Protilátky

Každá protilátka sa viaže na špecifický antigén; ide o interakciu podobnú zámku a kľúču.

Protilátka (Ab), známa aj ako imunoglobulín (Ig), je veľký proteín v tvare písmena Y produkovaný B-bunkami, ktorý imunitný systém používa na identifikáciu a neutralizáciu cudzích objektov, ako sú baktérie a vírusy. Protilátka rozpoznáva jedinečnú časť cudzieho cieľa, ktorá sa nazýva antigén. Každý hrot „Y“ protilátky obsahuje paratop (štruktúra analogická zámku), ktorý je špecifický pre jeden konkrétny epitop (podobne analogický kľúču) na antigéne, čo umožňuje presné spojenie týchto dvoch štruktúr. Pomocou tohto väzbového mechanizmu môže protilátka označiť mikrób alebo infikovanú bunku na útok iných častí imunitného systému alebo môže priamo neutralizovať svoj cieľ (napríklad zablokovaním časti mikróbu, ktorá je nevyhnutná na jeho inváziu a prežitie). Produkcia protilátok je hlavnou funkciou humorálneho imunitného systému.

Protilátky sú vylučované typom bielych krviniek nazývaných plazmatické bunky, ktoré sa nachádzajú v krvnom sére. Protilátky sa môžu vyskytovať v dvoch fyzikálnych formách, v rozpustnej forme, ktorá sa vylučuje z bunky, a vo forme viazanej na membránu, ktorá je pripojená na povrch B-bunky a označuje sa ako B-bunkový receptor (BCR). BCR sa nachádza len na povrchu B-buniek a uľahčuje aktiváciu týchto buniek a ich následnú diferenciáciu buď na továrne na protilátky nazývané plazmatické bunky, alebo na pamäťové B-bunky, ktoré prežijú v tele a zapamätajú si ten istý antigén, takže B-bunky môžu pri budúcom vystavení reagovať rýchlejšie. Vo väčšine prípadov je potrebná interakcia B bunky s pomocnou T bunkou, aby došlo k úplnej aktivácii B bunky, a teda k tvorbe protilátok po naviazaní antigénu. Rozpustné protilátky sa uvoľňujú do krvi a tkanivových tekutín, ako aj do mnohých sekrétov, aby pokračovali v prieskume invazívnych mikroorganizmov.

Protilátky sú glykoproteíny patriace do nadrodiny imunoglobulínov; pojmy protilátka a imunoglobulín sa často používajú zameniteľne. Protilátky sa zvyčajne skladajú zo základných štrukturálnych jednotiek – každá má dva veľké ťažké reťazce a dva malé ľahké reťazce. Existuje niekoľko rôznych typov ťažkých reťazcov protilátok a niekoľko rôznych druhov protilátok, ktoré sú zoskupené do rôznych izotypov na základe toho, ktorý ťažký reťazec majú. U cicavcov je známych päť rôznych izotypov protilátok, ktoré plnia rôzne úlohy a pomáhajú riadiť vhodnú imunitnú odpoveď na každý iný typ cudzieho objektu, s ktorým sa stretnú.

Hoci všeobecná štruktúra všetkých protilátok je veľmi podobná, malá oblasť na špičke proteínu je veľmi variabilná, čo umožňuje existenciu miliónov protilátok s mierne odlišnou štruktúrou špičky alebo väzobných miest pre antigén. Táto oblasť je známa ako hypervariabilná oblasť. Každý z týchto variantov sa môže viazať na iný cieľ, známy ako antigén. Táto obrovská rozmanitosť protilátok umožňuje imunitnému systému rozpoznať rovnako širokú škálu antigénov. Veľká a rozmanitá populácia protilátok vzniká náhodnými kombináciami súboru génových segmentov, ktoré kódujú rôzne väzobné miesta pre antigén (alebo paratopy), po ktorých nasledujú náhodné mutácie v tejto oblasti génu protilátky, ktoré vytvárajú ďalšiu rozmanitosť. Gény protilátok sa tiež reorganizujú v procese nazývanom prepínanie tried, ktorý mení bázu ťažkého reťazca na inú, čím sa vytvára iný izotyp protilátky, ktorý si zachováva antigénovo špecifickú variabilnú oblasť. To umožňuje, aby jednu protilátku využívalo niekoľko rôznych častí imunitného systému.

