aj postsynaptických membránach.

O každú nervovosvalovú križovatku súperí niekoľko motorneurónov, ale len jeden prežije do dospelosti. Ukázalo sa, že konkurencia in vitro zahŕňa obmedzenú neurotrofickú látku, ktorá sa uvoľňuje, alebo že nervová aktivita dáva výhodu silným postsynaptickým spojeniam tým, že dáva odolnosť toxínu, ktorý sa tiež uvoľňuje pri nervovej stimulácii. In vivo sa predpokladá, že svalové vlákna si vyberajú najsilnejší neurón prostredníctvom spätného signálu.

Vývoj neurónov/neurulácia – Neurula – Neurálne záhyby – Neurálna ryha – Neurálna trubica – Neurálny hrebeň – Neuroméra (Rhomboméra) – Notochord – Neurálna platnička

Vývoj oka – Zrakové mechúriky – Zraková stopka – Zrakový pohárik – Sluchový mechúrik – Sluchová jamka

Kategórie
Psychologický slovník

Porucha rovnováhy

Porucha rovnováhy odráža problémy s ekvilibriou, ktoré sa vyskytujú vždy, keď dôjde k narušeniu niektorého z vestibulárnych, zrakových, proprioceptívnych alebo kognitívnych systémov. Príznaky poruchy rovnováhy môžu zahŕňať závraty, vertigo (točenie), nerovnováhu (nevyrovnanosť a pády), pre-synkopu (závraty). Abnormality vo funkcii rovnováhy môžu poukazovať na širokú škálu patologických stavov od príčin, ako je nízky krvný tlak, až po mozgovú príhodu alebo nádory mozgu.

U niektorých jedincov sa môže vyskytnúť aj nevoľnosť a vracanie, hnačka, mdloby, zmeny srdcovej frekvencie a krvného tlaku, strach, úzkosť alebo panika. Niektoré reakcie na príznaky sú únava, depresia a znížená koncentrácia. Príznaky sa môžu objaviť a zmiznúť v krátkom časovom období alebo môžu trvať dlhšie.

Pri vestibulárnych poruchách sa môže vyskytnúť kognitívna dysfunkcia (dezorientácia). Kognitívne deficity nemajú len priestorový charakter, ale zahŕňajú aj nepriestorové funkcie, ako je napríklad pamäť na rozpoznávanie objektov. Ukázalo sa, že vestibulárna dysfunkcia nepriaznivo ovplyvňuje procesy pozornosti a zvýšené nároky na pozornosť môžu zhoršiť posturálne kolísanie spojené s vestibulárnymi poruchami. Nedávne štúdie MRI tiež ukazujú, že u ľudí s bilaterálnym poškodením vestibulárneho aparátu dochádza k atrofii hipokampu, ktorá koreluje so stupňom ich zhoršenia v úlohách priestorovej pamäte.

Problémy s rovnováhou sa môžu vyskytnúť pri poruche niektorého z vestibulárnych, zrakových alebo proprioceptívnych systémov. Abnormality vo funkcii rovnováhy môžu poukazovať na širokú škálu patológií z príčin, ako sú poruchy vnútorného ucha, nízky krvný tlak, nádory mozgu a poranenia mozgu vrátane mozgovej mŕtvice. [potrebná citácia]

Na opis toho, čo sa súhrnne nazýva závrat, sa často používa mnoho rôznych pojmov. Bežné opisy zahŕňajú slová ako závrat, vznášanie sa, závrat, zmätenosť, bezmocnosť alebo rozmazanosť. Väčšina lekárov používa pojmy závrat, nerovnováha a predsynkopa.

Závrat je špecifický lekársky termín, ktorý sa používa na opis pocitu točenia alebo točenia miestnosti okolo vás. Väčšina ľudí považuje závraty za veľmi nepríjemné a uvádza s nimi spojenú nevoľnosť a vracanie.

Disequilibrium je pocit nevyrovnanosti, ktorý sa najčastejšie prejavuje častými pádmi určitým smerom. Tento stav nie je často spojený s nevoľnosťou alebo vracaním.

Pre-synkopa sa najčastejšie opisuje ako závrat alebo pocit na omdletie. Naproti tomu synkopa je vlastne mdloba.

Príčiny závratov súvisiacich s uchom sú často charakterizované závratmi (točením) a nevoľnosťou. Nystagmus (blikanie oka, súvisiace s VOR) sa často vyskytuje u pacientov s akútnou periférnou príčinou závratov.

Súvisí s mozgom a centrálnym nervovým systémom

Príčiny súvisiace s mozgom sa menej často spájajú s izolovaným vertigom a nystagmom, ale stále môžu vyvolávať príznaky, ktoré imitujú periférne príčiny. Disequilibrium je často výrazným znakom.

Porucha rovnováhy Ilustrácia A

Znázornenie toku tekutiny v uchu, ktorý následne spôsobuje posunutie hornej časti vláskových buniek, ktoré sú uložené v želatínovej kupuli. Zobrazené sú aj utrikulárne a sakulárne otolitové orgány, ktoré sú zodpovedné za detekciu lineárneho zrýchlenia alebo pohybu po priamke.

Na tomto obrázku je znázornená nervová aktivita spojená s fyziologickým nystagmom vyvolaným rotáciou a spontánnym nystagmom, ktorý je výsledkom lézie jedného labyrintu. Tenké rovné šípky – smer pomalých zložiek; hrubé rovné šípky – smer rýchlych zložiek; zakrivené šípky – smer toku endolymfy v horizontálnych polokruhových kanálikoch: AC – predný kanál, PC – zadný kanál, HC – horizontálny kanál.

Polokruhové kanáliky, ktoré sa nachádzajú vo vestibulárnom aparáte, nám dávajú vedieť, keď sa nachádzame v rotačnom (kruhovom) pohybe. Polokruhové kanáliky sú naplnené tekutinou. Pohyb tekutiny nám hovorí, či sa pohybujeme. Vestibul je oblasť vnútorného ucha, kde sa polkruhové kanáliky zbiehajú, blízko slimáka (sluchového orgánu). Vestibulárny systém spolupracuje so zrakovým systémom, aby udržal predmety zaostrené, keď sa hlava pohybuje. Nazýva sa to vestibulo-okulárny reflex (VOR).

Pohyb tekutiny v polokruhovitých kanálikoch signalizuje mozgu smer a rýchlosť otáčania hlavy – napríklad, či kývame hlavou hore a dole alebo sa pozeráme sprava doľava. Každý polokruhovitý kanálik má vypuklý koniec alebo rozšírenú časť, ktorá obsahuje vláskové bunky. Otáčanie hlavy spôsobuje prúdenie tekutiny, ktoré následne spôsobuje posunutie hornej časti vlasových buniek, ktoré sú uložené v želatínovej kupuli. Ďalšími dvoma orgánmi, ktoré sú súčasťou vestibulárneho systému, sú utrikulus a sakulus. Tieto orgány sa nazývajú otolitové orgány a sú zodpovedné za zisťovanie lineárneho zrýchlenia alebo pohybu po priamke. Vláskové bunky otolitových orgánov sú pokryté želatínovou vrstvou posiatou drobnými vápenatými kamienkami nazývanými otokonia. Keď sa hlava nakloní alebo sa zmení poloha tela vzhľadom na gravitáciu, posunutie kamienkov spôsobí ohyb vláskových buniek.

Rovnovážny systém spolupracuje so zrakovým a kostrovým systémom (svaly a kĺby a ich senzory) na udržanie orientácie alebo rovnováhy. Do mozgu sa napríklad vysielajú vizuálne signály o polohe tela vo vzťahu k okoliu. Tieto signály mozog spracúva a porovnáva ich s informáciami z vestibulárneho, zrakového a kostrového systému.

Diagnostika porúch rovnováhy je zložitá, pretože existuje mnoho druhov porúch rovnováhy a pretože k poruchám rovnováhy môžu prispieť aj iné zdravotné ťažkosti – vrátane infekcií ucha, zmien krvného tlaku a niektorých problémov so zrakom – a niektoré lieky. Osoba, ktorá pociťuje závraty, by mala navštíviť fyzioterapeuta alebo lekára, ktorý ju vyšetrí. Lekár môže v prípade indikácie posúdiť, či nejde o zdravotnú poruchu, ako je napríklad mozgová príhoda alebo infekcia. Fyzioterapeut môže posúdiť poruchu rovnováhy alebo závraty a poskytnúť špecifickú liečbu.

Primárny lekár si môže vyžiadať stanovisko otolaryngológa, aby pomohol posúdiť problém s rovnováhou. Otolaryngológ je lekár/chirurg, ktorý sa špecializuje na ochorenia a poruchy ucha, nosa, krku, hlavy a krku, niekedy s odbornosťou na poruchy rovnováhy. Zvyčajne získa podrobnú anamnézu a vykoná fyzikálne vyšetrenie, aby začal triediť možné príčiny poruchy rovnováhy. Lekár si môže vyžiadať vyšetrenia a ďalšie odporúčania na posúdenie príčiny a rozsahu poruchy rovnováhy. Druhy potrebných vyšetrení sa budú líšiť v závislosti od príznakov a zdravotného stavu pacienta. Keďže existuje veľa premenných, nie všetci pacienti budú potrebovať všetky testy.

Testy funkcie vestibulárneho systému (rovnováhy) zahŕňajú elektrostagmografiu (ENG), videonystagmograf (VNG), rotačné testy, počítačovú dynamickú posturografiu (CDP) a kalorický reflexný test.

Testy funkcie sluchového systému (sluchu) zahŕňajú audiometriu čistých tónov, rečovú audiometriu, akustický reflex, elektrokocleografiu (ECoG), otoakustické emisie (OAE) a test sluchovej odozvy mozgového kmeňa (ABR; známy aj ako BER, BSER alebo BAER).

Medzi ďalšie diagnostické testy patrí magnetická rezonancia (MRI) a počítačová axiálna tomografia (CAT alebo CT).

Existujú rôzne možnosti liečby porúch rovnováhy. Jednou z možností je liečba ochorenia alebo poruchy, ktorá môže prispievať k problémom s rovnováhou, ako napríklad infekcia ucha, mozgová príhoda, skleróza multiplex, poranenie miechy, Parkinsonova choroba, nervovosvalové ochorenia, získané poškodenie mozgu, mozočkové dysfunkcie a/alebo ataxia. Individuálna liečba sa bude líšiť a bude vychádzať z výsledkov hodnotenia vrátane symptómov, anamnézy, celkového zdravotného stavu a výsledkov lekárskych testov. Väčšina typov porúch rovnováhy si bude vyžadovať tréning rovnováhy, ktorý predpíše fyzioterapeut. Fyzioterapeuti v rámci hodnotenia často vykonávajú štandardizované merania výsledkov, aby získali užitočné informácie a údaje o aktuálnom stave pacienta. Niektoré štandardizované hodnotenia rovnováhy alebo výsledné merania zahŕňajú okrem iného funkčný test dosahu, klinický test senzorickej integrácie v oblasti rovnováhy (CTSIB), Bergovu škálu rovnováhy a/alebo meranie času na vstávanie a odchod. Získané údaje a informácie môžu ďalej pomôcť fyzioterapeutovi vypracovať intervenčný program, ktorý je špecifický pre hodnoteného jedinca. Intervenčné programy môžu zahŕňať tréningové aktivity, ktoré sa môžu použiť na zlepšenie statickej a dynamickej posturálnej kontroly, vyrovnania tela, rozloženia hmotnosti, ambulizácie, prevencie pádov a zmyslových funkcií.

Benígne paroxyzmálne polohové závraty (BPPV) sú spôsobené nesprávnym umiestnením kryštálov v uchu. Liečba zjednodušene povedané spočíva v premiestnení týchto kryštálov z oblastí, ktoré spôsobujú závraty, do oblastí, kde ich nespôsobujú. Na presun týchto kryštálov bolo vyvinutých niekoľko cvičení. V nasledujúcom článku je spolu so schémami vysvetlené, ako sa tieto cvičenia dajú s určitou pomocou vykonávať v kancelárii alebo doma: Úspech týchto cvičení závisí od ich správneho vykonávania.

Dve cvičenia vysvetlené vo vyššie uvedenom článku sú:

Liečba zahŕňa cvičenia na precvičenie rovnováhy (vestibulárna rehabilitácia). Cvičenia zahŕňajú pohyby hlavy a tela vyvinuté špeciálne pre pacienta. Predpokladá sa, že táto forma terapie podporuje habituáciu, adaptáciu vestibulo-okulárneho reflexu a/alebo senzorickú substitúciu. Vestibulárne rekvalifikačné programy vedú odborníci so znalosťami a pochopením vestibulárneho systému a jeho vzťahu k ostatným systémom v tele.

Na závraty a točenie hlavy sa často predpisujú sedatíva, ale tie zvyčajne liečia skôr príznaky ako príčinu. Často sa používa lorazepam (Ativan), čo je sedatívum, ktoré nemá vplyv na proces ochorenia, skôr pomáha pacientom vyrovnať sa s pocitom.

Často sa predpisujú aj lieky proti nevoľnosti, ako sú tie, ktoré sa predpisujú pri nevoľnosti z pohybu, ale nemajú vplyv na prognózu poruchy.

Špeciálne na Menierovu chorobu je k dispozícii liek s názvom Serc (beta-histín). Existujú určité dôkazy o tom, že je účinný na zníženie frekvencie záchvatov. U mnohých pacientov sú účinné aj diuretiká, ako napríklad diazid (HCTZ/triamterén). Napokon, ototoxické lieky podávané buď systémovo, alebo cez bubienok môžu v mnohých prípadoch odstrániť závraty spojené s Menierovou chorobou, hoci pri používaní ototoxických liekov existuje asi 10 % riziko ďalšej straty sluchu.

Liečba je špecifická pre základnú poruchu rovnováhy:

Vedci z Národného inštitútu pre hluchotu a iné poruchy komunikácie (NIDCD) sa snažia pochopiť rôzne poruchy rovnováhy a zložité interakcie medzi labyrintom, inými orgánmi vnímajúcimi rovnováhu a mozgom. Vedci z NIDCD skúmajú pohyb očí, aby pochopili zmeny, ku ktorým dochádza pri starnutí, chorobách a zraneniach, ako aj zbierajú údaje o pohybe očí a držaní tela s cieľom zlepšiť diagnostiku a liečbu porúch rovnováhy. Skúmajú tiež účinnosť určitých cvičení ako možnosti liečby.

Ďalšie projekty podporované NIDCD zahŕňajú štúdie génov nevyhnutných pre normálny vývoj a funkciu vestibulárneho systému. Vedci NIDCD skúmajú aj dedičné syndrómy mozgu, ktoré ovplyvňujú rovnováhu a koordináciu.

NIDCD podporuje výskum zameraný na vývoj nových testov a zdokonaľovanie súčasných testov rovnováhy a vestibulárnych funkcií. Vedci NIDCD napríklad vyvinuli počítačom riadené systémy na meranie pohybu očí a polohy tela stimuláciou špecifických častí vestibulárneho a nervového systému. V klinickom a výskumnom prostredí sa skúmajú ďalšie testy na určenie postihnutia, ako aj nové stratégie fyzickej rehabilitácie.

Vedci z NIDCD dúfajú, že nové údaje pomôžu vyvinúť stratégie na prevenciu zranení spôsobených pádmi, ktoré sú častým javom u ľudí s poruchami rovnováhy, najmä keď starnú.

Otitis externa -Otomykóza

Zápal stredného ucha – Mastoiditída (Bezoldov absces, Gradenigov syndróm) – Tympanoskleróza

Cholesteatóm – Perforovaný bubienok

Labyrintitída/Otitis interna

Vertigo/poruchy rovnováhy: periférne (Ménièrova choroba, BPPV, vestibulárna neuronitída, perilymfálna fistula) – centrálne (centrálny pozičný nystagmus)

Konduktívna strata sluchu (otoskleróza, dehiscencia horného zvukovodu) – Senzorineurálna strata sluchu (presbycusis, centrálna strata sluchu)

Tinnitus – Hyperakúzia/Fonofóbia

Wolframov syndróm – Usherov syndróm

Získaná porucha sluchového spracovania

Kategórie
Psychologický slovník

Metamfetamín

Chemická štruktúra metamfetamínu
Metamfetamín

Metamfetamín (metylamfetamín alebo desoxyefedrín), ľudovo skrátene pervitín alebo ľad, je psychostimulačná a sympatomimetická droga. Nezriedka sa predpisuje na liečbu poruchy pozornosti s hyperaktivitou, narkolepsie a obezity pod obchodným názvom Desoxyn. Považuje sa za druhú líniu liečby, ktorá sa používa, keď amfetamín a metylfenidát spôsobujú pacientovi príliš veľa vedľajších účinkov. Odporúča sa len na krátkodobé užívanie (~ 6 týždňov) u pacientov s obezitou, pretože sa predpokladá, že anoretické účinky lieku sú krátkodobé a rýchlo vyvolávajú toleranciu, zatiaľ čo účinky na stimuláciu CNS sú oveľa menej náchylné na toleranciu. Nelegálne sa používa aj na zníženie hmotnosti a na udržanie bdelosti, sústredenia, motivácie a mentálnej jasnosti počas dlhšieho obdobia a na rekreačné účely. „Kryštalický pervitín“ sa vzťahuje na kryštalickú, fajčiteľnú formu drogy a nepoužíva sa pre drogu vo forme tabliet alebo prášku.

Metamfetamín sa dostane do mozgu a spustí kaskádovité uvoľňovanie noradrenalínu, dopamínu a serotonínu. V menšej miere metamfetamín pôsobí ako inhibítor spätného vychytávania dopaminergných a adrenergných látok a vo vysokých koncentráciách ako inhibítor monaminooxidázy (MAOI). Keďže stimuluje mezolimbickú dráhu odmeny, spôsobuje eufóriu a vzrušenie, je náchylný na zneužívanie a závislosť.
Užívatelia môžu byť posadnutí alebo vykonávať opakované úlohy, ako je čistenie, umývanie rúk alebo montáž a demontáž predmetov. Abstinencia je charakterizovaná nadmerným spánkom, jedením a príznakmi podobnými depresii, ktoré často sprevádza úzkosť a túžba po droge. Užívatelia metamfetamínu často užívajú jeden alebo viac benzodiazepínov ako prostriedok na „schádzanie“.

Metamfetamín bol prvýkrát syntetizovaný z efedrínu v Japonsku v roku 1893 chemikom Nagayoshi Nagaiom. V roku 1919 kryštalizovaný metamfetamín syntetizoval Akira Ogata redukciou efedrínu pomocou červeného fosforu a jódu. Príbuznú zlúčeninu amfetamín prvýkrát syntetizoval v Nemecku v roku 1887 Lazăr Edeleanu.

K jednému z prvých použití metamfetamínu došlo počas druhej svetovej vojny, keď ho nemecká armáda vydávala pod obchodným názvom Pervitin. Bol široko distribuovaný v rôznych hodnostiach a divíziách, od elitných jednotiek až po posádky tankov a letecký personál. Čokolády dávkované metamfetamínom boli známe ako Fliegerschokolade („letecká čokoláda“), keď sa dávali pilotom, alebo Panzerschokolade („čokoláda pre tankistov“), keď sa dávali posádkam tankov. Od roku 1942 až do svojej smrti v roku 1945 dostával Adolf Hitler od svojho osobného lekára Theodora Morella denne intravenózne injekcie metamfetamínu ako liek proti depresii a únave. Je možné, že sa používal na liečbu Hitlerovej predpokladanej Parkinsonovej choroby, alebo že jeho príznaky podobné Parkinsonovej chorobe, ktoré sa rozvíjali od roku 1940, súviseli so zneužívaním metamfetamínu.

Po druhej svetovej vojne sa v Japonsku objavili veľké zásoby amfetamínu, ktorý predtým skladovala japonská armáda, pod pouličným názvom šabu (tiež Philopon (vyslovuje sa ヒロポン alebo Hiropon), čo je jeho obchodný názov). Japonské ministerstvo zdravotníctva ho v roku 1951 zakázalo a predpokladá sa, že jeho zákaz prispel k rastúcim aktivitám jakuzy spojeným s výrobou nelegálnych drog. Dnes sa metamfetamín stále spája s japonským podsvetím, ale od jeho užívania odrádza silné spoločenské tabu.

Podiel vysokoškolských študentov v USA, ktorí počas svojho života nelegálne užívali metamfetamín.

V 50. rokoch 20. storočia sa zvýšil počet legálnych receptov na metamfetamín pre americkú verejnosť. Podľa vydania knihy Pharmacology and Therapeutics od Arthura Grollmana z roku 1951 sa mal predpisovať pri „narkolepsii, postencefalitickom parkinsonizme, alkoholizme, pri niektorých depresívnych stavoch. a pri liečbe obezity“.

V 60. rokoch 20. storočia sa začal vo veľkej miere používať tajne vyrábaný metamfetamín a metamfetamín, ktorý si užívatelia vytvárali doma pre vlastnú potrebu. Rekreačné užívanie metamfetamínu dosiahlo vrchol v 80. rokoch 20. storočia. Vydanie časopisu The Economist z 2. decembra 1989 označilo San Diego v Kalifornii za „hlavné mesto metamfetamínu v Severnej Amerike“.

V roku 2000 časopis The Economist opäť označil San Diego v Kalifornii za hlavné mesto metamfetamínu v Severnej Amerike a South Gate v Kalifornii za druhé hlavné mesto.

Právne obmedzenia v Spojených štátoch

V roku 1983 boli v Spojených štátoch prijaté zákony zakazujúce držbu prekurzorov a zariadení na výrobu metamfetamínu; o mesiac neskôr nasledoval návrh zákona prijatý v Kanade, ktorý zaviedol podobné zákony. V roku 1986 vláda USA prijala federálny zákon o presadzovaní analógov kontrolovaných látok v snahe obmedziť rastúce používanie dizajnérskych drog. Napriek tomu sa užívanie metamfetamínu rozšírilo na celom vidieku Spojených štátov, najmä na stredozápade a juhu.

Od roku 1989 bolo v snahe obmedziť výrobu metamfetamínu prijatých päť federálnych zákonov a desiatky štátnych zákonov. Metamfetamín sa ľahko „varí“ v domácich laboratóriách s použitím pseudoefedrínu alebo efedrínu, účinných zložiek voľnopredajných liekov, ako sú Sudafed a Contac. Preventívne právne stratégie za posledných 17 rokov však neustále zvyšujú obmedzenia distribúcie výrobkov obsahujúcich pseudoefedrín/efedrín.

V dôsledku zákona o boji proti metamfetamínovej epidémii z roku 2005, ktorý je súčasťou zákona PATRIOT Act, existujú obmedzenia týkajúce sa množstva pseudoefedrínu a efedrínu, ktoré možno zakúpiť v určitom časovom období, a ďalšie požiadavky, podľa ktorých sa tieto výrobky musia skladovať, aby sa zabránilo ich krádeži.

Metamfetamín je silný stimulant centrálnej nervovej sústavy, ktorý ovplyvňuje neurochemické mechanizmy zodpovedné za reguláciu srdcovej frekvencie, telesnej teploty, krvného tlaku, chuti do jedla, pozornosti, nálady a reakcií spojených s bdelosťou alebo stavom ohrozenia. Akútne účinky drogy sa veľmi podobajú fyziologickým a psychologickým účinkom epinefrínom vyvolanej reakcie „bojuj alebo uteč“, vrátane zvýšenej srdcovej frekvencie a krvného tlaku, vazokonstrikcie (zúženie stien tepien), bronchodilatácie a hyperglykémie (zvýšenie hladiny cukru v krvi). Používatelia pociťujú zvýšenie sústredenia, zvýšenú duševnú bdelosť a odstránenie únavy, ako aj zníženie chuti do jedla.

Používatelia musia byť tiež opatrní a vyhýbať sa sprchovaniu studenou vodou, jazde na vysokorýchlostných horských dráhach, konzumácii nápojov s obsahom kofeínu alebo cvičeniu a posilňovaniu, pretože tieto činnosti môžu vyvolať hypertenziu, nervozitu, extrémne rýchly srdcový tep, rozšírený srdcový tep alebo náhlu smrť.

Metylová skupina je zodpovedná za zosilnenie účinkov v porovnaní s príbuznou zlúčeninou amfetamínom, čím sa látka na jednej strane stáva rozpustnejšou v tukoch a uľahčuje sa jej prenos cez hematoencefalickú bariéru a na druhej strane je stabilnejšia voči enzymatickej degradácii MAO. Metamfetamín spôsobuje, že norepinefrínový, dopamínový a serotonínový (5HT) transportér mení smer toku. Táto inverzia vedie k uvoľňovaniu týchto transmiterov z vezikúl do cytoplazmy a z cytoplazmy do synapsy (uvoľňovanie monoamínov u potkanov s pomerom približne NE:DA = 1:2, NE:5HT = 1:60), čo spôsobuje zvýšenú stimuláciu postsynaptických receptorov. Metamfetamín tiež nepriamo zabraňuje spätnému vychytávaniu týchto neurotransmiterov, čo spôsobuje ich dlhšie zotrvanie v synaptickej štrbine (inhibícia spätného vychytávania monoamínov u potkanov s pomermi približne: NE:DA = 1:2,35, NE:5HT = 1:44,5).

Nedávny výskum uverejnený v časopise Journal of Pharmacology And Experimental Therapeutics (2007) naznačuje, že metamfetamín sa viaže na skupinu receptorov nazývaných TAAR. TAAR je novoobjavený receptorový systém, na ktorý zrejme pôsobí celý rad látok podobných amfetamínu, nazývaných stopové amíny.

Metamfetamín je štruktúrou najviac podobný metkatinónu a amfetamínu. Pri nezákonnej výrobe sa bežne vyrába redukciou efedrínu alebo pseudoefedrínu. Väčšina potrebných chemických látok je ľahko dostupná v domácich výrobkoch alebo voľnopredajných liekoch proti nachladnutiu alebo alergii. Syntéza je relatívne jednoduchá, ale predstavuje riziko spojené s horľavými a žieravými chemikáliami, najmä rozpúšťadlami používanými pri extrakcii a čistení. Tajná výroba sa preto často odhalí pri požiaroch a výbuchoch spôsobených nesprávnou manipuláciou s prchavými alebo horľavými rozpúšťadlami.

Väčšina metód nezákonnej výroby zahŕňa hydrogenáciu hydroxylovej skupiny na molekule efedrínu alebo pseudoefedrínu. Najbežnejšia metóda pre malé metamfetamínové laboratóriá v Spojených štátoch sa nazýva predovšetkým „červený, biely a modrý proces“, ktorý zahŕňa červený fosfor, pseudoefedrín alebo efedrín(biely) a modrý jód, z ktorého vzniká kyselina hydroxidová.

Tento proces je pre amatérskych chemikov pomerne nebezpečný, pretože plynný fosfín, vedľajší produkt pri výrobe kyseliny jódovej in situ, je mimoriadne toxický pri vdychovaní. Čoraz bežnejšia metóda využíva proces Brezovej redukcie, pri ktorom sa kovové lítium (bežne získavané z dobíjacích batérií) nahrádza kovovým sodíkom, aby sa obišli ťažkosti so získavaním kovového sodíka.

Brezova redukcia je však nebezpečná, pretože alkalický kov a kvapalný bezvodý amoniak sú mimoriadne reaktívne a teplota kvapalného amoniaku spôsobuje, že po pridaní reaktantov dochádza k jeho výbušnému varu. Bezvodý amoniak a lítium alebo sodík (Birchova redukcia) môžu prekonať kyselinu jódovú (katalytická hydrogenácia) ako najbežnejší spôsob výroby metamfetamínu v USA a možno aj v Mexiku. Záťahom na „superlaboratóriá“ s kyselinou jódovou venujú médiá väčšiu pozornosť, pretože použité zariadenie je oveľa zložitejšie a viditeľnejšie ako sklenené nádoby alebo karafy na kávu, ktoré sa bežne používajú na výrobu metamfetamínu pomocou Brezovej redukcie.

Priemyselná továreň na výrobu metamfetamínu/MDMA v Cikande, Indonézia

Úplne iný postup syntézy využíva reduktívnu amináciu fenylacetónu s metylamínom, ktoré sú v súčasnosti chemikáliami zo zoznamu I DEA (rovnako ako pseudoefedrín a efedrín). Reakcia si vyžaduje katalyzátor, ktorý pôsobí ako redukčné činidlo, napríklad amalgám ortuti a hliníka alebo oxid platiničitý, známy aj ako Adamsov katalyzátor. Tento spôsob výroby kedysi uprednostňovali motorkárske gangy v Kalifornii, [Ako odkazovať a odkazovať na zhrnutie alebo text] kým to obmedzenia DEA týkajúce sa chemikálií nesťažili. Iné, menej rozšírené metódy využívajú iné spôsoby hydrogenácie, napríklad plynný vodík v prítomnosti katalyzátora.

Z laboratórií na výrobu metamfetamínu môžu vychádzať škodlivé výpary, ako napríklad plynný fosfín, plynný metylamín, výpary rozpúšťadiel, napríklad acetónu alebo chloroformu, jódové výpary, biely fosfor, bezvodý amoniak, chlorovodík/kyselina mariánska, jodovodík, kovové lítium/sodík, éter alebo výpary metamfetamínu. Ak výrobu metamfetamínu vykonávajú amatéri, môže byť mimoriadne nebezpečná. Ak sa červený fosfor prehreje z dôvodu nedostatočného vetrania, môže vzniknúť plynný fosfín. Tento plyn, ak je prítomný vo veľkom množstve, pravdepodobne exploduje pri samovznietení z difosfínu, ktorý vzniká prehriatím fosforu.

Výroba a distribúcia

Až do začiatku 90. rokov sa metamfetamín pre americký trh vyrábal prevažne v laboratóriách prevádzkovaných obchodníkmi s drogami v Mexiku a Kalifornii. Odvtedy úrady objavili čoraz viac malých metamfetamínových laboratórií po celých Spojených štátoch, väčšinou vo vidieckych, prímestských alebo nízkopríjmových oblastiach. Polícia štátu Indiana našla v roku 2003 1 260 laboratórií v porovnaní s iba 6 v roku 1995, hoci to môže byť dôsledok zvýšenej aktivity polície. V poslednom čase upútali pozornosť amerických spravodajských médií aj polície mobilné a motelové laboratóriá na výrobu metamfetamínu.

Tieto laboratóriá môžu spôsobiť výbuchy a požiare a vystaviť verejnosť nebezpečným chemikáliám. Osoby, ktoré vyrábajú metamfetamín, sú často poškodené toxickými plynmi. Mnohé policajné oddelenia majú špecializované pracovné skupiny s výcvikom, ktoré reagujú na prípady výroby metamfetamínu. V Národnom hodnotení drogových hrozieb 2006, ktoré vypracovalo ministerstvo spravodlivosti, sa zistilo, že „sa znížila domáca výroba metamfetamínu v malých aj veľkých laboratóriách“, ale aj to, že „pokles domácej výroby metamfetamínu bol kompenzovaný zvýšenou výrobou v Mexiku“. Dospeli k záveru, že „dostupnosť metamfetamínu sa v najbližšom období pravdepodobne nezníži“.

V júli 2007 chytili mexickí úradníci v prístave Lázaro Cárdenas loď s pôvodom v Hongkongu, ktorá prechádzala cez prístav Long Beach s 19 tonami pseudoefedrínu, suroviny potrebnej na výrobu pervitínu. Pri pouličnej cene 100 USD za gram to predstavuje metamfetamín v hodnote najmenej 1,9 miliardy USD. U čínskeho majiteľa sa v jeho sídle v Mexico City našlo 206 miliónov dolárov. V Long Beach sa to nepodarilo zistiť.

Raketa, ktorú pašeráci používajú na rýchle zbavenie sa metamfetamínu.

Metamfetamín distribuujú väzenské gangy, motorkárske gangy, pouličné gangy, tradičné operácie organizovaného zločinu a improvizované malé siete. V USA sa nelegálny metamfetamín dodáva v rôznych formách, pričom priemerná cena čistej látky je 150 USD za gram. Najčastejšie sa vyskytuje ako bezfarebná kryštalická pevná látka. Nečistoty môžu mať za následok hnedastú alebo hnedastú farbu. Farebné ochutené tabletky obsahujúce metamfetamín a kofeín sú známe ako yaa baa (thajsky „šialená medicína“).

V najnečistejšej podobe sa predáva ako drobivá hnedá alebo takmer biela hornina, ktorá sa bežne označuje ako „arašidová kľučka“. Metamfetamín, ktorý sa nachádza na ulici, je len zriedkavo čistý, ale s prímesou chemických látok, ktoré sa použili na jeho syntézu. Môže byť zriedený alebo „narezaný“ nepsychoaktívnymi látkami, ako je inozitol alebo dimetylsulfón. Môže byť tiež ochutený cukríkmi s vysokým obsahom cukru, nápojmi alebo nápojovými zmesami, aby sa zamaskovala horká chuť drogy. Do pervitínu sa môžu pridávať farbivá, ako je to v prípade „Strawberry Quick.“.

Metamfetamín sa medicínsky používa pod obchodným názvom Desoxyn pri nasledujúcich stavoch:

Vzhľadom na jeho spoločenskú stigmu sa Desoxyn zvyčajne nepredpisuje na liečbu ADHD, pokiaľ nezlyhali iné stimulanciá, ako napríklad metylfenidát (Ritalin®), dextroamfetamín (Dexedrine®) alebo zmiešané amfetamíny (Adderall®).

Podobne ako v prípade iných amfetamínov, ani tolerancia na metamfetamín nie je úplne objasnená, ale je dostatočne komplexná, takže ju nemožno vysvetliť žiadnym mechanizmom. Rozsah tolerancie a rýchlosť, akou sa vyvíja, sa u jednotlivých osôb značne líši a dokonca aj v rámci jednej osoby je veľmi závislá od dávky, dĺžky užívania a frekvencie podávania. Mnohé prípady narkolepsie sa liečia metamfetamínom celé roky bez zvyšovania dávok alebo zjavnej straty účinku.

Krátkodobá tolerancia môže byť spôsobená vyčerpanými hladinami neurotransmiterov vo vezikulách, ktoré sú k dispozícii na uvoľnenie do synaptickej štrbiny po následnom opätovnom použití (tachyfylaxia). Krátkodobá tolerancia zvyčajne trvá 2 – 3 dni, kým sa hladiny neurotransmiterov úplne nedoplnia. Dlhodobá nadmerná stimulácia dopamínových receptorov spôsobená metamfetamínom môže nakoniec spôsobiť zníženie regulácie receptorov s cieľom kompenzovať zvýšené hladiny dopamínu v synaptickej štrbine. Na kompenzáciu je potrebné väčšie množstvo drogy, aby sa dosiahla rovnaká úroveň účinkov.

Bežné okamžité vedľajšie účinky.:

Nežiaduce účinky spojené s chronickým užívaním:

Nežiaduce účinky spojené s predávkovaním:

Smrť z predávkovania je zvyčajne spôsobená mozgovou príhodou, zlyhaním srdca, ale môže byť spôsobená aj zástavou srdca (náhla smrť) alebo hypertermiou.

Závislí od metamfetamínu môžu abnormálne rýchlo strácať zuby, čo je známe ako „metamfetamínové ústa“. Tento efekt nie je spôsobený žiadnymi korozívnymi účinkami samotnej drogy, čo je rozšírený mýtus. Podľa Americkej asociácie zubných lekárov sú pervitínové ústa „pravdepodobne spôsobené kombináciou psychologických a fyziologických zmien vyvolaných drogami, ktoré majú za následok xerostómiu (suchosť v ústach), dlhšie obdobie nedostatočnej ústnej hygieny, častú konzumáciu vysokokalorických sýtených nápojov a škrípanie a zatínanie zubov“. Podobné, aj keď oveľa menej závažné príznaky boli hlásené pri klinickom užívaní iných amfetamínov, kde sa účinky nezhoršujú nedostatočnou ústnou hygienou počas dlhšieho obdobia.

Podobne ako iné látky, ktoré stimulujú sympatický nervový systém, metamfetamín spôsobuje zníženú tvorbu slín, ktoré bojujú proti kyselinám, a zvýšený smäd, čo vedie k zvýšenému riziku vzniku zubného kazu, najmä ak sa smäd uhasí nápojmi s vysokým obsahom cukru.

Užívatelia môžu pod vplyvom vykazovať sexuálne kompulzívne správanie. Takéto ignorovanie potenciálnych nebezpečenstiev nechráneného sexu alebo iné bezohľadné sexuálne správanie môže prispieť k šíreniu pohlavne prenosných infekcií (SPI) alebo pohlavne prenosných chorôb (PCH).

Medzi účinky, ktoré uvádzajú užívatelia metamfetamínu, patrí zvýšená potreba a naliehavosť sexu, schopnosť mať sex dlhší čas a neschopnosť ejakulovať alebo dosiahnuť orgazmus alebo fyzické uvoľnenie. Okrem toho, že metamfetamín zvyšuje potrebu sexu a umožňuje užívateľom dlhšie trvajúcu sexuálnu aktivitu, znižuje zábrany a môže spôsobiť, že užívatelia sa budú správať bezohľadne alebo budú zabúdať. Užívatelia môžu po dlhodobom užívaní dokonca hlásiť negatívne zážitky, ktoré sú v rozpore s hlásenými pocitmi, myšlienkami a postojmi dosiahnutými pri podobných dávkach za podobných okolností, ale v skorších obdobiach predĺženého alebo dlhodobého cyklu.

Okrem toho sa mnohí chronickí užívatelia dopúšťajú nadmernej a opakovanej masturbácie. Podľa nedávnej štúdie zo San Diega [Ako odkaz a odkaz na zhrnutie alebo text] sa užívatelia metamfetamínu často zapájajú do nebezpečných sexuálnych aktivít a zabúdajú alebo sa rozhodnú nepoužívať kondómy. Štúdia zistila, že u užívateľov metamfetamínu je šesťkrát nižšia pravdepodobnosť, že budú používať kondómy. Naliehavosť sexu v kombinácii s neschopnosťou dosiahnuť uvoľnenie (ejakuláciu) môže mať za následok roztrhnutie, odreniny a poranenia (ako sú napríklad drsné a trecie rany) pohlavných orgánov, konečníka a úst, čo dramaticky zvyšuje riziko prenosu HIV a iných pohlavne prenosných chorôb. Metamfetamín tiež spôsobuje erektilnú dysfunkciu v dôsledku vazokonstrikcie.

Kalifornský spisovateľ a bývalý užívateľ metamfetamínu David Schiff v článku o závislosti svojho syna na metamfetamíne povedal: „Táto droga má jedinečnú, strašnú kvalitu.“ Stephan Jenkins, spevák skupiny Third Eye Blind, v jednom rozhovore povedal, že metamfetamín vám dáva pocit „jasnosti a lesku“.

Metamfetamín je návykový, najmä keď sa injekčne podáva alebo fajčí. Aj keď nie je život ohrozujúci, abstinencia je často intenzívna a ako pri všetkých závislostiach je častý relaps. V boji proti recidíve sa mnohí zotavujúci sa závislí zúčastňujú na stretnutiach 12 krokov, ako je napríklad Anonymný kryštálový metamfetamín.

Metamfetamínom indukovaná hyperstimulácia dráh slasti vedie k anhedónii. Bývalí užívatelia si všimli, že keď prestanú užívať metamfetamín, cítia sa hlúpo alebo nudne. Je možné, že každodenné podávanie aminokyselín L-tyrozínu a L-5HTP/triptofánu môže pomôcť v procese zotavenia tým, že uľahčí telu zvrátiť úbytok dopamínu, noradrenalínu a serotonínu. Hoci štúdie zahŕňajúce používanie týchto aminokyselín preukázali určitý úspech, táto metóda zotavenia sa nepreukázala ako trvalo účinná.

Ukázalo sa, že užívanie kyseliny askorbovej pred užitím metamfetamínu môže pomôcť znížiť akútnu toxicitu na mozog, keďže u potkanov, ktorým sa 30 minút pred dávkou metamfetamínu podalo 5 – 10 gramov kyseliny askorbovej v ľudskom ekvivalente, bola toxicita sprostredkovaná, avšak pri riešení závažných problémov so správaním spojených s užívaním metamfetamínu, ktoré spôsobujú mnohé problémy, s ktorými sa užívatelia stretávajú, to bude pravdepodobne málo účinné.

Závažné zdravotné a vzhľadové problémy spôsobujú nesterilizované ihly, nedostatočná hygiena, chemické zloženie metamfetamínu (najmä pri fajčení) a najmä škodliviny v pouličnom metamfetamíne. Užívanie metamfetamínu môže viesť k hypertenzii, poškodeniu srdcových chlopní, výrazne zhoršenému zdraviu zubov a zvýšenému riziku mozgovej príhody.

V boji proti závislosti začínajú lekári používať iné formy amfetamínu, ako je dextroamfetamín, aby prerušili cyklus závislosti metódou podobnou metadónu pre závislých od heroínu. Na použitie pri problémoch s metamfetamínom nie sú známe žiadne lieky porovnateľné s naloxónom, ktorý blokuje opiátové receptory, a preto sa používa pri liečbe závislosti od opiátov. Keďže fenetylamín fentermín je konštitučný izomér metamfetamínu, špekuluje sa, že môže byť účinný pri liečbe závislosti od metamfetamínu. Hoci je fenteremín centrálny nervový stimulant, ktorý pôsobí na dopamín a noradrenalín, nebolo hlásené, že by spôsoboval rovnaký stupeň eufórie, aký sa spája s inými amfetamínmi.

Zvyčajný spôsob lekárskeho použitia je perorálne podanie. Pri rekreačnom užívaní sa môže prehĺtať, šnupať, fajčiť, rozpúšťať vo vode a vstrekovať (alebo aj bez vody, tzv. dry shot), zavádzať análne (s rozpustením vo vode alebo bez neho; známy aj ako booty bump alebo shafting) alebo do močovej trubice. Potenciál vzniku závislosti je väčší, keď sa podáva metódami, ktoré spôsobujú rýchle zvýšenie koncentrácie v krvi, najmä preto, že užívateľom požadované účinky sa prejavia rýchlejšie a s vyššou intenzitou ako pri umiernenom mechanizme podávania.

Štúdie ukázali, že subjektívny pôžitok z užívania drogy (posilňujúca zložka závislosti) je úmerný rýchlosti, akou sa zvyšuje hladina drogy v krvi.“ [Ako odkazovať a odkazovať na zhrnutie alebo text] Vo všeobecnosti je najrýchlejším mechanizmom fajčenie (t. j. spôsobuje najrýchlejšie zvýšenie koncentrácie v krvi za najkratší čas, pretože umožňuje látke cestovať do mozgu priamejšou cestou ako intravenózna injekcia), po ktorom nasleduje injekcia, análny vpich, insuflácia a prehĺtanie.

„Fajčenie“ amfetamínu sa v skutočnosti vzťahuje na jeho odparovanie, čím sa vytvárajú výpary, a nie na spaľovanie a vdychovanie výsledného dymu ako pri tabaku. Bežne sa fajčí v sklenených fajkách alebo v hliníkovej fólii zahrievanej plameňom pod ňou. Táto metóda je známa aj ako „naháňanie bieleho draka“ (ako odvodené od metódy fajčenia heroínu známej ako „naháňanie draka“) alebo sa častejšie nazýva „kloktanie“. Existuje len málo dôkazov o tom, že inhalácia metamfetamínu vedie k väčšej toxicite ako akýkoľvek iný spôsob podania. Pri dlhodobom užívaní bolo hlásené poškodenie pľúc, ktoré sa však prejavuje vo formách nezávislých od spôsobu užívania (pľúcna hypertenzia a súvisiace komplikácie) alebo sa obmedzuje na injekčných užívateľov (pľúcna embólia).

Injekcia je obľúbená metóda používania, známa aj ako slamming, ale prináša pomerne vážne riziká. Hydrochloridová soľ metamfetamínu je rozpustná vo vode; injekční užívatelia môžu použiť akúkoľvek dávku od 125 mg až po viac ako gram, pričom použijú malú ihlu. Tento rozsah dávok môže byť pre osoby, ktoré nie sú závislé, smrteľný; u závislých sa rýchlo vyvinie tolerancia na drogu. U injekčných užívateľov sa často vyskytujú kožné vyrážky (niekedy nazývané „rýchlostné rany“) a infekcie v mieste vpichu. Ako pri každej injekčnej droge, ak skupina užívateľov zdieľa spoločnú ihlu alebo akýkoľvek typ injekčného náčinia bez sterilizačných postupov, môže dôjsť aj k prenosu krvou prenosných chorôb, ako je HIV alebo hepatitída.