Membránovo viazaná forma protilátky sa môže nazývať povrchový imunoglobulín (sIg) alebo membránový imunoglobulín (mIg). Je súčasťou receptora B buniek (BCR), ktorý umožňuje B bunkám zistiť prítomnosť špecifického antigénu v tele a spustiť aktiváciu B buniek. BCR sa skladá z povrchovo viazaných protilátok IgD alebo IgM a pridružených heterodimérov Ig-α a Ig-β, ktoré sú schopné prenášať signál. Typická ľudská B bunka má na svojom povrchu naviazaných 50 000 až 100 000 protilátok. Po naviazaní antigénu sa zoskupujú do veľkých škvŕn, ktorých priemer môže presiahnuť 1 mikrometer, na lipidových raftoch, ktoré izolujú BCR od väčšiny ostatných bunkových signálnych receptorov.
Tieto škvrny môžu zlepšiť účinnosť bunkovej imunitnej odpovede. U ľudí je povrch buniek okolo receptorov B-buniek holý niekoľko stoviek nanometrov, čo ďalej izoluje BCR od konkurenčných vplyvov.

Protilátky sa môžu vyskytovať v rôznych variantoch známych ako izotypy alebo triedy. U placentárnych cicavcov existuje päť izotypov protilátok známych ako IgA, IgD, IgE, IgG a IgM. Každý z nich je pomenovaný predponou „Ig“, ktorá znamená imunoglobulín, iný názov pre protilátku, a líšia sa svojimi biologickými vlastnosťami, funkčnými miestami a schopnosťou vysporiadať sa s rôznymi antigénmi, ako je znázornené v tabuľke.

Izotyp protilátok B-buniek sa mení počas ich vývoja a aktivácie. Nezrelé bunky B, ktoré nikdy neboli vystavené antigénu, sa nazývajú naivné bunky B a exprimujú iba izotyp IgM vo forme viazanej na povrch bunky. Keď B bunky dosiahnu zrelosť, začnú exprimovať IgM aj IgD – spoločná expresia oboch týchto izotypov imunoglobulínov robí B bunku „zrelou“ a pripravenou reagovať na antigén. Aktivácia B bunky nasleduje po spojení molekuly protilátky viazanej na bunku s antigénom, čo spôsobí, že bunka sa rozdelí a diferencuje na bunku produkujúcu protilátky nazývanú plazmatická bunka. V tejto aktivovanej forme začne B-bunka produkovať protilátky vo forme vylučovanej, a nie vo forme viazanej na membránu. Niektoré dcérske bunky aktivovaných B-buniek podliehajú izotypovej zmene, čo je mechanizmus, ktorý spôsobuje zmenu produkcie protilátok z IgM alebo IgD na iné izotypy protilátok, IgE, IgA alebo IgG, ktoré majú definované úlohy v imunitnom systéme.

Protilátky sú ťažké (~150 kDa) globulárne plazmatické proteíny. K niektorým aminokyselinovým zvyškom majú pridané cukrové reťazce. Inými slovami, protilátky sú glykoproteíny. Základnou funkčnou jednotkou každej protilátky je monomér imunoglobulínu (Ig) (obsahuje len jednu jednotku Ig); vylučované protilátky môžu byť aj dimérové s dvoma jednotkami Ig ako IgA, tetérové so štyrmi jednotkami Ig ako IgM teleostov alebo pentérové s piatimi jednotkami Ig ako IgM cicavcov.

Niekoľko imunoglobulínových domén tvorí dva ťažké reťazce (červený a modrý) a dva ľahké reťazce (zelený a žltý) protilátky. Imunoglobulínové domény sa skladajú zo 7 (v prípade konštantných domén) až 9 (v prípade variabilných domén) β-vlákien.

Variabilné časti protilátky sú jej oblasti V a konštantné časti sú jej oblasti C.

Monomér Ig je molekula v tvare písmena „Y“, ktorá pozostáva zo štyroch polypeptidových reťazcov: dvoch identických ťažkých reťazcov a dvoch identických ľahkých reťazcov spojených disulfidickými väzbami.
Každý reťazec sa skladá zo štrukturálnych domén nazývaných imunoglobulínové domény. Tieto domény obsahujú približne 70 – 110 aminokyselín a podľa veľkosti a funkcie sa delia do rôznych kategórií (napríklad variabilné alebo IgV a konštantné alebo IgC). Majú charakteristické imunoglobulínové zloženie, v ktorom dva beta listy vytvárajú „sendvičový“ tvar, ktorý držia pohromade interakcie medzi konzervovanými cysteínmi a inými nabitými aminokyselinami.

Existuje päť typov ťažkého reťazca Ig cicavcov, ktoré sa označujú gréckymi písmenami: α, δ, ε, γ a μ. Typ prítomného ťažkého reťazca určuje triedu protilátky; tieto reťazce sa nachádzajú v protilátkach IgA, IgD, IgE, IgG a IgM. Rozdielne ťažké reťazce sa líšia veľkosťou a zložením; α a γ obsahujú približne 450 aminokyselín, zatiaľ čo μ a ε majú približne 550 aminokyselín.

1. Fab oblasť2. Oblasť Fc3. Ťažký reťazec (modrý) s jednou variabilnou doménou (VH), za ktorou nasleduje konštantná doména (CH1), oblasť závesu a ďalšie dve konštantné domény (CH2 a CH3)4. Ľahký reťazec (zelený) s jednou variabilnou (VL) a jednou konštantnou (CL)5. Väzobné miesto pre antigén (paratop)6. Oblasti závesu.

U vtákov sa hlavná sérová protilátka, ktorá sa nachádza aj v žĺtku, nazýva IgY. Je úplne odlišná od IgG u cicavcov. V niektorých starších publikáciách a dokonca aj na niektorých webových stránkach komerčných produktov v oblasti biologických vied sa však stále nazýva „IgG“, čo je nesprávne a môže byť mätúce.

Doporučujeme:  Podmienečné prepustenie (pracovisko)

Každý ťažký reťazec má dve oblasti, konštantnú a variabilnú oblasť. Konštantná oblasť je identická vo všetkých protilátkach rovnakého izotypu, ale líši sa v protilátkach rôznych izotypov. Ťažké reťazce γ, α a δ majú konštantnú oblasť zloženú z troch tandemových (v jednej línii) Ig domén a oblasť kĺbov na zvýšenie flexibility; ťažké reťazce μ a ε majú konštantnú oblasť zloženú zo štyroch imunoglobulínových domén. Variabilná oblasť ťažkého reťazca sa líši v protilátkach produkovaných rôznymi B-bunkami, ale je rovnaká pre všetky protilátky produkované jednou B-bunkou alebo klonom B-buniek. Variabilná oblasť každého ťažkého reťazca je dlhá približne 110 aminokyselín a pozostáva z jednej Ig domény.

U cicavcov existujú dva typy ľahkých reťazcov imunoglobulínov, ktoré sa nazývajú lambda (λ) a kappa (κ). Ľahký reťazec má dve po sebe nasledujúce domény: jednu konštantnú a jednu variabilnú doménu. Približná dĺžka ľahkého reťazca je 211 až 217 aminokyselín. Každá protilátka obsahuje dva ľahké reťazce, ktoré sú vždy identické; u cicavcov je prítomný len jeden typ ľahkého reťazca, κ alebo λ. Iné typy ľahkých reťazcov, ako napríklad reťazec iota (ι), sa nachádzajú u nižších stavovcov, ako sú žraloky (Chondrichthyes) a kostnaté ryby (Teleostei).