Veľmi málo výskumov sa zameralo na análnu aplikáciu ako metódu a o nepotvrdených dôkazoch jej účinkov sa hovorí len zriedkavo, pravdepodobne kvôli sociálnym tabu v mnohých kultúrach týkajúcich sa konečníka. V komunitách, ktoré užívajú metamfetamín na sexuálnu stimuláciu, je to často známe ako „zadková raketa“, „booty bump“, „keistering“ alebo „plugging“ a podľa anekdotických správ to zvyšuje sexuálne potešenie, kým účinky drogy trvajú. Do konečníka sa pravdepodobne dostane väčšina drogy cez membrány vystieľajúce jeho steny. (Ďalšie informácie o ďalších rizikových faktoroch nájdete v časti Metamfetamín a sex.) Ďalším spôsobom požitia metamfetamínu je rozdrvenie kryštálikov a ich insuflácia. Tým sa tiež obíde metabolizmus prvého prechodu a dostane sa priamo do krvného obehu.

Z prísneho hľadiska je metamfetamín ako droga zaradená do zoznamu 8 v Austrálii uznaný na lekárske použitie, v praxi to však neplatí. Je známy aj pod názvom Ice a stal sa predmetom celonárodného boja proti nemu. Od roku 2007 sa táto téma stala súčasťou volebného programu oboch hlavných politických strán.

Metamfetamín nie je v Kanade schválený na lekárske použitie. Maximálny trest za výrobu a distribúciu je doživotie.

Metamfetamín sa riadi zoznamom 1 hongkonskej kapitoly 134 vyhlášky o nebezpečných drogách. Legálne ho môžu používať len zdravotnícki pracovníci a na účely univerzitného výskumu. Látku môžu podávať lekárnici na lekársky predpis. Každý, kto dodá látku bez lekárskeho predpisu, môže byť pokutovaný sumou 10000 USD (HKD). Trest za obchodovanie s látkou alebo jej výrobu je pokuta 5 000 000 USD (HKD) a doživotné väzenie. Držanie látky na konzumáciu bez licencie ministerstva zdravotníctva je nezákonné s pokutou 1 000 000 USD (HKD) a/alebo 7 rokov odňatia slobody.

Metamfetamín nie je v Holandsku schválený na lekárske použitie. Patrí do zoznamu I zákona o ópiu. Hoci výroba a distribúcia tejto drogy sú zakázané, niekoľko ľudí, ktorí boli prichytení s malým množstvom pre osobnú potrebu, bolo trestne stíhaných.

Metamfetamín je kontrolovaná droga triedy „A“ podľa zákona o zneužívaní drog z roku 1975. Maximálny trest za výrobu a distribúciu je doživotný trest odňatia slobody. Teoreticky by ho síce lekár mohol predpísať na vhodnú indikáciu, ale vyžadovalo by si to individuálne schválenie generálnym riaditeľom pre verejné zdravie. Na Novom Zélande sa metamfetamín najčastejšie označuje pouličným názvom P.

V Južnej Afrike je metamfetamín klasifikovaný ako droga zaradená do zoznamu 5 a je uvedený ako nežiaduca látka vyvolávajúca závislosť v časti III zoznamu 2 zákona o drogách a obchodovaní s drogami z roku 1992 (zákon č. 140 z roku 1992). Bežne sa nazýva Tik a zneužívajú ho najmä mladí ľudia do 20 rokov v oblastiach Cape Flats.

Od 18. januára 2007 je metamfetamín klasifikovaný ako droga triedy A podľa zákona o zneužívaní drog z roku 1971 na základe odporúčania Poradnej rady pre zneužívanie drog z júna 2006. Predtým bol klasifikovaný ako droga triedy B, okrem prípadov, keď je pripravený na injekčné použitie.

Metamfetamín je podľa Dohovoru o psychotropných látkach Úradom pre kontrolu liečiv zaradený do zoznamu II. Je dostupný na lekársky predpis pod obchodným názvom Desoxyn, ktorý vyrába spoločnosť Ovation Pharma. Hoci technicky nie je rozdiel medzi zákonmi týkajúcimi sa metamfetamínu a iných kontrolovaných stimulantov, väčšina lekárov ho kvôli jeho notorickej známosti predpisuje s odporom.

Nelegálny metamfetamín sa v posledných rokoch stal hlavnou témou „vojny proti drogám“ v Spojených štátoch. Okrem federálnych zákonov niektoré štáty zaviedli ďalšie obmedzenia na predaj chemických prekurzorov, ktoré sa bežne používajú na syntézu metamfetamínu, najmä pseudoefedrínu, bežného voľnopredajného dekongestíva. V roku 2005 DEA zhabala 2 148,6 kg metamfetamínu. V roku 2005 bol v rámci zákona USA PATRIOT Act prijatý zákon o boji proti metamfetamínovej epidémii z roku 2005, ktorým sa zaviedli obmedzenia na predaj prekurzorov metamfetamínu.

Ministerstvo spravodlivosti USA vyhlásilo 7. novembra 2006 30. november za Deň povedomia o metamfetamíne.

Údaje spravodajského centra DEA El Paso EPICdata ukazujú zreteľný klesajúci trend v zadržaní tajných drogových laboratórií na nezákonnú výrobu metamfetamínu z vysokého počtu 17 356 v roku 2003. Údaje o záchytoch laboratórií v Spojených štátoch sú dostupné z EPIC od roku 1999, keď bolo v tomto kalendárnom roku nahlásených 7 438 záchytov laboratórií.

Zákonnosť podobných chemikálií

Pozri pseudoefedrín a efedrín, kde sú uvedené zákonné obmedzenia v dôsledku ich používania ako prekurzorov pri tajnej výrobe metamfetamínu.

Metamfetamín – Desoxyn – Yaba (droga) – Metamfetamín a sex – Metamfetamín v populárnej kultúre – Meth mouth – Party and play – Montana Meth Project – Meth song – Levometamfetamín – Amfetamín – Galéria obrázkov – Combat Methamphetamine Epidemic Act of 2005 – Methamphetamine Precursor Control Act – Crystal Meth Anonymous

Adaphenoxate –
Adapromín –
Amantadín –
Bromantán –
Chlodantán –
Gludantan –
Memantín –
Midantane

8-chlórteofylín – 8-cyklopentylteofylín – 8-fenylteofylín – aminofylín – kofeín – CGS-15943 – dimetazín – paraxantín – SCH-58261 – teobromín – teofylín

Cyklopentamín – Cypenamín
Cypenamín – cyprodenát
Cyprodenát –
Heptaminol –
Izometheptén –
Metylhexanamín –
Oktodrín –
Propylhexedrín –
Tuaminoheptán

Benocyklidín –
Dieticyklidín –
Esketamín –
Eticyklidín –
Gacyclidine –
Ketamín –
Fencyklamín –
Fencyklidín –
Rolicyklidín –
Tenocyklidín –
Tiletamín

6-Br-APB –
SKF-77434 –
SKF-81297 –
SKF-82958

A-84543 –
A-366,833 –
ABT-202 –
ABT-418 –
AR-R17779 –
Altiniklín –
Anabasín –
Arekolín –
Kotinín –
Cytisine –
Dianiklín –
Epibatidín –
Epiboxidín –
TSG-21 –
Ispronicline –
Nikotín –
PHA-543,613 –
PNU-120,596 –
PNU-282,987 –
Pozanicline –
Rivanicline –
Sazetidín A –
SIB-1553A –
SSR-180,711 –
TC-1698 –
TC-1827 –
TC-2216 –
TC-5619 –
Tebanicline –
UB-165 –
Vareniklín –
WAY-317 538

Anatoxín-a –
Bikukulín –
DMCM –
Flurothyl –
Gabazín –
Pentetrazol –
Pikrotoxín –
Strychnín –
Thujone

Adrafinil –
Armodafinil –
CRL-40941 –
Modafinil

4-metylaminorex – Aminorex
Aminorex –
Clominorex –
Cyklazodón –
Fenozolón –
Fluminorex –
Pemoline –
Thozalinon

1-(4-metylfenyl)-2-aminobután –
1-Phenyl-2-(piperidin-1-yl)pentan-3-one –
1-metylamino-1-(3,4-metyléndioxyfenyl)propán –
2-fluóramfetamín –
2-fluórmetamfetamín – – 2-OH-PEA
2-OH-PEA – – 2-FENYL
2-fenyl-3-aminobután – – 2-OH-PEA
2-fenyl-3-metylaminobután – – 2,3-MDA
2,3-MDA – – 3-FLUÓRAMFETAMÍN
3-fluóramfetamín – – 3-fluóretamfetamín
3-fluóretamfetamín – – 2,3-MDA
3-fluórmetkatinón – – 3-metoxyamfetamín
3-metoxyamfetamín – – 3-metylamfetamín
3-metylamfetamín – – 3,4-DMMC
3,4-DMMC – 4-BMC
4-BMC – 4-ETYLAMFETAMÍN
4-etyllamfetamín – – 4-FA
4-FA –
4-FMA –
4-MA –
4-MMA –
4-MTA –
6-FNE –
Alfetamín –
α-etylfenetylamín –
Amfecloral –
Amfepentorex –
Amfepramón –
Amidefrín – Amfetamín (dextroamfetamín, levoamfetamín)
Amfetamín (dextroamfetamín, levoamfetamín) – Amfetamín
Amfetamín – – Arbutamín
Arbutamín –
β-metylfenetylamín – β-fenylmetamfetamín
β-fenylmetamfetamín – – Benfluorex
Benfluorex – Benzedron
Benzedrón – Benzfetamín
Benzfetamín – Benzedron – Benzfetamín
BDB (J) –
BOH (Hydroxy-J) –
BPAP –
Buphedron –
Bupropión (amfebutamón) –
Butylón –
Cathine –
Katinón –
Chlórfentermín –
Cinnamedrine –
Klenbuterol –
Clobenzorex –
Cloforex –
Clortermine –
D-deprenyl –
Denopamín –
Dimetoxyamfetamín –
Dimetylamfetamín – dimetylkatinón (dimetylpropión, metamfepramón)
Dimetylkatinón (dimetylpropión, metamfepramón) – – Dobutamín
Dobutamín – – DOPA (dextrodopa)
DOPA (dextrodopa, levodopa) – dopamín
Dopamín – Dopexamín
Dopexamín –
Droxidopa –
EBDB (Ethyl-J) –
Efedrín –
Epinefrín (adrenalín) –
Epinín (deoxyepinefrín) – Etafedrín
Etafedrín – etkatinón
Etikatinón (etylpropión) – Etylamfetamín (etylpropión)
Etylamfetamín (etilamfetamín) – Etylnorepinefrín (adrenalín)
Etylnorepinefrín (butanefrín) – etylón
Etylón – etylefrín
Etylefrín – Etylpropión (Etylpropión)
Famprofazón – fenbutrazát
Fenbutrazát – – Fenbutrazát
Fencamín –
Fenetylín – fenetylamín
Fenfluramín (dexfenfluramín) – – Fenmetramid
Fenmetramid – Fenproporex
Fenproporex – Fenmetramid
Flefedrón – Fludorex
Fludorex – Furfenorex
Furfenorex – Gepefrín
Gepefrín –
HMMA –
Hordenine –
Ibopamín –
IMP –
Indanylamfetamín –
Isoetarine –
Izoetkatinón –
Izoprenalín (izoproterenol) – – L-deprenyl (selegilín)
L-deprenyl (selegilín) – lefetamín
Lefetamín – lisdexamfetamín
Lisdexamfetamín – Lophophine (Homomyrist)
Lophophine (Homomyristicillamine) – Manifaxine
Manifaxín – – Manifaxín (homomyristikamín)
MBDB (metyl-J; „Eden“) – – MDA (tenamfetamín)
MDA (tenamfetamín) – MDBU
MDBU – – MDEA („EVE“)
MDEA („Eve“) – – MDMA („Extáza“)
MDMA („Extáza“, „Adam“) – – MDMPEA (homarylamín)
MDMPEA (homarylamín) – MDOH
MDOH –
MDPR –
MDPEA (homopiperonylamín) – – Mefenorex
Mefenorex – Mefedron
Mefedrón –
Mefentermín –
Metanefrín –
Metaraminol – metamfetamín
Metamfetamín (desoxyefedrín, metedrín; dextrometamfetamín, levometamfetamín) – – Metoxamín
Metoxamín – – Metoxyfenamín
Metoxyfenamín – – Metoxyfenamín
MMA –
Metkatinón (metylpropión) – Methedron
Metedrón – Metoxyfenamín
Metoxyfenamín – – metylón
Metylón –
MMDA –
MMDMA –
MMMA –
Morazone –
N-benzyl-1-fenetilamin – – N
N,N-dimetylfenetylamín – – Naftylamfetamín
Nafylamfetamín – – Nisoxetín
Nisoxetín – noradrenalín (noradrenalín)
Norepinefrín (noradrenalín) – noradrenalín
Norfenefrín – noradrenalín (noradrenalín)
Norfenfluramín – noradrenalín (noradrenalín)
Normetanefrín – oktopamín
Oktopamín –
Orciprenalín –
Ortetamín –
Oxilofrin –
Paredrín (norfolydrín, oxamfetamín, mykadrín) –
PBA –
PCA –
PHA –
Pargyline –
Pentorex (Phenpentermine) – – Pentylone
Pentylón –
Fendimetrazín –
Fenmetrazín –
Fenprometamín –
Fentermín –
Fenylalanín –
Fenylefrín (neosynefrín) –
Fenylpropanolamín –
Pholedrine –
PIA –
PMA –
PMEA –
PMMA –
PPAP –
Prenylamín –
Propylamfetamín –
Pseudoefedrín –
Radafaxine –
Ropinirol – salbutamol (albuterol; levosalbutamol)
Salbutamol (albuterol; levosalbutamol) – – Sibutramín
Sibutramín – Synefrín (Oxedrine)
Synefrín (Oxedrine) – Teodrenalín
Teodrenalín – Tiflorex (Flután)
Tiflorex (Flutiorex) – Tranylcypromín
Tranylcypromín – tyramín
Tyramín – Tyrozín
Tyrozín –
Xamoterol – Xylopropamín
Xylopropamín – Zylofuramín
Zylofuramín

2C-B-BZP –
BZP –
CM156 –
DBL-583 – GBR
GBR-12783 –
GBR-12935 –
GBR-13069 –
GBR-13098 –
GBR-13119 –
MeOPP –
MBZP –
Vanoxerín

1-Benzyl-4-(2-(difenylmetoxy)etyl)piperidín –
1-(3,4-dichlórfenyl)-1-(piperidín-2-yl)bután –
2-benzylpiperidín –
2-metyl-3-fenylpiperidín –
3,4-dichlórmetylfenidát –
4-benzylpiperidín –
4-metylfenidát –
Deoxypipradrol –
Difemetorex –
Difenylpyralín –
Etylfenidát –
Metylnaftidát –
Metylfenidát (dexmetylfenidát) –
N-metyl-3β-propyl-4β-(4-chlórfenyl)piperidín –
Nocaine –
Phacetoperane –
Pipradrol –
SCH-5472

2-difenylmetylpyrolidín – α-PPP
α-PPP –
α-PBP –
α-PVP –
Difenylprolinol –
MDPPP –
MDPBP –
MDPV –
MPBP –
MPHP –
MPPP –
MOPPP –
Naphyrone –
PEP –
Prolintane –
Pyrovalerón

3-CPMT –
3′-chlór-3α-(difenylmetoxy)tropán –
3-pseudotropyl-4-fluorobenzoát –
4′-fluorokokaín –
AHN-1055 –
Altropán (IACFT) –
Brasofenzín –
CFT (WIN 35,428) –
β-CIT (RTI-55) – Kokaetylén
Kokaetylén –
Kokaín – dichlórpan (RTI-111)
Dichlórpan (RTI-111) – – Difluórpín
Difluoropín – FE-β-CPPIT
FE-β-CPPIT – FE-β-CPPIT
FP-β-CPPIT – Ioflupán (123I)
Ioflupán (123I) – Norkokaín
Norkokaín – PIT
PIT –
PTT –
RTI-31 –
RTI-32 –
RTI-51 –
RTI-105 –
RTI-112 –
RTI-113 –
RTI-117 –
RTI-120 –
RTI-121 (IPCIT) –
RTI-126 –
RTI-150 –
RTI-154 – – RTI-171
RTI-171 –
RTI-177 –
RTI-183 –
RTI-193 –
RTI-194 –
RTI-199 –
RTI-202 –
RTI-204 –
RTI-229 –
RTI-241 –
RTI-336 –
RTI-354 –
RTI-371 –
RTI-386 – – SALICYLMETYLEKGONÍN
Salicylmetylekgonín – – – Salicylmetylekgonín
Tesofenzín –
Troparil (β-CPT, WIN 35,065-2) – – Tropoxán
Tropoxán –
WF-23 – – WF-33
WF-33 –
WF-60

1-(tiofén-2-yl)-2-aminopropán – – 2-amino-1,2-dihydronaftalén
2-amino-1,2-dihydronaftalén – – 2-aminoindán
2-aminoindán – – 2-aminotetralín
2-aminotetralín –
2-MDP – – 2-FENYLCYKLOHEXÁN
2-fenylcyklohexylamín – – 2-aminoindán
2-fenyl-3,6-dimetylmorfolín – – 3-benzhydrylmorfolín
3-benzhydrylmorfolín – – 3,3-difenylcyklohexylamín
3,3-difenylcyklobutanamín – – 5-(2-amino-propyl)
5-(2-aminopropyl)indol – – 5-jodo-2-amino
5-jodo-2-aminoindán –
AL-1095 –
Kyselina amfonová –
Amineptín –
Amifenazoly –
Atipamezol –
Atomoxetín (tomoxetín) –
Bemegrid – Bemegrid (Tomoxetín) – Bemegrid
Benzydamín –
BTQ –
BTS 74,398 –
Carphedon –
Ciclazindol –
Cilobamín –
Klofencikán –
Cropropamid –
Krotetamid – – Cypenamín
Cypenamín –
D-161 –
Diklofenzín –
Dimetokaín –
Efaroxan –
Etamivan –
EXP-561 –
Fencamfamín –
Fenpentadiol –
Feprosidnine –
G-130 –
Gamfexine –
Gilutenzín –
GSK1360707F –
GYKI-52895 –
Hexacyklonát –
Idazoxan –
Indanorex –
Indatralín –
JNJ-7925476 –
JZ-IV-10 –
Lazabemid –
Leptaklín –
Levopropylhexedrín –
Lomevactone –
LR-5182 –
Mazindol –
Mazindol – meklofenoxát
Medifoxamín –
Mefexamid –
Mesocarb –
Metastyridón –
Metiopropamín – – N-metyl-3-fenylnorbornan-2-amín
N-metyl-3-fenylnorbornan-2-amín – – Nefopam
Nefopam –
Niketamid –
Nomifenzín –
O-2172 –
Oxaprotiline –
Ftalimidopropiofenón –
PNU-99,194 – PROPYLHEXEDRÍN
Propylhexedrín –
PRC200-SS –
Rasagilín – Rauwolscine
Rauwolscine – – Chlorid rubídia
Chlorid rubídia –
Setazindol –
Tametraline –
Tandamín –
Trazium –
UH-232 –
Yohimbin

{2C-B}
{2C-C}
{2C-D}
{2C-E}
{2C-I}
{2C-N}
{2C-T-2}
{2C-T-21}
{2C-T-4}
{2C-T-7}
{2C-T-8}
{3C-E}
{4-FMP}
{Bupropion}
{Cathine}
{katinón}
{DESOXY}
{Dextroamfetamín}
{Metamfetamín}
{Dietylkatinón}
{Dimetylkatinón}
{DOC}
{DOB}
{DOI}
{DOM}
{bk-MBDB}
{Dopamín}
{Br-DFLY}
{Efedrín}
{Epinefrín}
{Eskalín}
{Fenfluramín}
{Levalbuterol}
{Levmetamfetamín}
{MBDB}
{MDA}
{MDMA}
{bk-MDMA/MDMC/MDMCat/Metylón}
{MDEA}
(MDPV)
{Meskalín}
{Metkatinón}
{Metylfenidát}
{Norepinefrín}
{fentermín}
{Salbutamol}
{Tyramín}
{Venlafaxín}

Kategórie
Psychologický slovník

Bipolárna porucha

Bipolárna porucha je psychiatrická diagnóza alebo porucha nálady, ktorá je definovaná v DSM-IV-TR. Ide o poruchu, ktorá sa vyznačuje obdobiami extrémnych, často neprimeraných a niekedy aj nepredvídateľných stavov nálady. V minulosti sa táto porucha nazývala maniodepresívna. Termín „maniodepresívna porucha“ vznikol na označenie vysokých emocionálnych stavov mánie a depresie, ktoré sa vyskytovali.

U bipolárnych jedincov sa zvyčajne vyskytujú mánie, hypománie alebo zmiešané stavy, ktoré sa striedajú s klinickou depresiou a eutymickou alebo normálnou náladou počas rôznych časových období. Existuje mnoho variantov tejto poruchy. Osoba s bipolárnou poruchou má vo všeobecnosti tendenciu zažívať extrémnejšie stavy nálady ako ostatní ľudia. Nálady sa môžu rýchlo meniť (mnohokrát za deň) alebo trvať celé mesiace. Bipolárne osoby majú tendenciu mať veľmi „čiernobiele“ myslenie, kde všetko v živote má buď pozitívny, alebo negatívny aspekt. Takéto nálady sa spájajú s utrpením a poruchami a pomerne vysokým rizikom samovraždy. Bipolárna porucha sa spája aj s rôznymi kognitívnymi deficitmi, najmä s ťažkosťami pri organizovaní a plánovaní. Porucha môže tiež skresľovať schopnosť posudzovať emócie druhých a meniť zmysel pre uvedomovanie si. Bipolárni jedinci môžu byť príliš pozorní a analytickí voči svojmu okoliu a v niektorých prípadoch paranoidní voči iným.

Bipolárna porucha sa zvyčajne lieči liekmi, ktoré pomáhajú stabilizovať náladu, a/alebo terapiou a poradenstvom.

Niektoré štúdie naznačujú, že hoci bipolárna porucha mení emócie, môže existovať súvislosť medzi tvorivosťou a bipolárnou poruchou, hoci nie je jasné, aký je medzi nimi vzťah.

Aspekty bipolárnej poruchy

Bipolárna porucha sa bežne delí na bipolárny typ I, pri ktorom jedinec prežíva úplnú mániu, alebo bipolárny typ II, pri ktorom hypomanické „vzostupy“ nedosahujú extrémne hodnoty mánie. Druhý typ je oveľa ťažšie diagnostikovať, pretože hypomanické epizódy sa môžu prejaviť jednoducho ako obdobie úspešnej vysokej produktivity a hlásia sa menej často ako tiesnivá depresia. Psychózy sa môžu vyskytnúť najmä v manických obdobiach. Existujú aj podtypy „rýchleho cyklovania“. Keďže existuje veľa rozdielov v závažnosti a povahe problémov súvisiacich s náladou, často sa používa pojem bipolárne spektrum, ktoré zahŕňa aj cyklotýmiu. Neexistuje zhoda v tom, koľko „typov“ bipolárnej poruchy existuje (Akiskal a Benazzi, 2006). Mnohí ľudia s bipolárnou poruchou pociťujú silnú úzkosť a sú veľmi podráždení (až zúriví), keď sú v manickom stave, zatiaľ čo iní sú euforickí a grandiózni.