CDR, Fv, Fab a Fc oblasti

Niektoré časti protilátky majú jedinečné funkcie. Ramená Y napríklad obsahujú miesta, ktoré môžu viazať dva antigény (vo všeobecnosti rovnaké), a teda rozpoznať špecifické cudzie objekty. Táto oblasť protilátky sa nazýva Fab (fragment, oblasť viažuca antigén). Skladá sa z jednej konštantnej a jednej variabilnej domény z každého ťažkého a ľahkého reťazca protilátky.
Paratop je na aminoterminálnom konci monoméru protilátky tvarovaný variabilnými doménami z ťažkého a ľahkého reťazca. Variabilná doména sa označuje aj ako oblasť FV a je najdôležitejšou oblasťou pre väzbu na antigény. Presnejšie, za väzbu s antigénom sú zodpovedné variabilné slučky β-vlákien, po tri na ľahkom (VL) a ťažkom (VH) reťazci. Tieto slučky sa označujú ako oblasti určujúce komplementaritu (CDR).
Štruktúry týchto CDR zoskupil a klasifikoval Chothia et al.
a nedávno North et al.
V rámci teórie imunitnej siete sa CDR nazývajú aj idiotypy. Podľa teórie imunitnej siete je adaptívny imunitný systém regulovaný interakciami medzi idiotypmi.

Základňa Y zohráva úlohu pri modulácii aktivity imunitných buniek. Táto oblasť sa nazýva Fc (Fragment, kryštalizovateľná) oblasť a pozostáva z dvoch ťažkých reťazcov, ktoré prispievajú dvoma alebo tromi konštantnými doménami v závislosti od triedy protilátky. Oblasť Fc teda zabezpečuje, že každá protilátka vytvára vhodnú imunitnú odpoveď pre daný antigén tým, že sa viaže na špecifickú triedu receptorov Fc a iné imunitné molekuly, ako sú napríklad proteíny komplementu. Týmto spôsobom sprostredkúva rôzne fyziologické účinky vrátane rozpoznania opsonizovaných častíc, lýzy buniek a degranulácie žírnych buniek, bazofilov a eozinofilov.

Aktivované B-bunky sa diferencujú buď na bunky produkujúce protilátky nazývané plazmatické bunky, ktoré vylučujú rozpustné protilátky, alebo na pamäťové bunky, ktoré prežívajú v tele aj niekoľko rokov, aby si imunitný systém zapamätal antigén a rýchlejšie reagoval pri budúcom vystavení.

V prenatálnom a novorodeneckom štádiu života je prítomnosť protilátok zabezpečená pasívnou imunizáciou od matky. Včasná endogénna tvorba protilátok sa líši pre rôzne druhy protilátok a zvyčajne sa objavuje v prvých rokoch života. Keďže protilátky existujú voľne v krvnom obehu, hovorí sa, že sú súčasťou humorálneho imunitného systému. Cirkulujúce protilátky sú produkované klonálnymi B-bunkami, ktoré špecificky reagujú len na jeden antigén (príkladom je fragment bielkoviny kapsidu vírusu). Protilátky prispievajú k imunite tromi spôsobmi: zabraňujú patogénom vstúpiť do buniek alebo ich poškodiť tým, že sa na ne viažu; stimulujú odstraňovanie patogénov makrofágmi a inými bunkami tým, že patogén obalia; a spúšťajú ničenie patogénov stimuláciou iných imunitných reakcií, ako je napríklad komplementová dráha.

Vylučovaný IgM cicavcov má päť Ig jednotiek. Každá jednotka Ig (označená ako 1) má dve oblasti Fab viažuce epitopy, takže IgM je schopný viazať až 10 epitopov.