Príznaky a symptómy depresívnej fázy bipolárnej poruchy zahŕňajú (ale v žiadnom prípade nie sú obmedzené na): pretrvávajúce pocity smútku, úzkosti, viny, hnevu, izolácie a/alebo beznádeje, poruchy spánku a chuti do jedla, únava a strata záujmu o zvyčajne obľúbené činnosti, problémy so sústredením, osamelosť, odpor k sebe samému, apatia alebo ľahostajnosť, depersonalizácia, strata záujmu o sexuálne aktivity, plachosť alebo sociálna úzkosť, podráždenosť, chronická bolesť (so známou príčinou alebo bez nej), nedostatok motivácie a chorobné/sebevražedné myšlienky].

Ľudia s manickou epizódou nálady môžu byť povznesení, euforickí, podráždení a/alebo podozrievaví. Dôjde k zvýšeniu telesnej a duševnej rýchlosti a kvality. Bežná je zvýšená energia a nadmerná aktivita; reč sa môže stať pretekárskou. Potreba spánku je znížená. Pozornosť je nízka a ľahko sa rozptýli. Môžu byť vyslovené nerealistické, veľkolepé alebo príliš optimistické myšlienky alebo pokusy o ne. Sociálne zručnosti sú oslabené a nepraktické nápady môžu viesť k finančným a vzťahovým nerozvážnostiam.

Hypománia je vo všeobecnosti menej deštruktívny stav ako mánia a ľudia v hypomanickej fáze zvyčajne pociťujú menej príznakov mánie ako ľudia v plnej manickej epizóde. Trvanie je zvyčajne tiež kratšie ako pri mánii. Často ide o veľmi „umelecký“ stav poruchy, pri ktorom dochádza k rozletu nápadov, mimoriadne bystrému mysleniu a zvýšeniu energie.

V kontexte bipolárnej poruchy je zmiešaný stav stav, počas ktorého sa súčasne vyskytujú príznaky mánie a klinickej depresie (napríklad agitovanosť, úzkosť, agresivita alebo bojovnosť, zmätenosť, únava, impulzívnosť, nespavosť, podráždenosť, chorobné a/alebo samovražedné predstavy, panika, paranoja, prenasledovateľské bludy, nátlaková reč, pretekárske myšlienky, nepokoj a zúrivosť).

Zmiešané epizódy môžu byť z bipolárnych stavov najvýbušnejšie, pretože nálady sa môžu ľahko a rýchlo spustiť alebo zmeniť. Počas tohto stavu sa môžu vyskytnúť pokusy o samovraždu, zneužívanie návykových látok a sebapoškodzovanie.

Rýchle cykly, definované ako štyri alebo viac epizód za rok, sa vyskytujú u značnej časti pacientov s bipolárnou poruchou. Spája sa s väčším postihnutím alebo horšou prognózou, a to v dôsledku mätúcej premenlivosti a ťažkostí s nastolením stabilného stavu. Rýchle cykly môžu byť vyvolané alebo zhoršené antidepresívami.

Početné štúdie ukazujú, že bipolárna porucha zahŕňa určité kognitívne deficity alebo poruchy, a to aj v remisii. Deborah Yurgelun-Toddová z McLean Hospital v Belmonte v štáte Massachusetts tvrdí, že tieto deficity by mali byť zahrnuté ako základný znak bipolárnej poruchy. Podľa McIntyra et al. (2006) „výsledky štúdií teraz naliehajú na to, že neurokognitívne deficity sú primárnym znakom BD; sú vysoko prevalentné a pretrvávajú aj pri absencii zjavnej symptomatológie. Hoci boli hlásené rozdielne neurokognitívne abnormality, najčastejšie sa uvádzajú poruchy pozornosti, vizuálnej pamäte a exekutívnych funkcií“.

V mnohých nedávnych štúdiách sa zistila súvislosť medzi tvorivosťou a bipolárnou poruchou, hoci nie je jasné, v čom spočíva príčina, alebo či sú oba stavy spôsobené nejakým tretím, neznámym faktorom.
Predpokladá sa, že jedným z takýchto faktorov môže byť temperament.

Deti s bipolárnou poruchou nemusia spĺňať definíciu DSM-IV. V pediatrických prípadoch môže dochádzať k veľmi rýchlemu cyklovaniu (pozri vyššie časť o rýchlom cyklovaní).

Deti s bipolárnou poruchou majú tendenciu k rýchlej cyklickej alebo zmiešanej cyklickej . Rýchle cyklovanie nastáva vtedy, keď sa cykly medzi depresiou a mániou vyskytujú rýchlo, niekedy v priebehu toho istého dňa alebo tej istej hodiny. Keď sa príznaky mánie aj depresie vyskytujú súčasne, dochádza k zmiešanému cyklovaniu.

U bipolárnych detí sa často diagnostikujú aj iné psychiatrické ochorenia. Tieto iné diagnózy môžu byť súbežnými problémami alebo môžu byť nesprávne diagnostikované ako bipolárna porucha. Depresia, ADHD, ODD, schizofrénia a Tourettov syndróm sú bežné komorbidné stavy. Okrem toho niektoré deti s anamnézou zneužívania alebo zanedbávania môžu mať bipolárnu poruchu I. Medzi reaktívnou poruchou pripútania a bipolárnou poruchou I je vysoká komorbidita, pričom približne 50 % detí v systéme starostlivosti o deti, ktoré majú reaktívnu poruchu pripútania, má aj bipolárnu poruchu I.

Nesprávna diagnóza môže viesť k nesprávnej medikácii.

V septembri 2007 odborníci (z New Yorku, Marylandu a Madridu) zistili, že počet amerických detí a dospievajúcich liečených na bipolárnu poruchu sa od roku 1994 do roku 2003 zvýšil 40-násobne a odvtedy stále rastie. Tento nárast však bol spôsobený tým, že lekári agresívnejšie uplatňovali túto diagnózu u detí, a nie tým, že by sa zvýšil výskyt tejto poruchy. Štúdia vypočítala počet návštev, ktoré sa zvýšili, z 20 000 v roku 1994 na 800 000 v roku 2003, čo predstavuje 1 % populácie mladšej ako 20 rokov.

U ľudí s diagnózou bipolárnej poruchy je vyššie riziko samovraždy. Odhaduje sa, že 10 až 15 % ľudí hospitalizovaných s touto diagnózou nakoniec zomrie samovraždou. {cn}.

Hoci mnoho ľudí s bipolárnou poruchou, ktorí sa pokúsia o samovraždu, ju nikdy nedokončí, priemerná ročná miera samovrážd u mužov a žien s diagnostikovanou bipolárnou poruchou (0,4 %) je 10 až viac ako 20-krát vyššia ako v bežnej populácii.

Osoby s bipolárnou poruchou majú tendenciu k samovražde, najmä počas zmiešaných stavov, ako je dysforická mánia a agitovaná depresia. Osoby trpiace bipolárnou poruchou II majú vysokú mieru samovrážd v porovnaní s osobami trpiacimi inými duševnými chorobami vrátane veľkej depresie. Veľké depresívne epizódy sú súčasťou skúseností s bipolárnou poruchou II a niektorí sa domnievajú, že osoby trpiace touto poruchou strávia väčšinu svojho života v depresívnej fáze ochorenia.

Podľa časopisu Psychology Today je miera rozvodovosti
je 90 % párov, v ktorých je aspoň jeden z manželov bipolárny. Pre porovnanie, všeobecná miera rozvodovosti sa všeobecne považuje za približne o polovicu nižšiu (okolo 50 %), čo znamená, že toto ochorenie spôsobuje značnú dodatočnú záťaž v manželskom živote.

Flux je základnou podstatou bipolárnej poruchy. Energia, nálada, myslenie, spánok a aktivita patria medzi neustále sa meniace biologické markery poruchy, a to tak v rámci jednej osoby, ako aj medzi jednotlivcami s týmto ochorením. Diagnostické podtypy bipolárnej poruchy sú teda statickými opismi – možno snímkami – choroby, ktorá sa neustále mení, s veľkou rozmanitosťou symptómov a rôznym stupňom závažnosti. Jednotlivci môžu v priebehu ochorenia zostať v jednom podtype alebo sa zmeniť na iný. DSM V, ktorý bude uverejnený v roku 2011, bude pravdepodobne obsahovať ďalšie a presnejšie podtypy (Akiskal a Ghaemi, 2006).

V súčasnosti existujú štyri typy bipolárnej choroby. Diagnostický a štatistický manuál duševných porúch IV-TR (DSM-IV-TR) uvádza štyri kategórie bipolárnej poruchy: bipolárna porucha I, bipolárna porucha II, cyklotýmia a bipolárna porucha NOS (inak nešpecifikovaná).

Na diagnostikovanie bipolárnej poruchy I podľa DSM-IV-TR je potrebná jedna alebo viac manických alebo zmiešaných epizód. Na diagnózu bipolárnej poruchy I sa nevyžaduje depresívna epizóda, ale často sa vyskytuje.

Bipolárna choroba II, ktorá sa vyskytuje častejšie, je zvyčajne charakterizovaná aspoň jednou epizódou hypománie a aspoň jednou depresiou.

Diagnóza cyklotymickej poruchy si vyžaduje prítomnosť početných hypomanických epizód, ktoré sa prelínajú s depresívnymi epizódami, ktoré nespĺňajú všetky kritériá pre veľké depresívne epizódy. Hlavnou myšlienkou je, že tu existuje nízkostupňové cyklické striedanie nálad, ktoré sa pozorovateľovi javí ako osobnostná črta, ale zasahuje do fungovania.

Ak sa zdá, že jedinec trpí niektorým typom bipolárnej poruchy, ale nespĺňa kritériá pre jeden z vyššie uvedených podtypov, dostane diagnózu bipolárna porucha NOS (inak nešpecifikovaná).

Hoci pacient bude pri prvom vyhľadaní pomoci s najväčšou pravdepodobnosťou v depresii, je veľmi dôležité zistiť od pacienta alebo jeho rodiny či priateľov, či sa u neho niekedy vyskytla manická alebo hypomaniacká epizóda, a to pomocou starostlivého vypytovania. Tým sa predíde nesprávnej diagnóze depresívnej poruchy a zabráni sa použitiu antidepresíva, ktoré môže spustiť „prepnutie“ do hypománie alebo mánie alebo vyvolať rýchle cykly. Nedávno boli vyvinuté skríningové nástroje, ako napríklad dotazník Hypomanic Check List Questionnaire (HCL-32), ktoré pomáhajú pri pomerne často náročnom odhaľovaní bipolárnych porúch II.

Projekt MRC eMonitoring, ďalšia výskumná štúdia založená na Inštitúte psychiatrie a univerzitách v Newcastli, vykonáva nový výskum metodík elektronického monitorovania (elektronické denníky nálady a aktigrafia) na sledovanie výkyvov bipolárnych symptómov u bipolárnych jedincov, ktorí majú záujem o samosprávu svojho stavu.

Výskumníci používajú pokročilé techniky zobrazovania mozgu na skúmanie funkcie a štruktúry mozgu u ľudí s bipolárnou poruchou, najmä pomocou funkčnej magnetickej rezonancie a pozitrónovej emisnej tomografie. Dôležitá oblasť neurozobrazovacieho výskumu sa zameriava na identifikáciu a charakterizáciu sietí vzájomne prepojených nervových buniek v mozgu, ktorých interakcie tvoria základ normálneho a abnormálneho správania. Výskumníci predpokladajú, že abnormality v štruktúre a/alebo funkcii určitých mozgových okruhov by mohli byť základom bipolárnych a iných porúch nálady, a štúdie zistili anatomické rozdiely v oblastiach, ako je prefrontálna kôra a hipokampus.

Lepšie pochopenie nervových obvodov, ktoré sa podieľajú na regulácii stavov nálady, a genetických faktorov, ako je napríklad gén kadherínu FAT spojený s bipolárnou poruchou, môže ovplyvniť vývoj nových a lepších liečebných postupov a v konečnom dôsledku môže pomôcť pri včasnej diagnostike a dokonca aj pri liečbe.

Koncom roka 2003 výskumníci z McLean Hospital zistili predbežné dôkazy o zlepšení nálady počas echo-planárnej magnetickej rezonancie (EP-MRSI) a pokúšajú sa ju rozvinúť do podoby, ktorá by sa dala vyhodnotiť ako možná liečba.

NIMH iniciovala rozsiahlu štúdiu na 20 miestach v Spojených štátoch s cieľom určiť najúčinnejšie stratégie liečby ľudí s bipolárnou poruchou. Táto štúdia, Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD), bude sledovať pacientov a dokumentovať výsledky ich liečby počas 5 až 8 rokov. Viac informácií nájdete na stránke Klinické štúdie na webovej stránke NIMH.

Transkraniálna magnetická stimulácia je ďalšou pomerne novou skúmanou technikou.

Farmaceutický výskum je rozsiahly a prebieha, ako je vidieť na stránke clinicaltrials.gov.

„Štúdie mortality dokumentujú zvýšenie úmrtnosti zo všetkých príčin u pacientov s BD. Novo vytvorená a rýchlo sa rozširujúca databáza naznačuje, že úmrtnosť v dôsledku chronických zdravotných porúch (napr. kardiovaskulárnych ochorení) je najväčšou príčinou predčasných a nadmerných úmrtí u pacientov s BD. Štandardizovaný pomer úmrtnosti na samovraždu pri BD sa odhaduje na približne 18 až 25, čo ešte viac zdôrazňuje letálnosť tejto poruchy.“.

Súčasné výpovede prvej osoby na túto tému zahŕňajú

Praktického sprievodcu životom s bipolárnou poruchou z pohľadu chorého nájdete na stránke

Kritiku genetických vysvetlení bipolárnej poruchy nájdete na stránke

Informácie o bipolárnej poruche u detí nájdete na:

Medzi klasické diela na túto tému patria

Bipolárna porucha na Open Directory Project

Emil Kraepelin – Karl Leonhard – John Cade – Mogens Schou – Frederick K. Goodwin – Kay Redfield Jamison

Halucinácie – Bludy – Emocionálna dysregulácia (anhedónia, dysfória, samovražedné myšlienky) – Poruchy spánku (hypersomnia, insomnia) – Psychóza – Závodivé myšlienky

Karbamazepín – Gabapentín – Lamotrigín – Oxkarbazepín – Topiramát – Kyselina valproová (valproát sodný, polonátrium valproát)

Farmakológia lítia (uhličitan lítny, citrát lítny, síran lítny) – Antipsychotiká

Klinická psychológia – Elektrokonvulzívna terapia – Nedobrovoľný záväzok – Svetelná terapia – Psychoterapia – Transkraniálna magnetická stimulácia – Kognitívno-behaviorálna terapia

Afektívne spektrum – Zoznam ľudí postihnutých bipolárnou poruchou – Bipolárna porucha u detí -Kniha:Bipolárna porucha

dsrd (o, p, m, p, a, d, s), sysi/epon, spvo

proc (eval/thrp), droga (N5A/5B/5C/6A/6B/6D)

„Čiernobiele myslenie“: Ako vyvážiť tieto kognitívne extrémy

Kategórie
Psychologický slovník

Estrus

Estrus (tiež ruje alebo ruje; odvodené z latinského oestrus a pôvodne z gréckeho οἶστρος, čo znamená sexuálna túžba) zahŕňa opakujúce sa fyziologické zmeny, ktoré sú vyvolané reprodukčnými hormónmi u väčšiny cicavčích placentálnych samíc. Estrálne cykly sa začínajú po pohlavnej zrelosti u pohlavne zrelých samíc a sú prerušované anestrickými fázami alebo tehotenstvom. Estrálne cykly zvyčajne pokračujú až do smrti. Niektoré zvieratá môžu vykazovať krvavý vaginálny výtok, ktorý sa často mylne považuje za menštruáciu, nazývanú aj „perióda“.

Rozdiely oproti menštruačnému cyklu

Cicavce majú rovnaký reprodukčný systém vrátane regulačného hypotalamického systému, ktorý v pulzoch uvoľňuje gonadotropín uvoľňujúci hormón, hypofýzy, ktorá vylučuje folikuly stimulujúci hormón a luteinizačný hormón, a samotného vaječníka, ktorý uvoľňuje pohlavné hormóny vrátane estrogénov a progesterónu. Druhy sa však v podrobnom fungovaní výrazne líšia. Jedným z rozdielov je, že zvieratá, ktoré majú estrálne cykly, reabsorbujú endometrium, ak počas tohto cyklu nedôjde k počatiu. Zvieratá, ktoré majú menštruačné cykly, sa namiesto toho zbavujú endometria prostredníctvom menštruácie. Ďalším rozdielom je sexuálna aktivita. U druhov s estrálnymi cyklami sú samice vo všeobecnosti sexuálne aktívne len počas ruje (vysvetlenie jednotlivých fáz estrálneho cyklu nájdete nižšie). Tento stav sa označuje aj ako „ruje“. Naproti tomu samice druhov s menštruačným cyklom môžu byť sexuálne aktívne kedykoľvek počas svojho cyklu, aj keď sa nechystajú ovulovať. Predpokladalo sa, že ľudia na rozdiel od iných druhov nemajú žiadne zjavné vonkajšie znaky, ktoré by signalizovali estrálnu receptivitu pri ovulácii (skrytá ovulácia). Najnovšie výskumy však naznačujú, že ženy majú tendenciu mať viac sexuálnych myšlienok a sú oveľa náchylnejšie na sexuálnu aktivitu tesne pred ovuláciou (estrus).

Etymológia a názvoslovie

Estrus je odvodený z latinského oestrus (šialenstvo), z gréckeho οἶστρος (ovad, vánok, žihadlo, šialený impulz). Konkrétne ide o gadfly, ktorú poslala Héra, aby trápila Io, ktorú Zeus získal v podobe jalovice. Euripides použil slovo „oestrus“ na označenie „šialenstva“ a na opis šialenstva. Homér používa toto slovo na opis paniky. Platón ho používa aj na označenie iracionálneho pudu a na opis duše „hnanej a priťahovanej gadžom túžby“. O niečo bližšie k súčasnému významu a používaniu slova „estrus“ používa oistros Herodotos (Histórie kap. 93.1) na opis túžby rýb po nerese.

Najstaršie použitie v angličtine je „frenzised passion“. V roku 1900 bol prvýkrát použitý na označenie „ruje u zvierat, horúčavy“.

V britskej angličtine sa píše oestrus alebo œstrus. Vo všetkých anglických pravopisoch má koncovku „-us“, keď sa používa ako podstatné meno, a koncovku „-ous“, keď sa používa ako prídavné meno. V americkej angličtine sa teda cicavec (vrátane človeka) môže opísať ako „in estrus“, keď sa nachádza v danej časti estrálneho alebo menštruačného cyklu. Estrum sa niekedy používa ako synonymum pre estrus.

Prehľad estrálneho cyklu cicavcov

Začína rásť jeden alebo niekoľko folikulov vaječníka. Ich počet je špecifický pre daný druh. Táto fáza môže trvať zvyčajne len jeden deň alebo až 3 týždne, v závislosti od druhu. Pod vplyvom estrogénu sa začína vyvíjať výstelka v maternici (endometrium). U niektorých zvierat sa môže vyskytnúť vaginálny sekrét, ktorý môže byť krvavý. Samička ešte nie je pohlavne vnímavá.

Estrus označuje fázu, keď je samica pohlavne vnímavá („v ruje“). Pod reguláciou gonadotropných hormónov dozrievajú vaječníkové folikuly a najväčší vplyv má vylučovanie estrogénov. Vtedy sa u nej prejavuje pohlavne vnímavé správanie, čo môže byť signalizované viditeľnými fyziologickými zmenami. Signálnym znakom ruje je lordózny reflex, pri ktorom zviera spontánne dvíha zadné končatiny.

U niektorých druhov sú pysky začervenané. U niektorých druhov môže dôjsť k spontánnej ovulácii

Počas tejto fázy ustupujú príznaky estrogénovej stimulácie a začína sa tvoriť žlté teliesko. Maternicová výstelka začne vylučovať malé množstvo progesterónu. Táto fáza je zvyčajne krátka a môže trvať 1 až 5 dní. U niektorých zvierat sa môže zaznamenať krvácanie v dôsledku klesajúcej hladiny estrogénov.

Diestrus je charakterizovaný aktivitou žltého telieska, ktoré produkuje progesterón. V prípade neprítomnosti tehotenstva sa fáza diestru (označovaná aj ako pseudotehotenstvo) končí regresiou žltého telieska. Výstelka v maternici sa nevylučuje, ale zreorganizuje sa na ďalší cyklus.

Anestrus označuje fázu, keď sa pohlavný cyklus zastaví. Je to zvyčajne sezónna udalosť a riadi sa pôsobením svetla prostredníctvom epifýzy, ktorá uvoľňuje melatonín. Melatonín môže potláčať stimuláciu reprodukcie u chovateľov s dlhým dňom a stimulovať reprodukciu u chovateľov s krátkym dňom. Predpokladá sa, že melatonín pôsobí prostredníctvom regulácie hypotalamickej pulzačnej aktivity hormónu uvoľňujúceho gonadotropín. Anestrus je vyvolaný ročným obdobím, graviditou, laktáciou, závažným ochorením, chronickým energetickým deficitom a prípadne vekom.

Po ukončení (alebo prerušení) gravidity majú niektoré druhy postpartálny estrus, čo je ovulácia a produkcia žltého telieska, ku ktorej dochádza bezprostredne po narodení mláďat. Napríklad myš má plodný postpartálny estrus, ktorý nastáva 14 – 24 hodín po pôrode.

Variabilita cyklov sa u jednotlivých druhov líši, ale zvyčajne sú cykly častejšie u menších zvierat. Dokonca aj v rámci druhu možno pozorovať značnú variabilitu, takže mačky môžu mať estrálny cyklus trvajúci 3 až 7 týždňov. Domestikácia môže ovplyvniť estrálne cykly v dôsledku zmien prostredia.

Niektoré druhy, ako napríklad mačky, kravy a domáce ošípané, sú polyestrické a môžu mať ruju niekoľkokrát do roka. Sezónne polyestrické zvieratá alebo sezónne plemennice majú viac ako jeden estrálny cyklus počas určitého obdobia roka a možno ich rozdeliť na krátko a dlho trvajúce plemennice:

Druhy, ktoré sa hárajú dvakrát ročne, ako napríklad väčšina psov, sú diestrické.

Monoestrické druhy, ako sú medvede, líšky a vlky, majú len jedno obdobie rozmnožovania ročne, zvyčajne na jar, aby umožnili rast potomstva počas teplého obdobia a prežili nasledujúcu zimu.

Niekoľko druhov cicavcov, ako napríklad králiky, nemá estrálny cyklus a sú schopné otehotnieť takmer v ľubovoľnom okamihu.

Rujná mačka má ruju 14-21 dní a je indukovaným ovulátorom. Bez kopulácie môže vstúpiť do interestru pred opätovným vstupom do ruje. Pri kopulácii a bez gravidity sa cykly vyskytujú približne každé tri týždne. Mačky sú polyestrické, ale na jeseň a koncom zimy zažívajú sezónnu anestru.

Suky sú háravé a hárajú zvyčajne dvakrát ročne, hoci niektoré plemená majú jeden alebo tri cykly ročne. Proestrus je relatívne dlhý – 5 až 7 dní, zatiaľ čo ruje môže trvať 4 až 13 dní. Pri diestruse 7 – 10 dní trvá typický cyklus približne 3 týždne, po ktorých nasleduje približne 150 dní anestru. Počas tohto obdobia krvácajú, čo zvyčajne trvá 7 až 13 dní v závislosti od veľkosti a zrelosti psa. Ovulácia nastáva na konci obdobia ruje, preto je to najlepší čas na začatie chovu. Krvácanie v období estrusu je u psov bežné a je spôsobené diapedézou krvných buniek z ciev v dôsledku náhleho úbytku hormónu estrogénu.

Kobyla môže byť 4 až 10 dní v ruje a približne 14 dní v diestruse. Cyklus teda môže byť krátky, t. j. 3 týždne. Kone sa pária na jar a v lete, jeseň je prechodným obdobím a v zime vládne anestrus.

Charakteristickou črtou cyklu plodnosti koní a iných veľkých stádových zvierat je, že je zvyčajne ovplyvnený ročnými obdobiami. Počet hodín denne, počas ktorých do oka zvieraťa vstupuje svetlo, ovplyvňuje mozog, ktorý riadi uvoľňovanie určitých prekurzorov a hormónov. Keď je denného svetla málo, tieto zvieratá sa „vypnú“, stanú sa anestrickými a nestanú sa plodnými. Keď sa dni predlžujú, dlhšie obdobie denného svetla spôsobuje uvoľňovanie hormónov, ktoré aktivujú cyklus rozmnožovania. To má pre tieto zvieratá istý úžitok, pretože vzhľadom na približne jedenásťmesačnú graviditu im to bráni mať mláďatá, keď by ich prežitie v zime bolo rizikové.

Potkany majú zvyčajne rýchly cyklus 4 až 5 dní. Aj keď ovulujú spontánne, žlté teliesko sa u nich plne nevyvinie, pokiaľ nedostanú koitálnu stimuláciu. Plodné párenie vedie týmto spôsobom k tehotenstvu, ale neplodné párenie vedie k stavu pseudoprevádzky, ktorá trvá približne 10 dní. Podobné správanie majú aj myši a škrečky. Udalosti cyklu sú výrazne ovplyvnené periodicitou osvetlenia.

Súbor folikulov sa začína vyvíjať ku koncu proestru a rastie takmer konštantnou rýchlosťou až do začiatku nasledujúceho estrusu, keď sa rýchlosť rastu osemnásobne zrýchli. Potom nastáva ovulácia približne 109 hodín po začatí rastu.
Estrogén vrcholí približne o 11. hodine v deň proestru. Odvtedy do polnoci dochádza k prudkému nárastu progesterónu, LH a FSH a ovulácia nastáva približne o 4. hodine ráno v nasledujúci deň ruje. Nasledujúci deň, metestrus, niektorí autori nazývajú skorý diestrus alebo diestrus I. Počas tohto dňa žlté telieska narastajú do maximálneho objemu, ktorý sa dosiahne do 24 hodín od ovulácie. V tejto veľkosti zostávajú 3 dni, pred metestrom nasledujúceho cyklu sa zmenšia na polovicu a pred rujou nasledujúceho cyklu sa náhle zmenšia. Vaječníky cyklických potkanov teda obsahujú tri rôzne súbory corpora lutea v rôznych fázach vývoja.

Frekvencia ruje niektorých ďalších cicavcov:

Menštruácia – folikulárna fáza – ovulácia – luteálna fáza

Spermatogenéza -Oogenéza

Sexuálne správanie človeka – Pohlavný styk – Erekcia – Ejakulácia – Orgazmus – Inseminácia – Oplodnenie/plodnosť – Masturbácia – Tehotenstvo – Obdobie po pôrode

Prenatálny vývoj – Pohlavný dimorfizmus – Pohlavná diferenciácia – Puberta (menarché, adrenarché) – Materský vek/otcovský vek – Klimaktérium (menopauza, andropauza)

Ovipozícia – Oviparita – Ovoviviparita – Viviparita

Kategórie
Psychologický slovník

Spánok REM

Spánok REM u dospelých ľudí zvyčajne zaberá 20-25 % celkového spánku a trvá približne 90-120 minút. Počas normálneho spánku ľudia zvyčajne zažívajú približne 4 alebo 5 období spánku REM; na začiatku noci sú pomerne krátke a ku koncu noci dlhšie. Je bežné, že sa človek na konci fázy REM na krátky čas prebudí. Relatívne množstvo spánku REM sa výrazne líši v závislosti od veku. Novorodenec strávi viac ako 80 % celkového času spánku vo fáze REM (pozri tiež Aktívny spánok). Počas REM je sumárna aktivita mozgových neurónov celkom podobná aktivite počas bdenia; z tohto dôvodu sa tento jav často nazýva paradoxný spánok. To znamená, že počas spánku REM nedochádza k dominancii mozgových vĺn.
Spánok REM sa fyziologicky líši od ostatných fáz spánku, ktoré sa súhrnne označujú ako spánok non-REM. Väčšina našich živo spomínaných snov sa vyskytuje počas spánku REM.

Polysomnografický záznam REM spánku. EEG zvýraznené červeným rámčekom. Pohyby očí zvýraznené červenou čiarou.

Z fyziologického hľadiska sú niektoré neuróny v mozgovom kmeni, známe ako bunky spánku REM (nachádzajúce sa v pontinnom tegmente), počas spánku REM mimoriadne aktívne a pravdepodobne sú zodpovedné za jeho výskyt. Uvoľňovanie určitých neurotransmiterov, monoamínov (noradrenalínu, serotonínu a histamínu), je počas REM úplne zastavené. To spôsobuje atóniu REM, stav, pri ktorom nie sú stimulované motorické neuróny, a teda sa svaly tela nehýbu. Nedostatok takejto atónie v REM spôsobuje poruchu správania v REM; osoby trpiace touto poruchou predvádzajú pohyby, ktoré sa vyskytujú v ich snoch.

Tepová frekvencia a frekvencia dýchania sú počas REM spánku nepravidelné, podobne ako počas bdenia. Telesná teplota nie je počas REM dobre regulovaná. Erekcia penisu (nočná penilná tumescencia alebo NPT) je uznávaným sprievodným javom spánku REM a používa sa na diagnostiku, aby sa určilo, či je mužská erektilná dysfunkcia organického alebo psychologického pôvodu. Počas REM je prítomné aj zväčšenie klitorisu so sprievodným vaginálnym prietokom krvi a transudáciou (t. j. lubrikáciou).

Pohyby očí spojené s REM sú generované jadrom pontu s projekciami do horného kolikulu a sú spojené s vlnami PGO (pons, geniculate, occipital).

Spánok REM môže nastať v priebehu približne 90 minút, ale u ľudí s nástupom spánku REM to môže byť len 15-25 minút. To sa považuje za príznak narkolepsie.

Teórie o funkciách spánku REM

Funkcia spánku REM nie je dostatočne objasnená; existuje niekoľko teórií.

Podľa jednej z teórií sa určité spomienky upevňujú počas spánku REM. Mnohé štúdie naznačujú, že spánok REM je dôležitý pre konsolidáciu procedurálnej a priestorovej pamäte. (Zdá sa, že pomalé vlny, ktoré sú súčasťou spánku mimo REM, sú dôležité pre deklaratívnu pamäť.) Nedávna štúdia ukázala, že umelé zosilnenie spánku REM zlepšuje zapamätané dvojice slov na druhý deň. Tucker a kol. preukázali, že denný spánok obsahujúci výlučne spánok non REM zlepšuje deklaratívnu pamäť, ale nie procedurálnu pamäť. U ľudí, ktorí nemajú spánok REM (z dôvodu poškodenia mozgu), však nie sú pamäťové funkcie merateľne ovplyvnené.

Mitchison a Crick navrhli, že funkciou spánku REM je na základe jeho prirodzenej spontánnej aktivity „odstrániť určité nežiaduce spôsoby interakcie v sieťach buniek v mozgovej kôre“, pričom tento proces charakterizovali ako „odnaučenie“. Výsledkom je, že tie spomienky, ktoré sú relevantné (ktorých základný neurónový substrát je dostatočne silný na to, aby vydržal takúto spontánnu, chaotickú aktiváciu), sa ďalej posilňujú, zatiaľ čo slabšie, prechodné, „hlukové“ pamäťové stopy sa rozpadajú.

Stimulácia vo vývoji CNS ako primárna funkcia

Podľa inej teórie, známej ako ontogenetická hypotéza spánku REM, je táto fáza spánku (u novorodencov známa aj ako aktívny spánok) pre vyvíjajúci sa mozog mimoriadne dôležitá, pravdepodobne preto, že poskytuje nervovú stimuláciu, ktorú novorodenci potrebujú na vytvorenie zrelých nervových spojení a na správny vývoj nervového systému. Štúdie skúmajúce účinky deprivácie aktívneho spánku ukázali, že deprivácia na začiatku života môže viesť k problémom so správaním, trvalému narušeniu spánku, zníženiu hmotnosti mozgu a má za následok abnormálne množstvo odumierania neurónových buniek. Spánok REM je nevyhnutný pre správny vývoj centrálnej nervovej sústavy. Túto teóriu podporuje aj skutočnosť, že množstvo spánku REM sa s vekom znižuje, ako aj údaje od iných živočíšnych druhov (pozri nižšie).

Iná teória predpokladá, že vypnutie monoamínov je potrebné na to, aby sa monoamínové receptory v mozgu mohli obnoviť a znovu získať plnú citlivosť. Ak sa totiž spánok REM opakovane preruší, človek si to pri najbližšej príležitosti „vynahradí“ dlhším spánkom REM. Akútna deprivácia spánku REM môže zlepšiť niektoré typy depresie a zdá sa, že depresia súvisí s nerovnováhou určitých neurotransmiterov. Väčšina antidepresív selektívne inhibuje REM spánok v dôsledku ich účinkov na monoamíny. Tento účinok sa však po dlhodobom užívaní znižuje.

Niektorí vedci tvrdia, že pretrvávanie takého zložitého mozgového procesu, akým je spánok REM, naznačuje, že plní dôležitú funkciu pre prežitie druhov cicavcov. Spĺňa dôležité fyziologické potreby nevyhnutné na prežitie do takej miery, že dlhodobá deprivácia spánku REM vedie u pokusných zvierat k smrti. U ľudí aj pokusných zvierat vedie strata REM spánku k viacerým behaviorálnym a fyziologickým abnormalitám. Strata spánku REM bola zaznamenaná počas rôznych prirodzených a experimentálnych infekcií. Prežívanie pokusných zvierat sa znižuje, keď je REM spánok počas infekcie úplne oslabený. To vedie k možnosti, že kvalita a kvantita spánku REM je vo všeobecnosti nevyhnutná pre normálnu fyziológiu organizmu.

Hypotézu o spánku REM predložil Frederic Snyder v roku 1966. Vychádza z pozorovania, že po spánku REM u viacerých cicavcov (potkana, ježka, králika a opice druhu rhesus) nasleduje krátke prebudenie. (U mačiek ani u ľudí k tomu nedochádza, hoci ľudia sa častejšie prebúdzajú zo spánku REM ako zo spánku mimo REM). Snyder predpokladal, že REM spánok zviera pravidelne aktivuje, aby prehľadalo prostredie a hľadalo prípadných predátorov. Táto hypotéza nevysvetľuje svalovú paralýzu pri spánku REM.

REM spánok sa vyskytuje u všetkých cicavcov a vtákov. Zdá sa, že množstvo spánku REM za noc u jednotlivých druhov úzko súvisí s vývojovým štádiom novorodencov. Napríklad ploskolebec, ktorého novorodenci sú úplne bezmocní a nevyvinutí, má viac ako sedem hodín spánku REM za noc [Ako odkazovať a odkazovať na zhrnutie alebo text].

Fenomén spánku REM a jeho spojenie so snívaním objavili Eugene Aserinsky a Nathaniel Kleitman s pomocou Williama C. Dementa, vtedajšieho študenta medicíny, v roku 1952 počas svojho pôsobenia na Chicagskej univerzite.

Spánok s rýchlymi pohybmi očí – Spánok bez rýchlych pohybov očí – Spánok s pomalými vlnami – Spánok s vlnami beta – Spánok s vlnami delta – Spánok s vlnami gama – Spánok s vlnami Theta

Syndróm rozšírenej spánkovej fázy – Automatické správanie – Porucha cirkadiánneho rytmu spánku – Syndróm oneskorenej spánkovej fázy – Dyssomnia – Hypersomnia – Insomnia – Narkolepsia – Nočný teror – Noktúria – Nočný myoklonus – Syndróm nepretržitého spánku a bdenia – Ondinova kliatba – Parasomnia – Spánková apnoe – Spánková deprivácia – Spánková choroba – Námesačnosť – Námesačnosť

Stavy vedomia -Snívanie – Obsah sna – Syndróm explodujúcej hlavy – Falošné prebudenie – Hypnagogia – Hypnický zášklb – Lucidný sen – Nočná mora – Nočná emisia – Spánková paralýza – Somnolencia –

Chronotyp – Liečba elektrospánku – Hypnotiká – Zdriemnutie – Jet lag – Uspávanie – Polyfázový spánok – Segmentovaný spánok – Siesta – Spánok a učenie – Spánkový dlh – Spánková zotrvačnosť – Nástup spánku – Liečba spánku – Cyklus bdenia – Chrápanie

Kategórie
Psychologický slovník

Enzýmy

Pásová schéma katalyticky dokonalého enzýmu TIM.

Enzým je proteín, ktorý katalyzuje alebo urýchľuje chemickú reakciu. Slovo pochádza z gréckeho ένζυμο, énsymo, ktoré vzniklo z én („pri“ alebo „v“) a simo („kvas“ alebo „kvas“). Niektoré RNA majú tiež katalytickú aktivitu, ale na odlíšenie od bielkovinových enzýmov sa označujú ako RNA enzýmy alebo ribozýmy.

Enzýmy sú nevyhnutné na udržanie života, pretože väčšina chemických reakcií v biologických bunkách by bez enzýmov prebiehala príliš pomaly alebo by viedla k iným produktom. Porucha funkcie (mutácia, nadprodukcia, nedostatočná produkcia alebo odstránenie) jedného kritického enzýmu môže viesť k závažnému ochoreniu. Napríklad najčastejší typ fenylketonúrie je spôsobený mutáciou jednej aminokyseliny v enzýme fenylalanín hydroxyláza, ktorý katalyzuje prvý krok pri odbúravaní fenylalanínu. Výsledné hromadenie fenylalanínu a súvisiacich produktov môže viesť k mentálnej retardácii, ak sa choroba nelieči.

Tak ako všetky katalyzátory, aj enzýmy fungujú tak, že znižujú aktivačnú energiu reakcie, čím umožňujú jej rýchlejší priebeh. Enzýmy môžu reakcie urýchliť mnohomiliónovým násobkom. Enzým, ako každý katalyzátor, zostáva po skončení reakcie nezmenený, a preto môže fungovať aj naďalej. Keďže enzýmy, ako všetky katalyzátory, neovplyvňujú relatívnu energiu medzi produktmi a činidlami, neovplyvňujú rovnováhu reakcie. Výhodou enzýmov v porovnaní s väčšinou iných katalyzátorov je však ich sterio-, regio- a chemoselektivita a špecifickosť.

Aktivitu enzýmov môžu ovplyvňovať iné molekuly. Inhibítory sú prirodzene sa vyskytujúce alebo syntetické molekuly, ktoré znižujú alebo rušia aktivitu enzýmu; aktivátory sú molekuly, ktoré aktivitu zvyšujú. Niektoré ireverzibilné inhibítory viažu enzýmy veľmi pevne, čím ich účinne inaktivujú. Mnohé lieky a jedy pôsobia tak, že inhibujú enzýmy. Aspirín inhibuje enzýmy COX-1 a COX-2, ktoré produkujú posla zápalu prostaglandín, čím potláča bolesť a zápal. Jedovatý kyanid inhibuje cytochróm c oxidázu, čím účinne blokuje bunkové dýchanie.

Hoci všetky enzýmy majú biologickú úlohu, niektoré enzýmy sa komerčne využívajú na iné účely. Mnohé čistiace prostriedky pre domácnosť používajú enzýmy na urýchlenie chemických reakcií (napr. rozklad bielkovinových alebo škrobových škvŕn na oblečení).

Je známych viac ako 5 000 enzýmov. Zvyčajne sa prípona -áza pridáva k názvu substrátu (napr. laktáza je enzým, ktorý katalyzuje štiepenie laktózy) alebo typu reakcie (napr. DNA polymeráza katalyzuje tvorbu polymérov DNA). Nie vždy je to však tak, najmä ak enzýmy modifikujú viacero substrátov. Z tohto dôvodu sa na klasifikáciu enzýmov na základe reakcií, ktoré katalyzujú, používajú čísla Enzyme Commission alebo EC. Ani toto nie je dokonalé riešenie, pretože enzýmy z rôznych druhov alebo dokonca veľmi podobné enzýmy u toho istého druhu môžu mať identické čísla EC.

Slovo enzým pochádza z gréčtiny: „v kvase“.
Už koncom 17. storočia a začiatkom 19. storočia bolo pozorované trávenie mäsa žalúdočnými sekrétmi a premena škrobu na cukry pomocou rastlinných extraktov a slín.

Louis Pasteur pri štúdiu kvasenia cukru na alkohol pomocou kvasiniek dospel k záveru, že toto kvasenie je katalyzované „kvasinkami“ v kvasinkách, o ktorých sa predpokladalo, že fungujú len v prítomnosti živých organizmov.

V roku 1897 Hans a Eduard Buchnerovci neúmyselne použili na kvasenie cukru výťažky z kvasiniek, hoci v nich neboli živé kvasinkové bunky. Zaujímali sa o výrobu extraktov z kvasinkových buniek na lekárske účely a ako jeden z možných spôsobov ich konzervovania pridali do extraktu veľké množstvo sacharózy. Na svoje prekvapenie zistili, že cukor kvasí, hoci v zmesi neboli žiadne živé kvasinkové bunky. Na označenie látky (látok) v kvasnicovom extrakte, ktorá spôsobila fermentáciu sacharózy, sa použil termín „enzým“.

V prípade enzýmov, rovnako ako v prípade iných proteínov, je funkcia daná štruktúrou. Enzým môže byť:

Tak ako pri každom proteíne, každý monomér sa v skutočnosti vytvára ako dlhý lineárny reťazec aminokyselín, ktorý sa určitým spôsobom skladá a vytvára trojrozmerný produkt. Jednotlivé monoméry sa potom môžu spojiť prostredníctvom nekovalentných interakcií a vytvoriť multimerný proteín.

Kreslený obrázok znázorňujúci aktívne miesto enzýmu.

Väčšina enzýmov je väčšia ako substráty, na ktoré pôsobí, a len veľmi malá časť enzýmu, približne 10 aminokyselín, prichádza do priameho kontaktu so substrátom (substrátmi). Táto oblasť, kde dochádza k väzbe substrátu(-ov) a následne k reakcii, sa nazýva aktívne miesto enzýmu. Niektoré enzýmy obsahujú miesta, ktoré viažu kofaktory, ktoré sú potrebné na katalýzu. Niektoré enzýmy majú väzobné miesta pre malé molekuly, ktoré sú často priamymi alebo nepriamymi produktmi alebo substrátmi katalyzovanej reakcie. Táto väzba môže slúžiť na zvýšenie alebo zníženie aktivity enzýmu (v závislosti od molekuly a enzýmu), čím poskytuje prostriedok spätnej regulácie.

Hoci nie všetky enzýmy sú citlivé na teplo, väčšina z nich je. Zvýšenie teploty látky, ktorá obsahuje enzým, môže zvyčajne spôsobiť stratu jeho terciárnej štruktúry. Po opätovnom ochladení látky sa enzým často zloží späť, ale nie nevyhnutne v predchádzajúcom zložení, čím sa stane neaktívnym. Dve dôležité výnimky z tohto pravidla sú enzýmy, ktoré sa teplom nerozkladajú (termofily), a enzýmy, ktoré sa skladajú späť do pôvodnej štruktúry.

Enzýmy sú zvyčajne špecifické, pokiaľ ide o reakcie, ktoré katalyzujú, a substráty, ktoré sa na týchto reakciách podieľajú. Tvar, nábojová komplementarita a hydrofilný/hydrofóbny charakter enzýmu a substrátu sú zodpovedné za túto špecifickosť.

Schéma Fischerovho modelu zámku a kľúča (hore) a Koshlandovho modelu indukovaného prispôsobenia (dole).

Diagram znázorňujúci realistickejšiu situáciu pre hypotézu indukovaného uloženia. Nesprávne substráty, buď príliš veľké, alebo príliš malé, nezapadajú do aktívneho miesta

Enzýmy sú veľmi špecifické a Emil Fischer v roku 1890 vyslovil domnienku, že je to preto, lebo enzým má určitý tvar, do ktorého presne zapadá substrát(y). Tento model sa často označuje ako model „zámku a kľúča“. Enzým sa spája so svojím substrátom (substrátmi) a vytvára krátkodobý komplex enzýmu a substrátu.