Protilátky, ktoré sa viažu na povrchové antigény napríklad baktérie, priťahujú prvú zložku komplementovej kaskády svojou Fc oblasťou a iniciujú aktiváciu „klasického“ komplementového systému. Výsledkom je usmrtenie baktérií dvoma spôsobmi. Po prvé, väzba protilátky a molekúl komplementu označí mikrób na prehltnutie fagocytmi v procese nazývanom opsonizácia; tieto fagocyty sú priťahované určitými molekulami komplementu, ktoré sa vytvárajú v komplementovej kaskáde. Po druhé, niektoré zložky komplementového systému vytvárajú membránový útočný komplex, ktorý pomáha protilátkam priamo usmrtiť baktériu.

Aktivácia efektorových buniek

V boji proti patogénom, ktoré sa replikujú mimo buniek, sa protilátky viažu na patogény a spájajú ich, čím spôsobujú ich aglutináciu. Keďže protilátka má aspoň dva paratopy, môže viazať viac ako jeden antigén tým, že viaže identické epitopy, ktoré sa nachádzajú na povrchu týchto antigénov. Obalením patogénu protilátky stimulujú efektorové funkcie proti patogénu v bunkách, ktoré rozpoznávajú ich Fc oblasť.

Bunky, ktoré rozpoznávajú obalené patogény, majú Fc receptory, ktoré, ako už názov napovedá, interagujú s Fc oblasťou protilátok IgA, IgG a IgE. Spojenie konkrétnej protilátky s Fc receptorom na konkrétnej bunke spustí efektorovú funkciu tejto bunky; fagocyty budú fagocytovať, žírne bunky a neutrofily budú degranulovať, prirodzené zabíjačské bunky budú uvoľňovať cytokíny a cytotoxické molekuly, čo v konečnom dôsledku povedie k zničeniu napadnutého mikróba. Receptory Fc sú izotypovo špecifické, čo poskytuje imunitnému systému väčšiu flexibilitu, pretože vyvoláva len vhodné imunitné mechanizmy pre rôzne patogény.

Ľudia a vyššie primáty tiež produkujú „prirodzené protilátky“, ktoré sú prítomné v sére pred vírusovou infekciou. Prirodzené protilátky boli definované ako protilátky, ktoré sa vytvárajú bez predchádzajúcej infekcie, očkovania, vystavenia inému cudziemu antigénu alebo pasívnej imunizácie. Tieto protilátky môžu aktivovať klasickú cestu komplementu, ktorá vedie k lýze obalených vírusových častíc dlho pred aktiváciou adaptívnej imunitnej odpovede. Mnohé prirodzené protilátky sú namierené proti disacharidu galaktóze α(1,3)-galaktóze (α-Gal), ktorý sa nachádza ako koncový cukor na glykozylovaných povrchových proteínoch buniek a vzniká ako odpoveď na produkciu tohto cukru baktériami obsiahnutými v ľudskom čreve. Predpokladá sa, že odmietnutie xenotransplantovaných orgánov je čiastočne dôsledkom prirodzených protilátok cirkulujúcich v sére príjemcu, ktoré sa viažu na antigény α-Gal exprimované na tkanive darcu.

Prakticky všetky mikróby môžu vyvolať protilátkovú odpoveď. Úspešné rozpoznanie a likvidácia mnohých rôznych typov mikróbov si vyžaduje rozmanitosť protilátok; ich aminokyselinové zloženie sa líši, čo im umožňuje interagovať s mnohými rôznymi antigénmi. Odhaduje sa, že ľudia vytvárajú približne 10 miliárd rôznych protilátok, z ktorých každá je schopná viazať odlišný epitop antigénu. Hoci sa u jedného jedinca vytvára obrovský repertoár rôznych protilátok, počet génov dostupných na tvorbu týchto proteínov je obmedzený veľkosťou ľudského genómu. Vyvinulo sa niekoľko zložitých genetických mechanizmov, ktoré umožňujú B-bunkám stavovcov vytvárať rôznorodý súbor protilátok z relatívne malého počtu protilátkových génov.