V roku 1958 Daniel Koshland navrhol modifikáciu modelu „lock and key“. Enzýmy sú pomerne flexibilné štruktúry. Aktívne miesto enzýmu by sa mohlo modifikovať pri interakcii substrátu s enzýmom. Bočné reťazce aminokyselín, ktoré tvoria aktívne miesto, sú vytvarované do presného tvaru, ktorý umožňuje enzýmu vykonávať katalytickú funkciu. V niektorých prípadoch sa tvar molekuly substrátu pri vstupe do aktívneho miesta mierne mení.

Mnohé enzýmy obsahujú nielen bielkovinovú časť, ale potrebujú aj rôzne modifikácie. Tieto modifikácie sa vykonávajú posttranslačne, t. j. po syntéze polypeptidového reťazca. Na polypeptidový reťazec sa môžu syntetizovať ďalšie skupiny, napr. fosforylácia alebo glykozylácia enzýmu.

Ďalším druhom posttranslačnej modifikácie je štiepenie a spájanie polypeptidového reťazca. Chymotrypsín, tráviaca proteáza, sa produkuje v neaktívnej forme ako chymotrypsinogén v pankrease a v tejto forme sa transportuje do žalúdka, kde sa aktivuje. Tým sa zabráni škodlivému tráveniu enzýmu v pankrease alebo inom tkanive. Tento typ neaktívneho prekurzora enzýmu je známy ako zymogén.

Niektoré enzýmy nepotrebujú žiadne ďalšie zložky, aby vykazovali plnú aktivitu. Iné však na svoju aktivitu potrebujú naviazané nebielkovinové molekuly. Kofaktory môžu byť buď anorganické (napr. ióny kovov a klastre železa a síry), alebo organické zlúčeniny, ktoré sú známe aj ako koenzýmy.

Enzýmy, ktoré vyžadujú kofaktor, ale nemajú ho naviazaný, sa nazývajú apoenzýmy. Apoenzým spolu s kofaktorom(-mi) tvorí holoenzým (t. j. aktívnu formu). Väčšina kofaktorov nie je kovalentne viazaná na enzým, ale je úzko spojená. Niektoré kofaktory známe ako protetické skupiny sú však kovalentne viazané (napr. tiamín pyrofosfát v niektorých enzýmoch).

Väčšina kofaktorov sa na konci reakcií buď regeneruje, alebo sa chemicky nezmení. Mnohé kofaktory sú deriváty vitamínov a slúžia ako nosiče na prenos elektrónov, atómov alebo funkčných skupín z enzýmu na substrát. Bežnými príkladmi sú NAD a NADP, ktoré sa podieľajú na prenose elektrónov, a koenzým A, ktorý sa podieľa na prenose acetylových skupín.

Alosterické enzýmy menia svoju štruktúru v reakcii na väzbu efektorov. Modulácia môže byť priama, keď sa efektory viažu priamo na väzobné miesta v enzýme, alebo nepriama, keď sa efektor viaže na iné proteíny alebo proteínové podjednotky, ktoré interagujú s alosterickým enzýmom, a tým ovplyvňujú katalytickú aktivitu.

Schéma katalytickej reakcie, ktorá znázorňuje energetickú niveau v každej fáze reakcie. Substráty zvyčajne potrebujú veľké množstvo energie na dosiahnutie prechodného stavu, ktorý potom reaguje za vzniku konečného produktu. Enzým stabilizuje prechodný stav, čím znižuje energiu prechodného stavu, a tým aj energiu potrebnú na prekonanie tejto bariéry.

Tak ako všetky katalyzátory, aj všetky reakcie katalyzované enzýmami musia byť „spontánne“ (s čistou zápornou Gibbsovou voľnou energiou). S enzýmom prebiehajú rovnakým smerom ako bez enzýmu, len rýchlejšie. Nekatalyzovaná, „spontánna“ reakcia však môže viesť k iným produktom ako katalyzovaná reakcia. Okrem toho enzýmy môžu spájať dve alebo viac reakcií, takže termodynamicky priaznivá reakcia sa môže použiť na „poháňanie“ termodynamicky nepriaznivej reakcie. Napríklad štiepenie vysokoenergetickej zlúčeniny ATP sa často používa na riadenie iných, energeticky nepriaznivých chemických reakcií.

Enzýmy katalyzujú rovnako priame aj spätné reakcie. Nemenia samotnú rovnováhu, ale len rýchlosť, akou sa dosiahne. Uhličitá anhydráza katalyzuje svoju reakciu v oboch smeroch v závislosti od podmienok.

V roku 1913 Leonor Michaelis a Maud Mentenová navrhli kvantitatívnu teóriu enzýmovej kinetiky, ktorá sa označuje ako Michaelisova-Mentenova kinetika. Ich prácu ďalej rozvinuli G. E. Briggs a J. B. S. Haldane, ktorí odvodili množstvo kinetických rovníc, ktoré sa dodnes široko používajú.

Enzýmy môžu vykonať až niekoľko miliónov katalytických reakcií za sekundu; na určenie maximálnej rýchlosti enzymatickej reakcie sa koncentrácia substrátu zvyšuje, až kým sa nedosiahne konštantná rýchlosť tvorby produktu. Toto je maximálna rýchlosť (Vmax) enzýmu. V tomto stave sú všetky aktívne miesta enzýmu nasýtené substrátom. Vmax je však len jedným z kinetických parametrov, ktoré biochemikov zaujímajú. Zaujíma ich aj množstvo substrátu potrebné na dosiahnutie danej rýchlosti reakcie. To možno vyjadriť Michaelisovou-Mentenovou konštantou (Km), čo je koncentrácia substrátu potrebná na to, aby enzým dosiahol polovicu svojej maximálnej rýchlosti. Každý enzým má pre daný substrát charakteristickú Km.

Účinnosť enzýmu sa dá vyjadriť ako kcat/Km. Veličina kcat, nazývaná aj číslo obratu, zahŕňa rýchlostné konštanty pre všetky kroky reakcie a je podielom Vmax a celkovej koncentrácie enzýmu. kcat/Km je užitočná veličina na porovnávanie rôznych enzýmov navzájom alebo toho istého enzýmu s rôznymi substrátmi, pretože zohľadňuje afinitu aj katalytické schopnosti. Teoretické maximum pre kcat/Km, nazývané difúzny limit, je približne 108 až 109 (M-1 s-1). V tomto bode každá zrážka enzýmu s jeho substrátom vedie ku katalýze a rýchlosť tvorby produktu nie je obmedzená reakčnou rýchlosťou, ale rýchlosťou difúzie. Enzýmy, ktoré dosiahnu túto hodnotu kcat/Km, sa nazývajú katalyticky dokonalé alebo kineticky dokonalé. Príkladom takýchto enzýmov sú triózovo-fosfátová izomeráza, karbonická anhydráza, acetylcholínesteráza, kataláza, fumaráza, ß-laktamáza a superoxiddismutáza.

Kvantovo-mechanický (fyzikálny) model enzýmovej katalýzy vysvetľuje, ako niektoré enzýmy pracujú rýchlejšie, než sa doteraz predpokladalo. Dosahuje sa to procesom známym ako tunelovanie, ktorý umožňuje prenos elektrónov a protónov „tunelovať“ cez aktivačné bariéry, a nie ich prekonávať.

Kompetitívny inhibítor sa reverzibilne viaže na enzým a zabraňuje väzbe substrátu. Na druhej strane, väzba substrátu zabraňuje väzbe inhibítora, a tak substrát a inhibítor súťažia o enzým.

Schéma znázorňujúca mechanizmus nekompetitívnej inhibície.

Rýchlosť reakcie enzýmov môže byť znížená kompetitívnou, nekompetitívnou, čiastočne kompetitívnou, nekompetitívnou a zmiešanou inhibíciou.

Pri kompetitívnej inhibícii sa inhibítor viaže na väzbové miesto substrátu, ako je znázornené (pravá časť b), čím zabraňuje väzbe substrátu. Malonát je kompetitívny inhibítor enzýmu sukcinátdehydrogenázy, ktorý katalyzuje oxidáciu sukcinátu na fumarát.

Kompetitívna inhibícia spôsobuje zvýšenie hodnoty Km, ale nemá vplyv na Vmax.

Nekonkurenčná inhibícia

Nekompetitívne inhibítory sa nikdy neviažu na aktívne centrum, ale na iné časti enzýmu, ktoré môžu byť vzdialené od miesta väzby substrátu, a preto medzi substrátom a inhibítorom nedochádza k súťaži o enzým. Rozsah inhibície závisí výlučne od koncentrácie inhibítora a nebude ovplyvnený koncentráciou substrátu. Napríklad kyanid sa spája s medenými protetickými skupinami enzýmu cytochróm c oxidázy, čím inhibuje bunkové dýchanie. Tento typ inhibície je zvyčajne ireverzibilný, čo znamená, že enzým už nebude fungovať.

Zmenou konformácie (trojrozmernej štruktúry) enzýmu inhibítory buď znemožňujú schopnosť enzýmu viazať alebo premieňať substrát. Komplex enzým-inhibítor (EI) a enzým-inhibítor-substrát (EIS) nemá katalytickú aktivitu.

Nekompektívna inhibícia spôsobuje zníženie Vmax, ale nemení hodnotu Km.

Čiastočne kompetitívna inhibícia

Mechanizmus čiastočne kompetitívnej inhibície je podobný mechanizmu nekompetitívnej inhibície s tým rozdielom, že EIS-komplex má katalytickú aktivitu, ktorá môže byť nižšia alebo dokonca vyššia (čiastočne kompetitívna aktivácia) ako aktivita komplexu enzým-substrát (ES).

Táto inhibícia zvyčajne vykazuje nižšiu Vmax, ale neovplyvnenú hodnotu Km.

Nekompetitívna inhibícia nastáva vtedy, keď sa inhibítor viaže len na komplex enzým-substrát, nie na voľný enzým, komplex EIS je katalyticky neaktívny. Tento spôsob inhibície je zriedkavý a spôsobuje zníženie Vmax aj hodnoty Km.

Zmiešané inhibítory sa môžu viazať na enzým aj na komplex ES. Má vlastnosti kompetitívnej aj nekompetitívnej inhibície.

Pri zmiešanej inhibícii sa pozoruje zníženie Vmax aj zvýšenie hodnoty Km.

Metabolické dráhy a alosterické enzýmy

Niekoľko enzýmov môže spolupracovať v určitom poradí a vytvárať metabolické dráhy. V metabolickej dráhe jeden enzým prijíma produkt iného enzýmu ako substrát. Po katalytickej reakcii sa produkt odovzdá ďalšiemu enzýmu. Koncový(-é) produkt(-y) takejto dráhy sú často inhibítormi pre jeden z prvých enzýmov dráhy (zvyčajne prvý ireverzibilný krok, tzv. committed step), čím sa reguluje množstvo konečného produktu vytvoreného dráhou. Takýto regulačný mechanizmus sa nazýva mechanizmus negatívnej spätnej väzby, pretože množstvo vytvoreného konečného produktu je regulované jeho vlastnou koncentráciou. Mechanizmus negatívnej spätnej väzby dokáže účinne regulovať rýchlosť syntézy medziproduktov podľa požiadaviek buniek. To pomáha pri efektívnom prideľovaní materiálov a hospodárení s energiou a zabraňuje nadmernej výrobe konečných produktov. Podobne ako iné homeostatické zariadenia, aj kontrola enzymatického pôsobenia pomáha udržiavať stabilné vnútorné prostredie v živých organizmoch.

Medzinárodná únia pre biochémiu a molekulárnu biológiu vytvorila nomenklatúru pre enzýmy, čísla EC; každý enzým je opísaný postupnosťou štyroch čísel, pred ktorými je uvedené „EC“. Prvé číslo všeobecne klasifikuje enzým na základe jeho mechanizmu:

Klasifikácia na najvyššej úrovni je

Kompletnú nomenklatúru si môžete prezrieť

Zaujímavé pre psychológov

Kategórie
Psychologický slovník

Lieky na uvoľnenie svalov

Svalový relaxant je liek, ktorý ovplyvňuje funkciu kostrového svalstva a znižuje svalový tonus. Môže sa použiť na zmiernenie príznakov, ako sú svalové kŕče, bolesť a hyperreflexia. Termín „svalové relaxancium“ sa používa na označenie dvoch hlavných terapeutických skupín: neuromuskulárnych blokátorov a spazmolytík. Neuromuskulárne blokátory pôsobia tak, že zasahujú do prenosu na nervovosvalovej koncovej platničke a nemajú žiadnu aktivitu v CNS. Často sa používajú počas chirurgických zákrokov a v intenzívnej starostlivosti a urgentnej medicíne na vyvolanie paralýzy. Spazmolytiká, známe aj ako „centrálne pôsobiace“ svalové relaxanciá, sa používajú na zmiernenie muskuloskeletálnej bolesti a kŕčov a na zníženie spasticity pri rôznych neurologických stavoch. Hoci sa nervovosvalové blokátory aj spazmolytiká často zaraďujú do jednej skupiny ako svalové relaxanciá, tento termín sa bežne používa len na označenie spazmolytík.

Prvé známe použitie liekov na uvoľnenie svalov sa datuje do 16. storočia, keď sa európski prieskumníci stretli s domorodcami v povodí Amazonky v Južnej Amerike, ktorí používali šípy s jedovatým hrotom, ktoré spôsobili smrť ochrnutím kostrového svalstva. Tento jed, dnes známy ako kurare, viedol k jednému z prvých vedeckých výskumov v oblasti farmakológie. Jeho účinná látka tubokurarín, ako aj mnohé syntetické deriváty, zohrali významnú úlohu pri vedeckých experimentoch zameraných na určenie funkcie acetylcholínu v nervovosvalovom prenose. Do roku 1943 sa nervovosvalové blokátory presadili ako svalové relaxanciá v anesteziologickej a chirurgickej praxi.
f

Lieky blokujúce nervovosvalový systém

Detailný pohľad na nervovosvalové spojenie:1. Presynaptický terminál2. Sarkolemma3. Synaptické vezikuly4. Nikotínový acetylcholínový receptor5. Mitochondria

K svalovej relaxácii a paralýze môže teoreticky dôjsť prerušením funkcie na viacerých miestach vrátane centrálneho nervového systému, myelinizovaných somatických nervov, nemyelinizovaných motorických nervových zakončení, nikotínových acetylcholínových receptorov, motorickej koncovej platničky a svalovej membrány alebo kontraktilného aparátu. Väčšina nervosvalových blokátorov funguje tak, že blokuje prenos na koncovej platničke nervosvalového spojenia. Za normálnych okolností dorazí nervový impulz na motorický nervový terminál, čím sa iniciuje prílev vápnikových iónov, ktorý spôsobí exocytózu synaptických vezikúl obsahujúcich acetylcholín. Acetylcholín potom difunduje cez synaptickú štrbinu. Môže byť hydrolyzovaný acetylcholínesterázou (AchE) alebo sa viaže na nikotínové receptory umiestnené na motorickej koncovej platničke. Väzba dvoch molekúl acetylcholínu vedie ku konformačnej zmene v receptore, ktorá otvorí sodíkovo-draslíkový kanál nikotínového receptora. To umožňuje vstup iónov Na+ a Ca2+ do bunky a odchod iónov K+ z bunky, čo spôsobí depolarizáciu koncovej platničky, čo vedie k svalovej kontrakcii. Po depolarizácii sa molekuly acetylcholínu odstránia z oblasti koncovej platničky a enzymaticky sa hydrolyzujú acetylcholínesterázou.

Normálna funkcia koncovej dosky môže byť blokovaná dvoma mechanizmami. Nedepolarizujúce látky ako tubokurarín blokujú väzbu agonistu, acetylcholínu, na nikotínové receptory a ich aktiváciu, čím zabraňujú depolarizácii. Prípadne depolarizujúce látky, ako je sukcinylcholín, sú agonistami nikotínových receptorov, ktoré napodobňujú Ach, blokujú svalovú kontrakciu tým, že depolarizujú do takej miery, že desenzibilizujú receptor a ten už nemôže iniciovať akčný potenciál a spôsobiť svalovú kontrakciu. Tieto nervovosvalové blokátory sú štrukturálne podobné acetylcholínu, endogénnemu ligandu, v mnohých prípadoch obsahujú dve molekuly acetylcholínu spojené na konci pevným systémom uhlíkových kruhov, ako je to v prípade pankuronia.

Chemická schéma pankuronia s červenými čiarami označujúcimi dve „molekuly“ acetylcholínu v štruktúre.

Pohľad na miechu a kostrové svalstvo zobrazujúci pôsobenie rôznych svalových relaxantov. Čierne čiary zakončené šípkami predstavujú chemické látky alebo pôsobenie, ktoré posilňujú cieľ čiar. Modré čiary zakončené štvorčekmi predstavujú chemické látky alebo účinky, ktoré inhibujú cieľ čiary. Kliknutím na obrázok zväčšíte diagram.

Generovanie neuronálnych signálov v motorických neurónoch, ktoré spôsobujú svalové kontrakcie, závisí od rovnováhy synaptickej excitácie a inhibície, ktorú motorický neurón prijíma. Spazmolytické látky vo všeobecnosti pôsobia buď zvýšením úrovne inhibície, alebo znížením úrovne excitácie. Inhibícia sa zvyšuje napodobňovaním alebo posilňovaním účinku endogénnych inhibičných látok, ako je GABA.

Keďže môžu pôsobiť na úrovni mozgovej kôry, mozgového kmeňa alebo miechy, prípadne vo všetkých troch oblastiach, tradične sa označujú ako „centrálne pôsobiace“ svalové relaxanciá. V súčasnosti je však známe, že nie každá látka z tejto triedy má aktivitu na CNS (napr. dantrolén), takže tento názov je nepresný.

Termín „spazmolytikum“ sa tiež považuje za synonymum pre antispazmodikum.

Spazmolytiká ako karizoprodol, cyklobenzaprín, metaxalón a metokarbamol sa bežne predpisujú pri bolestiach chrbta alebo krku, fibromyalgii, tenzných bolestiach hlavy a syndróme myofasciálnej bolesti. Neodporúčajú sa však ako lieky prvej voľby; pri akútnej bolesti chrbta nie sú účinnejšie ako paracetamol alebo nesteroidné protizápalové lieky (NSAID) a pri fibromyalgii nie sú účinnejšie ako antidepresíva. Napriek tomu existujú určité dôkazy (nízkej kvality), ktoré naznačujú, že svalové relaxanciá môžu zvýšiť prínos liečby NSAID. Vo všeobecnosti neexistujú žiadne vysokokvalitné dôkazy na podporu ich používania. Nepreukázalo sa, že by bol niektorý liek lepší ako iný, a všetky majú nežiaduce účinky, najmä závraty a ospalosť. Obavy z možného zneužívania a interakcie s inými liekmi, najmä ak je rizikom zvýšená sedácia, ďalej obmedzujú ich používanie.

Látky ako dantrolén a baklofén sa neodporúčajú pri ortopedických stavoch, ale skôr pri neurologických stavoch, ako je spasticita pri detskej mozgovej obrne a skleróze multiplex. Dantrolén, hoci je považovaný predovšetkým za periférne pôsobiaci prostriedok, je spojený s účinkami na CNS, zatiaľ čo aktivita baklofénu je striktne spojená s CNS.

Svalové relaxanciá sa považujú za užitočné pri bolestivých poruchách na základe teórie, že bolesť vyvoláva kŕč a kŕč spôsobuje bolesť. Existuje však veľa dôkazov, ktoré túto teóriu popierajú.

Z dôvodu zosilnenia inhibície v CNS má väčšina spazmolytík vedľajšie účinky sedácie, ospalosti a pri dlhodobom užívaní môže spôsobiť závislosť. Niektoré z týchto látok majú aj potenciál zneužívania a ich predpisovanie je prísne kontrolované.

Benzodiazepíny, ako je diazepam, interagujú s GABAA receptorom v centrálnom nervovom systéme. Hoci sa môže používať u pacientov so svalovými kŕčmi takmer akéhokoľvek pôvodu, pri dávkach potrebných na zníženie svalového napätia vyvoláva u väčšiny jedincov sedáciu.

Baklofén sa považuje za minimálne rovnako účinný ako diazepam pri znižovaní spasticity a spôsobuje oveľa menšiu sedáciu. Pôsobí ako agonista GABA na receptoroch GABAB v mozgu a mieche, čo vedie k hyperpolarizácii neurónov exprimujúcich tento receptor, pravdepodobne v dôsledku zvýšenia vodivosti draslíkových iónov. Baklofén tiež inhibuje nervové funkcie presynapticky, a to znížením prítoku vápnikových iónov, a tým znížením uvoľňovania excitačných neurotransmiterov v mozgu aj mieche. Môže tiež znížiť bolesť u pacientov tým, že inhibuje uvoľňovanie látky P aj v mieche.

Bolo tiež preukázané, že klonidín a iné imidazolínové zlúčeniny svojou aktivitou v centrálnom nervovom systéme znižujú svalové kŕče. Tizanidín je pravdepodobne najdôkladnejšie preskúmaný analóg klonidínu a je agonistom na α2-adrenergných receptoroch, ale znižuje spasticitu v dávkach, ktoré vedú k výrazne menšej hypotenzii ako klonidín. Neurofyziologické štúdie ukazujú, že potláča excitačnú spätnú väzbu zo svalov, ktorá by za normálnych okolností zvyšovala svalový tonus, a preto minimalizuje spasticitu. Okrem toho viaceré klinické štúdie naznačujú, že tizanidín má podobnú účinnosť ako iné spazmolytické látky, ako sú diazepam a baklofén, s iným spektrom nežiaducich účinkov.

Hydantoínový derivát dantrolén je spazmolytická látka s jedinečným mechanizmom účinku mimo CNS. Dantrolén znižuje silu kostrového svalstva inhibíciou väzby vzruch – kontrakcia vo svalovom vlákne. Pri normálnej svalovej kontrakcii sa vápnik uvoľňuje zo sarkoplazmatického retikula cez kanál ryanodínového receptora, čo spôsobuje interakciu aktínu a myozínu, ktorá vytvára napätie. Dantrolén zasahuje do uvoľňovania vápnika tým, že sa viaže na ryanodínový receptor a kompetitívnou inhibíciou blokuje endogénny ligand ryanodín. Sval, ktorý sa kontrahuje rýchlejšie, je citlivejší na dantrolén ako sval, ktorý sa kontrahuje pomaly, hoci srdcový sval a hladký sval sú oslabené len mierne, pravdepodobne preto, že uvoľňovanie vápnika ich sarkoplazmatickým retikulom zahŕňa trochu odlišný proces. Medzi hlavné nežiaduce účinky dantrolénu patrí celková svalová slabosť, sedácia a príležitostne hepatitída.

Centrálne pôsobiace svalové relaxanciá

Na liečbu spasticity sa používajú aj lieky z iných skupín ako svalové relaxanciá:

anat (h/n, u, t/d, a/p, l)/phys/devp/hist

noco (m, s, c)/cong (d)/tumr, sysi/epon, injr

Antacidá – antiemetiká – antagonisty H₂-receptorov – inhibítory protónovej pumpy – laxatíva – antidiarrhoiká

Antikoagulanciá – protidoštičky – trombolytiká

Antiarytmiká – Antihypertenzíva – Diuretiká – Vazodilatanciá – Antianginiká – Beta-blokátory – Inhibítory enzýmu konvertujúceho angiotenzín – Antihyperlipidemiká

Hormonálna antikoncepcia – Prostriedky na zníženie plodnosti – Selektívne modulátory estrogénových receptorov – Pohlavné hormóny

Kortikosteroidy – Pohlavné hormóny – Hormóny štítnej žľazy

Antibiotiká – Antivirotiká – Vakcíny – Antimykotiká – Antiprotozoiká – Anthelmintiká

Protinádorové látky – Imunosupresíva

Anabolické steroidy – Protizápalové lieky – Antireumatiká – Kortikosteroidy – Svalové relaxanciá

Anestetiká – analgetiká – antikonvulzíva – stabilizátory nálady – anxiolytiká – antipsychotiká – antidepresíva – stimulanciá nervového systému

Bronchodilatanciá – dekongestíva – antihistaminiká

Kategórie
Psychologický slovník

Neuroleptické lieky

Neuroleptiká, známe aj ako antipsychotiká, sú skupinou liekov používaných na liečbu psychózy, pre ktorú je typická schizofrénia. Postupom času bolo vyvinuté široké spektrum antipsychotík. Prvá generácia antipsychotík, známa ako typické antipsychotiká, bola objavená v 50. rokoch 20. storočia. Väčšina liekov druhej generácie, známych ako atypické antipsychotiká, bola vyvinutá nedávno. Obe triedy liekov majú tendenciu blokovať receptory v dopamínových dráhach mozgu, ale antipsychotiká zahŕňajú širokú škálu receptorovej špecifickosti. V súvislosti s konkrétnymi liekmi sa pozorovalo množstvo vedľajších účinkov vrátane prírastku hmotnosti, agranulocytózy, tardívnej dyskinézy, tardívnej akatízie a tardívnych psychóz. Vývoj nových antipsychotík a relatívna účinnosť rôznych antipsychotík je dôležitou oblasťou prebiehajúceho výskumu. Antipsychotická liečba sa vo všeobecnosti nepovažuje ani tak za dobrú liečbu, ako skôr za najlepšiu dostupnú liečbu a najvhodnejší liek pre konkrétneho pacienta si vyžaduje dôkladné zváženie.

Antipsychotiká sa označujú aj ako neuroleptiká. Slovo neuroleptikum je odvodené z gréčtiny: „νεύρον“ (pôvodne znamenalo šľachy, ale dnes sa vzťahuje na nervy) a „λαμβάνω“ (znamená uchopiť). Toto slovo teda znamená uchopiť nervy. Tento termín odráža schopnosť liekov sťažovať a spomaľovať pohyb, čo podľa lekárov predtým naznačovalo, že dávka je dostatočne vysoká [Ako odkazovať a odkazovať na zhrnutie alebo text] Nižšie dávky používané v súčasnosti viedli k zníženiu výskytu motorických vedľajších účinkov a sedácie a tento termín sa používa menej často ako v minulosti.

Antipsychotiká sa vo všeobecnosti delia na dve skupiny, na typické antipsychotiká alebo antipsychotiká prvej generácie a atypické antipsychotiká alebo antipsychotiká druhej generácie. Existujú aj dopamínové parciálne agonisty, ktoré sa často zaraďujú medzi atypické lieky.

Typické antipsychotiká sa niekedy označujú aj ako veľké trankvilizéry, pretože niektoré z nich môžu uspávať a uspávať. Tento termín sa čoraz viac nepoužíva, pretože terminológia naznačuje súvislosť s benzodiazepínmi („menšími“ trankvilizérmi), hoci žiadna neexistuje.

Medzi bežné stavy, pri ktorých sa antipsychotiká môžu používať, patria schizofrénia, mánia a poruchy s bludmi. Môžu sa používať proti psychózam spojeným so širokou škálou iných diagnóz. Antipsychotiká sa môžu použiť aj pri poruchách nálady (napr. bipolárna porucha), aj keď nie sú prítomné žiadne príznaky psychózy. Okrem toho sa tieto lieky používajú na liečbu nepsychotických porúch. Napríklad niektoré antipsychotiká (haloperidol, pimozid) sa používajú off-label na liečbu Tourettovho syndrómu, zatiaľ čo aripiprazol sa predpisuje v niektorých prípadoch Aspergerovho syndrómu.

V bežnej klinickej praxi sa antipsychotiká môžu používať ako súčasť manažmentu rizík a na kontrolu ťažkých pacientov, pretože pacient sa deenergizuje alebo deenervuje, vôľa alebo vôľa sa potlačí a navodí sa pasivita a poslušnosť, preto sa pacient menej sťažuje a stáva sa ľahšie ovládateľným, hoci je to kontroverzné.

Na pôvodné antipsychotiká sa prišlo zväčša náhodou a ich účinnosť sa testovala empiricky. Prvým antipsychotikom bol chlórpromazín, ktorý bol vyvinutý ako chirurgické anestetikum. Prvýkrát sa použil na psychiatrických pacientoch pre jeho silný upokojujúci účinok; v tom čase sa považoval za „chemickú lobotómiu“. Lobotómia sa používala na liečbu mnohých porúch správania vrátane psychóz, hoci jej „účinnosť“ bola (z moderného pohľadu) spôsobená jej tendenciou výrazne znižovať správanie všetkých typov. Rýchlo sa však ukázalo, že chlórpromazín znižuje účinky psychózy účinnejším a špecifickejším spôsobom ako extrémne lobotomické upokojenie, ktorým bol známy.

Odvtedy sa podrobne skúmala neurochémia, ktorá sa na tom podieľa, a následné antipsychotické lieky boli objavené na základe prístupu, ktorý zahŕňa tento druh informácií.

Bežne používané antipsychotické lieky sú uvedené nižšie podľa skupín liekov. Obchodné názvy sú uvedené v zátvorkách.

Antipsychotiká prvej generácie

Antipsychotiká druhej generácie

Antipsychotiká tretej generácie

Najbežnejšie typické antipsychotiká sú v súčasnosti nepatentované, čo znamená, že každá farmaceutická spoločnosť môže legálne vyrábať lacné generické verzie týchto liekov. Hoci sú vďaka tomu lacnejšie ako atypické lieky, ktoré sa stále vyrábajú v rámci patentových obmedzení, atypické lieky sa uprednostňujú ako liečba prvej voľby, pretože sa predpokladá, že majú menej vedľajších účinkov a zdá sa, že majú ďalšie výhody pri „negatívnych príznakoch“ schizofrénie, čo je typický stav, pri ktorom sa môžu predpisovať.

Agonizmus metabotropného glutamátového receptora 2 sa považuje za perspektívnu stratégiu pri vývoji nových antipsychotík. Pri testovaní na pacientoch priniesla výskumná látka LY2140023 sľubné výsledky a mala málo vedľajších účinkov. Aktívny metabolit tohto proliečiva sa zameriava skôr na mozgové glutamátové receptory mGluR2/3 než na dopamínové receptory. V súčasnosti je vo fáze 2 klinického testovania (2007).

Všetky antipsychotiká majú tendenciu blokovať D2 receptory v dopamínových dráhach mozgu. To znamená, že dopamín uvoľňovaný v týchto dráhach má menší účinok. Nadmerné uvoľňovanie dopamínu v mezolimbickej dráhe sa spája s psychotickými zážitkami. Predpokladá sa, že práve blokáda dopamínových receptorov v tejto dráhe riadi psychotické zážitky.

Typické antipsychotiká nie sú obzvlášť selektívne a blokujú aj dopamínové receptory v mezokortikálnej dráhe, tuberoinfundibulárnej dráhe a nigrostriatálnej dráhe. Predpokladá sa, že blokovanie D2 receptorov v týchto ďalších dráhach spôsobuje niektoré nežiaduce vedľajšie účinky, ktoré môžu typické antipsychotiká vyvolávať (pozri nižšie).
Bežne sa klasifikovali na spektre od nízkej účinnosti po vysokú účinnosť, kde sa účinnosť vzťahovala na schopnosť lieku viazať sa na dopamínové receptory, a nie na účinnosť lieku. Vysokopotentné antipsychotiká, ako je haloperidol, majú vo všeobecnosti dávky niekoľko miligramov a spôsobujú menšiu ospalosť a upokojujúce účinky ako nízkopotentné antipsychotiká, ako sú chlórpromazín a tioridazín, ktoré majú dávky niekoľko sto miligramov. Tie majú väčší stupeň anticholinergnej a antihistaminergnej aktivity, ktorá môže pôsobiť proti vedľajším účinkom súvisiacim s dopamínom.

Atypické antipsychotiká majú podobný blokujúci účinok na D2 receptory. Niektoré blokujú alebo čiastočne blokujú aj serotonínové receptory (najmä 5HT2A, C a 5HT1A receptory):od risperidónu, ktorý pôsobí prevažne na serotonínové receptory, až po amisulprid, ktorý nemá žiadnu serotonínergickú aktivitu. Dodatočné pôsobenie na serotonínové receptory môže byť dôvodom, prečo niektoré z nich môžu priaznivo ovplyvniť „negatívne príznaky“ schizofrénie.

Antipsychotiká sú spojené s celým radom vedľajších účinkov. Približne dve tretiny ľudí v kontrolovaných štúdiách liekov ukončia liečbu antipsychotikami, čiastočne kvôli nežiaducim účinkom.“ [Ako odkazovať a prepojiť na súhrn alebo text] Extrapyramídové reakcie zahŕňajú tardívnu psychózu, akútne dystónie, akatíziu, parkinsonizmus (rigiditu a tremor), tardívnu dyskinézu, tachykardiu, hypotenziu, impotenciu, letargiu, záchvaty,intenzívne sny alebo nočné mory a hyperprolaktinémiu.

Zo subjektívneho hľadiska antipsychotiká silne ovplyvňujú vnímanie príjemných pocitov, spôsobujú silné zníženie pocitov túžby, motivácie, zádumčivého myslenia a úžasu. To sa nezhoduje s apatiou a nedostatkom motivácie, ktoré sa vyskytujú pri negatívnych príznakoch schizofrénie. Pri dostatočne vysokých dávkach možno pozorovať aj škodlivé účinky na krátkodobú pamäť, ktoré ovplyvňujú spôsob počítania a kalkulácie (hoci aj to môže byť čisto subjektívne). To všetko sú dôvody, prečo sa predpokladá, že ovplyvňujú „kreativitu“. Takisto u niektorých schizofrenikov spôsobí príliš veľký stres „recidívu“. Vo všeobecnosti však platí, že príliš veľa stresu uvedie pacienta do hlbokého spánku, dokonca až do stavu spánku, aj počas užívania antipsychotických liekov.

Niektorí ľudia majú pri užívaní antipsychotických liekov len málo zjavných vedľajších účinkov, zatiaľ čo u iných sa môžu vyskytnúť závažné nežiaduce účinky. Niektoré nežiaduce účinky, ako napríklad jemné kognitívne problémy, môžu zostať nepovšimnuté.

Existuje možnosť, že riziko tardívnej dyskinézy sa môže znížiť kombináciou antipsychotík s difenhydramínom alebo benztropínom, hoci to ešte nie je stanovené. Poškodenie centrálneho nervového systému je spojené aj s ireverzibilnou tardívnou akatíziou a/alebo tardívnou dysfréniou.

Existuje veľké množstvo štúdií o účinnosti typických antipsychotík a čoraz viac štúdií o novších atypických antipsychotikách.

Americká psychiatrická asociácia a britský Národný inštitút pre zdravie a klinickú excelenciu odporúčajú antipsychotiká na zvládnutie akútnych psychotických epizód a na prevenciu relapsu. Uvádzajú, že odpoveď na akékoľvek antipsychotiká môže byť premenlivá, takže môže byť potrebné skúšať a že sa majú uprednostňovať nižšie dávky, ak je to možné.

Antipsychotická polyfarmácia – predpisovanie dvoch alebo viacerých antipsychotík súčasne jednotlivcovi – je vraj častou praxou, ktorá však nemusí byť nevyhnutne založená na dôkazoch.

Vyskytli sa určité pochybnosti o dlhodobej účinnosti antipsychotík, pretože dve veľké medzinárodné štúdie Svetovej zdravotníckej organizácie zistili, že osoby s diagnózou schizofrénie majú v rozvojových krajinách (kde je nižšia dostupnosť a používanie antipsychotík) lepšie dlhodobé výsledky ako v rozvinutých krajinách. Dôvody týchto rozdielov však nie sú jasné a navrhli sa rôzne vysvetlenia.

Niektorí tvrdia, že dôkazy o antipsychotikách zo štúdií o vysadení a relapse môžu byť chybné, pretože neberú do úvahy, že antipsychotiká môžu senzibilizovať mozog a vyvolať psychózu, ak sa vysadia. Dôkazy z porovnávacích štúdií naznačujú, že prinajmenšom niektorí jedinci sa z psychózy zotavujú bez užívania antipsychotík a môžu sa im dariť lepšie ako tým, ktorí antipsychotiká užívajú. Niektorí tvrdia, že celkovo dôkazy naznačujú, že antipsychotiká pomáhajú len vtedy, ak sa používajú selektívne a postupne sa čo najskôr vysadia.
V jednej štúdii z roku 1971 sa zistil efekt závislosti od dávky medzi zvyšujúcou sa dávkou neuroleptika a zvyšujúcim sa počtom psychotických zlomov [potrebné overenie].

Hoci sa atypické lieky druhej generácie uvádzali na trh ako lieky, ktoré majú väčšiu účinnosť pri znižovaní psychotických príznakov a zároveň redukujú vedľajšie účinky (a najmä extrapyramídové príznaky) ako typické lieky, výsledky preukazujúce tieto účinky často nie sú dostatočne spoľahlivé. Na odstránenie tohto problému NIMH nedávno uskutočnila dvojito zaslepenú štúdiu na viacerých miestach (projekt CATIE), ktorá bola uverejnená v roku 2005. Táto štúdia porovnávala niekoľko atypických antipsychotík so starším typickým antipsychotikom, perfenazínom, medzi 1493 osobami so schizofréniou. Perfenazín bol vybraný pre svoju nižšiu účinnosť a mierny profil vedľajších účinkov. Štúdia zistila, že iba olanzapín prekonal perfenazín v hlavnom výsledku výskumníkov, v miere prerušenia liečby. Autori tiež zaznamenali zjavnú vyššiu účinnosť olanzapínu v porovnaní s ostatnými liekmi pre väčšie zníženie psychopatológie, dlhšie trvanie úspešnej liečby a nižšiu mieru hospitalizácií pre exacerbáciu schizofrénie. Naopak, žiadne iné skúmané atypické liečivo (risperidón, quetiapín a ziprasidón) si v týchto ukazovateľoch neviedlo lepšie ako typický perfenazín. Olanzapín bol však spojený s pomerne závažnými metabolickými účinkami: U osôb užívajúcich olanzapín sa prejavil veľký problém s nárastom hmotnosti a zvýšením hladiny glukózy, cholesterolu a triglyceridov. Priemerný prírastok hmotnosti (1,1 kg/mesiac alebo 44 kg za 18 mesiacov, ktoré trvali v štúdii) vyvoláva vážne pochybnosti o potenciáli dlhodobého užívania tohto lieku. Perfenazín nevytváral viac extrapyramídových vedľajších účinkov meraných hodnotiacimi škálami (výsledok podporený metaanalýzou Dr. Leuchta publikovanou v Lancete), hoci viac pacientov prerušilo liečbu perfenazínom kvôli extrapyramídovým účinkom v porovnaní s atypickými látkami (8 % oproti 2 % až 4 %, P=0,002).

Druhá fáza tejto štúdie tieto zistenia približne zopakovala. Táto fáza pozostávala z druhej randomizácie pacientov, ktorí prestali užívať lieky v prvej fáze. Olanzapín bol opäť jediným liekom, ktorý vynikal vo výsledných ukazovateľoch, hoci výsledky nedosiahli vždy štatistickú významnosť, čiastočne pre zníženie sily. Perfenazín opäť nevytváral viac extrapyramídových účinkov.

Následne sa uskutočnila ďalšia fáza. Táto fáza priniesla inováciu, ktorá umožnila lekárom ponúknuť klozapín. Klozapín sa skutočne ukázal ako účinnejší pri znižovaní počtu prípadov vysadenia liekov než iné neuroleptiká. Výskumníci tiež pozorovali trend, ktorý poukazoval na klozapín s väčším znížením symptómov. Potenciál klozapínu spôsobovať toxické vedľajšie účinky vrátane agranulocytózy však obmedzuje jeho predpisovanie osobám so schizofréniou.

Antacidá – antiemetiká – antagonisty H₂-receptorov – inhibítory protónovej pumpy – laxatíva – antidiarrhoiká

Antikoagulanciá – protidoštičky – trombolytiká

Antiarytmiká – Antihypertenzíva – Diuretiká – Vazodilatanciá – Antianginiká – Beta-blokátory – Inhibítory enzýmu konvertujúceho angiotenzín – Antihyperlipidemiká

Hormonálna antikoncepcia – Prostriedky na zníženie plodnosti – Selektívne modulátory estrogénových receptorov – Pohlavné hormóny

Kortikosteroidy – Pohlavné hormóny – Hormóny štítnej žľazy

Antibiotiká – Antivirotiká – Vakcíny – Antimykotiká – Antiprotozoiká – Anthelmintiká

Protinádorové látky – Imunosupresíva

Anabolické steroidy – Protizápalové lieky – Antireumatiká – Kortikosteroidy – Svalové relaxanciá

Anestetiká – analgetiká – antikonvulzíva – stabilizátory nálady – anxiolytiká – antipsychotiká – antidepresíva – stimulanciá nervového systému

Bronchodilatanciá – dekongestíva – antihistaminiká

Kategórie
Psychologický slovník

Friedrich Wilhelm Joseph Schelling

Schelling sa narodil v meste Leonberg vo Württembersku (dnes Bádensko-Württembersko). Navštevoval kláštornú školu v Bebenhausene pri Tübingene, kde bol jeho otec kaplánom a profesorom orientalistiky. V rokoch 1783 až 1784 navštevoval Schelling latinskú školu v Nürtingene. Vo veku 16 rokov potom dostal povolenie zapísať sa na [Tübinger Stift (seminár protestantskej evanjelickej štátnej cirkvi vo Württembersku), hoci ešte nedosiahol bežný vek 20 rokov. Na Stifte býval v jednej izbe s Georgom Hegelom a Hölderlinom a všetci traja sa stali dobrými priateľmi. Schelling študoval cirkevných otcov a starogréckych filozofov. Jeho záujem sa postupne presunul od luteránskej teológie k filozofii. V roku 1792 ukončil štúdium na filozofickej fakulte a v roku 1793 prispel do diela Heinricha Eberharda Gottloba Paulusa Memorabilien; v roku 1795 dokončil dizertačnú prácu na získanie teologického titulu De Marcione Paullinarum epistolarum emendatore. Medzitým začal študovať Kanta a Fichteho, ktorí ho výrazne ovplyvnili. V roku 1794 Schelling publikoval výklad Fichteho myšlienok pod názvom Über die Möglichkeit einer Form der Philosophie überhaupt (O možnosti formy filozofie vo všeobecnosti). Túto prácu uznal sám Fichte a Schelling si ňou okamžite získal dobré meno medzi filozofmi. Jeho prepracovanejšia práca Vom Ich als Prinzip der Philosophie, oder über das Unbedingte im menschlichen Wissen (O sebe ako princípe filozofie alebo o neobmedzenom v ľudskom poznaní, 1795), hoci stále zostávala v medziach Fichteho idealizmu, ukázala tendenciu dať Fichteho metóde objektívnejšie uplatnenie a spojiť s ňou Spinozove názory.

Počas vyučovania dvoch mladíkov zo šľachtickej rodiny navštívil Lipsko ako ich sprievodca a mal možnosť zúčastniť sa na prednáškach na Lipskej univerzite, kde ho fascinovali súčasné fyzikálne vedy vrátane chémie a biológie. V tomto čase navštívil aj Drážďany, kde videl niekoľko zbierok arcivojvodu saského, na ktoré sa neskôr odvolával vo svojich úvahách o umení.

Po dvoch rokoch vyučovania bol Schelling v roku 1798, vo veku iba 23 rokov, povolaný do Jeny ako mimoriadny (t. j. neplatený) profesor filozofie. Už predtým prispieval článkami a recenziami do Filozofického časopisu Fichteho a Friedricha Immanuela Niethammera a vrhol sa na štúdium fyzikálnych a lekárskych vied. V roku 1795 Schelling vydal Filozofické listy o dogmatizme a kritizme (Philosophische Briefe über Dogmatismus und Kritizismus), pozostávajúce z 10 listov adresovaných neznámemu respondentovi, ktoré predstavovali obhajobu aj kritiku kantovského systému; v roku 1797 uverejnil esej Nová dedukcia prirodzeného práva (Neue Deduction des Naturrechts), ktorá anticipovala Fichteho spracovanie tejto témy v Základoch prirodzeného práva (Grundlage des Naturrechts). Jeho štúdie o fyzikálnych vedách priniesli ovocie v Ideen zu einer Philosophie der Natur (Idey o filozofii prírody) (1797) a v traktáte Von der Weltseele (O svetovej duši) (1798). V Ideen sa Schelling odvolával na Leibniza a citoval z jeho Monadológie. V období svojej prírodnej filozofie si Leibniza a jeho pohľad na prírodu veľmi vážil.

Schellingovo pôsobenie v Jene (1798-1803) ho postavilo do centra intelektuálneho kvasu romantizmu. Schelling si bol blízky s Johannom Wolfgangom von Goethem, ktorý ocenil poetickú kvalitu Naturphilosophie, čítajúc Von der Weltseele. Goethe ako predseda vlády Sasko-Weimarského vojvodstva pozval Schellinga do Jeny. Na druhej strane Schellinga odpudzovali menej expanzívne sklony Friedricha Schillera a etický idealizmus, ktorý oživoval Schillerovo dielo, mu bol nesympatický. Schelling však pravdepodobne študoval Schillerove estetické spisy: neskôr vo svojej Prednáške o filozofii umenia (Vorlesung über die Philosophie der Kunst, 1802/03) Schelling vyjadril malý záujem o Schillerove úspechy v literatúre, ale v jej Všeobecnej časti Schillerovu teóriu o [vznešenom] podrobne preskúmal s hlbokým rešpektom.