Oblasti ťažkého reťazca určujúce komplementaritu sú znázornené červenou farbou (PDB 1IGT)

Oblasť (lokus) chromozómu, ktorá kóduje protilátku, je veľká a obsahuje niekoľko rôznych génov pre každú doménu protilátky – lokus obsahujúci gény pre ťažké reťazce (IGH@) sa nachádza na chromozóme 14 a lokusy obsahujúce gény pre ľahké reťazce lambda a kappa (IGL@ a IGK@) sa u ľudí nachádzajú na chromozómoch 22 a 2. Jedna z týchto domén sa nazýva variabilná doména, ktorá je prítomná v každom ťažkom a ľahkom reťazci každej protilátky, ale môže sa líšiť v rôznych protilátkach vytvorených z rôznych buniek B. Rozdiely medzi variabilnými doménami sa nachádzajú v troch slučkách známych ako hypervariabilné oblasti (HV-1, HV-2 a HV-3) alebo oblasti určujúce komplementaritu (CDR1, CDR2 a CDR3). CDR sú v rámci variabilných domén podporované konzervovanými rámcovými oblasťami. Lokus ťažkého reťazca obsahuje približne 65 rôznych génov s variabilnou doménou, ktoré sa líšia svojimi CDR. Kombináciou týchto génov s radom génov pre iné domény protilátky vzniká veľká kavaléria protilátok s vysokým stupňom variability. Táto kombinácia sa nazýva V(D)J rekombinácia, o ktorej sa hovorí ďalej.

Doporučujeme:  Všetko, čo potrebujete vedieť o CBD

Zjednodušený prehľad V(D)J rekombinácie ťažkých reťazcov imunoglobulínov

Somatická rekombinácia imunoglobulínov, známa aj ako V(D)J rekombinácia, zahŕňa tvorbu jedinečnej variabilnej oblasti imunoglobulínu. Variabilná oblasť každého ťažkého alebo ľahkého reťazca imunoglobulínu je kódovaná v niekoľkých častiach – známych ako génové segmenty (subgény). Tieto segmenty sa nazývajú variabilné (V), diverzitné (D) a spájacie (J) segmenty. Segmenty V, D a J sa nachádzajú v ťažkých reťazcoch Ig, ale iba segmenty V a J sa nachádzajú v ľahkých reťazcoch Ig. Existujú viaceré kópie V, D a J génových segmentov, ktoré sú v genómoch cicavcov usporiadané tandemovo. V kostnej dreni si každá vyvíjajúca sa B-bunka zostaví variabilnú oblasť imunoglobulínu náhodným výberom a kombináciou jedného V, jedného D a jedného J génového segmentu (alebo jedného V a jedného J segmentu v ľahkom reťazci). Keďže existuje viacero kópií každého typu génového segmentu a na vytvorenie každej variabilnej oblasti imunoglobulínu sa môžu použiť rôzne kombinácie génových segmentov, tento proces vytvára obrovské množstvo protilátok, z ktorých každá má rôzne paratopy, a teda rôzne antigénové špecificity. Zaujímavé je, že preskupenie niekoľkých podrodov (napr. rodiny V2) pre ľahký reťazec imunoglobulínu lambda je spojené s aktiváciou mikroRNA miR-650, ktorá ďalej ovplyvňuje biológiu B-buniek .

Po tom, čo B bunka vytvorí funkčný imunoglobulínový gén počas V(D)J rekombinácie, nemôže exprimovať žiadnu inú variabilnú oblasť (proces známy ako alelické vylúčenie), a tak môže každá B bunka produkovať protilátky obsahujúce len jeden druh variabilného reťazca.