V Jene Schelling napísal a vydal množstvo kníh a traktátov. Spočiatku mal dobré vzťahy s Fichtem, ale ich rozdielne predstavy, najmä o prírode, viedli k čoraz väčším rozdielom v ich myslení. Fichte nebol spokojný s tým, že Schelling prejavoval hlboký záujem o prírodu, a odporučil mu, aby sa venoval filozofii v jej pôvodnom zmysle, teda transcendentálnej filozofii: konkrétne Fichteho Wissenschaftlehre. Schelling bol spočiatku optimistický, čo sa týka ich rozdielov, a myslel si, že Fichte nakoniec pochopí, čo robí, keďže svoju prírodnú filozofiu považoval za dôležité rozšírenie Fichteho idealizmu. V roku 1800 Schelling vydal jedno zo svojich najvýznamnejších diel System des transcendentalen Idealismus (Systém transcendentálneho idealizmu, 1800). V tejto knihe Schelling opísal transcendentálnu filozofiu a prírodnú filozofiu ako vzájomne sa doplňujúce. Fichte reagoval vyhlásením, že Schelling pracoval na základe falošného filozofického princípu: vo Fichteho teórii príroda ako Ne-ja (Nicht-Ich = objekt) nemohla byť predmetom filozofie, ktorej podstatným obsahom je subjektívna činnosť ľudského intelektu. Tento zlom sa stal nenapraviteľným v roku 1800, keď Schelling vydal Darstellung des Systems meiner Philosophie (Opis systému mojej filozofie). Fichte považoval tento názov za absurdný, pretože podľa jeho názoru filozofia nemôže byť personifikovaná. Okrem toho Schelling v tejto knihe verejne vyjadril svoje hodnotenie Spinozu, ktorého dielo Fichte zavrhol ako dogmatizmus, a vyhlásil, že príroda a duch sa líšia len kvantitou, ale sú v podstate totožné (Identitaet). Podľa Schellinga absolútno bola indiferencia alebo identita, ktorú považoval za základný predmet filozofie.

Schelling, ktorý sa stal uznávaným vodcom romantickej školy, začal Fichteho myšlienky odmietať ako chladné a abstraktné. Schelling mal obzvlášť blízko k Augustovi Wilhelmovi von Schlegelovi a jeho manželke Karoline. Obaja uvažovali o manželstve medzi Schellingom a Karolininou mladou dcérou Augustou Böhmerovou. Auguste zomrela v roku 1800 na úplavicu, čo mnohí dávali za vinu Schellingovi, ktorý dohliadal na jej liečbu. Robert Richards však vo svojej knihe The Romantic Conception of Life (Romantické poňatie života) dokazuje, že Schellingove zásahy boli nielen primerané, ale s najväčšou pravdepodobnosťou irelevantné, keďže privolaní lekári všetkých zúčastnených ubezpečovali, že Augustina choroba je nevyhnutne smrteľná. Augustova smrť ešte viac zblížila Schellinga a Karoline. Schlegel sa presťahoval do Berlína a rozvod bol dohodnutý (s Goetheho pomocou). Schellingovo pôsobenie v Jene sa skončilo a 2. júna 1803 sa s Karolínou zosobášili mimo Jeny. Ich svadobný obrad bol poslednou príležitosťou, keď sa Schelling stretol so svojím priateľom zo školy Hölderlinom, ktorý bol v tom čase už duševne chorý.

V jenskom období mal Schelling opäť bližší vzťah k Hegelovi. So Schellingovou pomocou sa Hegel stal súkromným docentom (Privatdozent) na univerzite v Jene. Hegel napísal knihu Differenz des Fichte’schen und Schelling’schen Systems der Philosophie (Rozdiel medzi Fichteho a Schellingovým filozofickým systémom, 1801) a podporil Schellingovu pozíciu voči jeho idealistickým predchodcom Fichtemu a Reinholdovi. Od januára 1802 vydávali Hegel a Schelling ako spoluredaktori Kritický časopis filozofie (Kritisches Journal der Philosophie), v ktorom uverejňovali príspevky o filozofii prírody, ale Schelling bol príliš zaneprázdnený na to, aby sa venoval redigovaniu, a časopis vydával najmä Hegel, ktorý zastával iné myšlienky ako Schelling. Časopis prestal vychádzať na jar 1803, keď sa Schelling presťahoval z Jeny do Würzburgu.

Od septembra 1803 do apríla 1806 bol Schelling profesorom na novej univerzite vo Würzburgu. Toto obdobie sa vyznačovalo značným výkyvom v jeho názoroch a konečným rozchodom s Fichte a Hegelom. Vo Würzburgu, konzervatívnom katolíckom meste, mal Schelling mnoho nepriateľov medzi svojimi kolegami a vo vláde. V roku 1806 sa presťahoval do Mníchova, kde si našiel miesto štátneho úradníka, najprv ako spolupracovník Bavorskej akadémie vied a humanitných vied a tajomník Kráľovskej akadémie krásnych umení, neskôr ako tajomník Filozofickej sekcie (Philosophische Klasse) Akadémie vied. V roku 1806 vydal Schelling knihu, v ktorej otvorene menovite kritizoval Fichteho. V roku 1807 Schelling dostal rukopis Hegelovej Fenomenológie ducha (Phaenomenologie des Geistes), ktorý mu poslal Hegel a požiadal Schellinga, aby napísal predslov. Prekvapený, že v ňom našiel znevažujúce poznámky namierené priamo proti svojej vlastnej filozofickej teórii, Schelling napokon odpísal a požiadal Hegela, aby objasnil, či chcel zosmiešniť Schellingových nasledovníkov, ktorí nepochopili jeho myšlienky, alebo samotného Schellinga. Hegel nikdy neodpovedal. V tom istom roku predniesol Schelling na mníchovskej Akadémii výtvarných umení prejav o vzťahu výtvarného umenia a prírody a Hegel ho ostro kritizoval v liste jednému zo svojich priateľov. Po tomto roku sa navzájom verejne kritizovali v prednáškových miestnostiach a v knihách až do konca svojho života.

Bez toho, aby sa vzdal svojho oficiálneho miesta v Mníchove, krátko prednášal v Stuttgarte (Stuttgarter Privatvorlesungen [Stuttgartské súkromné prednášky], 1810) a sedem rokov v Erlangene (1820-1827). V roku 1809 Karoline zomrel, tesne pred vydaním Freiheitschrift, poslednej knihy, ktorú vydal počas svojho života. O tri roky neskôr sa Schelling, zoznámený Goethem, oženil s jednou z jej najbližších priateliek Paulinou Gotterovou, v ktorej našiel vernú spoločníčku.

Počas dlhého pobytu v Mníchove (1806-1841) Schellingova literárna činnosť postupne ustala. „Aforizmy o Naturphilosophie“ uverejnené v Jahrbücher der Medicin als Wissenschaft (1806 – 1808) sú z väčšej časti výňatkami z würzburských prednášok a Denkmal der Schrift von den göttlichen Dingen des Herrn Jacobi bol odpoveďou na Jacobiho útok (obaja sa navzájom obvinili z ateizmu). Jediným významným spisom sú „Philosophische Untersuchungen über das Wesen der menschlichen Freiheit und die damit zusammenhängenden Gegenstände“ (Skúmanie ľudskej slobody, Philosophische Schriften i, 1809), ktoré so silnejúcou tendenciou k mystike pokračujú v myšlienkach predchádzajúceho diela Philosophie und Religion (Filozofia a náboženstvo, 1804). Na rozdiel od diel z jenského obdobia však teraz zlo nie je javom vyplývajúcim z kvantitatívnych rozdielov medzi skutočným a ideálnym, ale niečím podstatným. Toto dielo jasne parafrázovalo Kantovo rozlišovanie medzi inteligibilným a empirickým charakterom. Inak sám Schelling nazval slobodu „schopnosťou dobra a zla“.

Traktát „Über die Gottheiten zu Samothrake“ (O božstvách Samothrákie) vyšiel v roku 1815, údajne ako časť väčšieho diela Die Weltalter (Veky sveta), ktoré bolo často ohlasované ako pripravené na vydanie, ale z ktorého sa toho nikdy veľa nenapísalo. Schelling plánoval Die Weltalter ako knihu v troch častiach, opisujúcu minulosť, prítomnosť a budúcnosť sveta; začal však len prvú časť, niekoľkokrát ju prepísal a nakoniec ju ponechal nevydanú. Ďalšie dve časti ostali len v pláne. Christopher John Murray opisuje dielo takto:

Vychádzajúc z predpokladu, že filozofia nemôže v konečnom dôsledku vysvetliť existenciu, spája predchádzajúce filozofie prírody a identity s novoobjavenou vierou v základný konflikt medzi temným nevedomým princípom a vedomým princípom v Bohu. Boh
robí vesmír zrozumiteľným tým, že sa vzťahuje na základ reálneho, ale nakoľko príroda nie je úplnou inteligenciou, reálne existuje ako nedostatok v rámci ideálneho, a nie ako odraz samotného ideálneho. Tri univerzálne veky – odlišné len pre nás, ale nie vo večnom Bohu – preto zahŕňajú začiatok, kde je princípom Boha pred Bohom božská vôľa usilujúca sa o bytie, súčasný vek, ktorý je ešte súčasťou tohto rastu, a teda sprostredkovaným naplnením, a konečnosť, kde je Boh vedome a dokonale sám sebou pre seba.

Je možné, že Schellinga obmedzovala prevažujúca sila a vplyv Hegelovho systému, pretože až v roku 1834, po Hegelovej smrti, v predslove k prekladu diela Victora Cousina, ktorý urobil Hubert Beckers, verejne vyjadril svoj antagonizmus voči Hegelovej a svojej vlastnej predchádzajúcej koncepcii filozofie. Tento antagonizmus vtedy určite nebol novou skutočnosťou; erlangenské prednášky o dejinách filozofie z roku 1822 vyjadrujú to isté vyhroteným spôsobom a Schelling už začal zaoberať mytológiou a náboženstvom, ktoré podľa neho predstavovali skutočné pozitívne doplnenie negatív logickej alebo špekulatívnej filozofie.

Hoci má Schelling nesporný historický význam, často bol odmietaný ako obskurný alebo nemetodický.

Vo všetkých fázach svojho myslenia si volal na pomoc formy nejakého iného systému. Tak Fichte, Spinoza, Jakob Boehme a mystici, a napokon veľkí grécki myslitelia s ich neoplatónskymi, gnostickými a scholastickými komentátormi dodávajú jednotlivým dielam kolorit. Schelling si však len nevypožičiaval, skôr formoval svoje materiály do jednotného filozofického úsilia a ducha.

Schelling vo svojej Naturphilosophie tvrdí, že prírodu nemožno chápať len ako abstraktnú hranicu nekonečného snaženia ducha (ako to robil Fichte) alebo ako jednoduchý rad nevyhnutných myšlienok pre myseľ. Naopak, musí byť tým a niečím viac. Musí mať skutočnosť pre seba, skutočnosť, ktorá nie je v rozpore s jej ideálnym charakterom, skutočnosť, ktorej vnútorná štruktúra je ideálna, skutočnosť, ktorej koreňom a prameňom je duch. Príroda ako súhrn toho, čo je objektívne, inteligencia ako komplex všetkých činností tvoriacich sebauvedomenie sa tak javia ako rovnako skutočné, ako rovnako vykazujúce ideálnu štruktúru, ako navzájom paralelné. Príroda a duch, Naturphilosophie a Transcendentalphilosophie, tak vystupujú ako dve relatívne úplné, ale vzájomne sa doplňujúce časti celku.

Úlohou Naturphilosophie je ukázať ideálne ako prameniace z reálneho, nie odvodzovať reálne z ideálneho. Neustála zmena, ktorú pred nás stavia skúsenosť, v spojení s myšlienkou jednoty produktívnej sily prírody vedie k veľmi dôležitej koncepcii duality, polárneho protikladu, prostredníctvom ktorého sa príroda vyjadruje vo svojich rozmanitých produktoch. Dynamickým radom štádií v prírode, formami, v ktorých sa realizuje ideálna štruktúra prírody, sú hmota ako rovnováha základných expanzívnych a kontrakčných síl; svetlo s jemu podriadenými procesmi – magnetizmom, elektrinou a chemickým pôsobením; organizmus so svojimi zložkovými fázami rozmnožovania, dráždivosti a citlivosti.

Tak ako nám príroda ukazuje rad dynamických štádií evolučných procesov, ktorými sa duch prepracúva k vedomiu seba samého, tak aj svet inteligencie a praxe, svet mysle, ukazuje rad štádií, ktorými sa vedomie seba samého s nevyhnutnými protikladmi a zmiereniami vyvíja do svojej ideálnej podoby. Teoretická stránka vnútornej prirodzenosti vo svojich postupných stupňoch od pocitov k najvyššej forme ducha, abstrahujúci rozum, ktorý zdôrazňuje rozdiel subjektívneho a objektívneho, zanecháva nevyriešený problém, ktorý dostáva uspokojenie len v praktickej, individualizujúcej činnosti. Praktická, opäť vzatá v spojení s teoretickou, núka na otázku zmierenia medzi slobodnou vedomou organizáciou myslenia a zdanlivo nutným a nevedomým mechanizmom objektívneho sveta. V pojme teleologickej súvislosti a v tom, čo je pre ducha jeho vlastným subjektívnym prejavom, teda v umení a genialite, nachádzajú subjektívne a objektívne svoj bod spojenia.

Vo všetkých neskorších spisoch Schellinga možno nájsť dve odlišné línie, ktoré sa snažia zmeniť koncepciu absolútna ako najvyššieho základu skutočnosti, ktorej zostal verný. V prvom rade bolo potrebné dať tomuto absolútnu charakter, urobiť z neho niečo viac než prázdnu rovnakosť; v druhom rade bolo potrebné nejakým spôsobom objasniť vzťah medzi aktuálnosťou alebo zdanlivou aktuálnosťou prírody a ducha (Natur und Geist). Na rozdiel od Schellingovho filozofického kolegu a niekdajšieho priateľa Hegela Schelling neveril, že absolútno možno poznať v jeho pravej povahe len prostredníctvom racionálneho skúmania. Na uvedomenie si skutočnosti „božstva“, ktoré je absolútnym, prvotným základom všetkého bytia, bolo namiesto toho potrebné transcendentálne uchopenie prostredníctvom umeleckej tvorivosti alebo mystická intuícia prostredníctvom náboženskej skúsenosti (zjavná najmä v jeho spisoch z roku 1809 a po ňom).

Najstručnejšia a najlepšia správa samotného Schellinga o Naturphilosophie je tá, ktorá je obsiahnutá v Einleitung zu dern Ersten Entwurf (S. W. iii.). Úplný a prehľadný výklad Naturphilosophie podáva Kuno Fischer vo svojich Geschichte der neuern Philosophie, vi. 433-692.

Americký filozof Ken Wilber považuje Schellinga za jedného z dvoch filozofov, ktorí „po Platónovi mali najširší vplyv na západnú myseľ“. Dnes sa západní filozofi zaoberajú všetkými aspektmi jeho myslenia. Nie vždy sa však tešil takej vysokej reputácii.

Schellingovo dielo zapôsobilo na anglického romantického básnika a kritika Samuela Taylora Coleridgea, ktorý jeho myšlienky zaviedol do anglicky hovoriacej kultúry, niekedy, žiaľ, bez plného uznania, ako napríklad v Biographia Literaria. Coleridgeova kritická práca mala veľký vplyv a bol to práve on, kto do angličtiny zaviedol Schellingovu koncepciu nevedomia.

V 50. rokoch 20. storočia bol však Schelling takmer zabudnutým filozofom dokonca aj vo svojej krajine, v Nemecku. V 10. a 20. rokoch 20. storočia mali filozofi novokantovstva a neogelizmu, ako napríklad Wilhelm Windelband alebo Richard Kroner, tendenciu opisovať Schellinga ako epizódu spájajúcu Fichteho a Hegela. Jeho neskoré obdobie sa skôr ignorovalo a pozornosť sa venovala najmä jeho filozofii prírody a umenia v 90. a 90. rokoch 19. storočia. V tejto súvislosti Kuno Fischer charakterizoval Schellingovu ranú filozofiu ako „estetický idealizmus“, pričom sa zameral na argument, v ktorom umenie zaradil medzi „jediné dokumenty a večné orgány filozofie“ (das einzige wahre und ewige Organon zugleich und Dokument der Philosophie). Od socialistických filozofov, ako bol György Lukács, sa dočkal kritiky ako anachronický antagonista.

Jednou z výnimiek bol Martin Heidegger, ktorý sa vo svojich prednáškach v roku 1936 zaoberal Schellingovým dielom O ľudskej slobode. Heidegger v nej našiel ústredné témy západnej ontológie: otázky bytia, existencie a slobody.

V 50. rokoch sa situácia začala meniť. V roku 1954, v deň stého výročia Schellingovej smrti, sa konala medzinárodná konferencia o Schellingovi. Viacerí významní nemecky hovoriaci filozofi vrátane Karla Jaspersa predniesli príspevky o jedinečnosti a aktuálnosti jeho myslenia, pričom záujem filozofov sa presunul na jeho neskoré obdobie, v ktorom sa Schelling sústredil na bytie a existenciu, resp. práve na vznik existencie. Schelling bol v roku 1954 predmetom dizertačnej práce významného nemeckého filozofa 20. storočia Jürgena Habermasa. V roku 1955, teda v nasledujúcom roku konania tejto konferencie, Jaspers vydal knihu s názvom Schelling, v ktorej ho predstavil ako predchodcu existencialistov. Walter Schultz, jeden z organizátorov konferencie v roku 1954, vydal knihu, v ktorej tvrdil, že Schelling svojou neskorou filozofiou, najmä berlínskymi prednáškami v 40. rokoch 19. storočia, zavŕšil nemecký idealizmus. Schultz prezentoval Schellinga ako osobu, ktorá vyriešila filozofické problémy, ktoré Hegel zanechal nedokončené, na rozdiel od dobovej predstavy, že Schelling bol Hegelom prekonaný oveľa skôr a zastaralo.

V 70. rokoch 20. storočia sa príroda opäť stala predmetom záujmu filozofov v súvislosti s environmentálnymi otázkami. Schellingova filozofia prírody, najmä jeho zámer vytvoriť program, ktorý by v jednom systéme a metóde zahŕňal prírodu aj intelektuála a obnovil prírodu ako ústrednú tému filozofie, bola prehodnotená v dobovom kontexte. Jeho vplyv a vzťah k nemeckej umeleckej scéne, najmä k romantickej literatúre a výtvarnému umeniu, je predmetom vedeckého záujmu od konca 60. rokov 20. storočia, od Philippa Otta Rungeho po Gerharda Richtera a Josepha Beuysa.

V súvislosti s psychológiou sa Schelling považuje za autora pojmu „nevedomie“. Slovinský filozof a psychoanalytický teoretik Slavoj Žižek napísal o Schellingovi dve knihy, v ktorých sa pokúsil integrovať Schellingovu filozofiu, najmä jeho diela zo stredného obdobia vrátane Weltalter, s dielom Jacquesa Lacana.

Vybrané diela sú uvedené nižšie. Kompletný zoznam nájdete na tejto stránke.

Albert Einstein –
Alfred North Whitehead –
Aristoteles –
Auguste Comte –
Averroes –
Berlínsky kruh –
Carl Gustav Hempel –
C. D. Broad –
Charles Sanders Peirce –
Dominicus Gundissalinus –
Daniel Dennett –
Epikurovci –
Francis Bacon –
Friedrich Schelling –
Galileo Galilei –
Henri Poincaré –
Herbert Spencer –
Hugo zo Svätého Viktora –
Immanuel Kant –
Imre Lakatos –
Isaac Newton –
John Dewey –
John Stuart Mill –
Jürgen Habermas –
Karl Pearson –
Karl Popper –
Karl Theodor Jaspers –
Larry Laudan –
Otto Neurath –
Paul Haeberlin –
Paul Feyerabend –
Pierre Duhem –
Pierre Gassendi –
Platón –
R.B. Braithwaite –
René Descartes –
Robert Kilwardby –
Roger Bacon –
Rudolf Carnap –
Stephen Toulmin –
Stoicizmus –
Thomas Hobbes –
Thomas Samuel Kuhn –
Viedenský krúžok –
W.V.O. Quine –
Wilhelm Windelband –
Wilhelm Wundt –
Viliam z Ockhamu –
William Whewell –
viac…

Analýza –
Rozdiel medzi analytickou a syntetickou metódou –
A priori a a posteriori –
Umelá inteligencia –
Príčinná súvislosť –
Komenzuálnosť –
Konštrukcia –
Demarkačný problém –
Vysvetľujúca sila –
Skutočnosť –
Falzifikovateľnosť –
Ignoramus et ignorabimus –
Induktívne uvažovanie –
Dômyselnosť –
Dôkaz –
Modely vedeckého skúmania –
Príroda –
Objektivita –
Pozorovanie –
Paradigma –
Problém indukcie –
Vedecké vysvetlenie –
Vedecký zákon –
Vedecká metóda –
Vedecká revolúcia –
Vedecká teória –
Testovateľnosť –
Výber teórie –

Konfirmačný holizmus – Koherencia – Kontextualizmus – Konvencionalizmus – Deduktívno-nomologický model – Determinizmus – Empirizmus – Falzifikácia – Fundamentalizmus – Hypoteticko-deduktívny model – Infinitizmus – Inštrumentalizmus – Naturalizmus – Pozitivizmus – Pragmatizmus – Racionalizmus – Prijatý pohľad na teórie – Redukcionizmus – Sémantický pohľad na teórie – Vedecký realizmus – Scientizmus – Vedecký antirealizmus – Skepticizmus – Uniformitarizmus – Vitalizmus – Metafyzika

Epistemológia – Dejiny a filozofia vedy – Dejiny vedy – Dejiny evolučného myslenia – Filozofia biológie – Filozofia mysle – Filozofia umelej inteligencie – Filozofia informácie – Filozofia vnímania – Filozofia sociálnych vied – Filozofia životného prostredia – Filozofia psychológie – Filozofia technológie – Filozofia informatiky – Pseudoveda – Vzťah medzi náboženstvom a vedou – Rétorika vedy – Sociológia vedeckého poznania –
Kritika vedy – Alchýmia –
viac…

Portál – Kategória – Pracovná skupina – Diskusia – Zmeny