Somatická hypermutácia a afinitné zrenie

Po aktivácii antigénom sa B-bunky začnú rýchlo množiť. V týchto rýchlo sa deliacich bunkách gény kódujúce variabilné domény ťažkých a ľahkých reťazcov podliehajú vysokej miere bodových mutácií v procese nazývanom somatická hypermutácia (SHM). Výsledkom SHM je približne jedna nukleotidová zmena na variabilný gén pri každom delení bunky. V dôsledku toho všetky dcérske B-bunky získajú malé aminokyselinové rozdiely vo variabilných doménach svojich protilátkových reťazcov.

To slúži na zvýšenie rozmanitosti súboru protilátok a ovplyvňuje afinitu protilátky k antigénu. Niektoré bodové mutácie budú mať za následok tvorbu protilátok, ktoré majú slabšiu interakciu (nízku afinitu) s antigénom ako pôvodná protilátka, a niektoré mutácie budú vytvárať protilátky so silnejšou interakciou (vysokou afinitou). B-bunky, ktoré na svojom povrchu exprimujú protilátky s vysokou afinitou, dostanú počas interakcie s inými bunkami silný signál na prežitie, zatiaľ čo tie s nízkou afinitou protilátok nie a zomrú apoptózou. B-bunky exprimujúce protilátky s vyššou afinitou k antigénu teda prekonajú tie so slabšou afinitou, pokiaľ ide o funkciu a prežitie. Proces tvorby protilátok so zvýšenou väzbovou afinitou sa nazýva afinitné dozrievanie. K afinitnému dozrievaniu dochádza v zrelých B-bunkách po V(D)J rekombinácii a závisí od pomoci pomocných T-buniek.

Mechanizmus rekombinácie prepínačov tried, ktorý umožňuje prepínanie izotypov v aktivovaných B-bunkách

Prepínanie izotypov alebo tried je biologický proces, ku ktorému dochádza po aktivácii B-bunky a ktorý umožňuje bunke produkovať rôzne triedy protilátok (IgA, IgE alebo IgG). Rôzne triedy protilátok, a teda aj efektorové funkcie, sú definované konštantnými (C) oblasťami ťažkého reťazca imunoglobulínu. Na začiatku naivné B-bunky exprimujú iba bunkový povrch IgM a IgD s identickými oblasťami viažucimi antigén. Každý izotyp je prispôsobený na odlišnú funkciu, preto po aktivácii môže byť na účinné odstránenie antigénu potrebná protilátka s efektorovou funkciou IgG, IgA alebo IgE. Prepínanie tried umožňuje rôznym dcérskym bunkám tej istej aktivovanej B-bunky produkovať protilátky rôznych izotypov. Počas prepínania tried sa mení len konštantná oblasť ťažkého reťazca protilátky; variabilné oblasti, a teda antigénová špecifickosť, zostávajú nezmenené. Potomstvo jednej B-bunky tak môže produkovať protilátky, všetky špecifické pre ten istý antigén, ale so schopnosťou produkovať efektorovú funkciu vhodnú pre každú antigénovú výzvu. Prepínanie tried je vyvolané cytokínmi; vytvorený izotyp závisí od toho, ktoré cytokíny sú prítomné v prostredí B buniek.

K prepínaniu tried dochádza v génovom lokuse ťažkého reťazca mechanizmom nazývaným rekombinácia prepínačov tried (CSR). Tento mechanizmus sa spolieha na konzervované nukleotidové motívy, nazývané prepínacie (S) oblasti, ktoré sa nachádzajú v DNA pred každým génom konštantnej oblasti (okrem δ-reťazca). Vlákno DNA sa láme aktivitou série enzýmov v dvoch vybraných S-oblastiach. Exón variabilnej domény sa opätovne pripojí prostredníctvom procesu nazývaného nehomologické koncové spájanie (NHEJ) k požadovanej konštantnej oblasti (γ, α alebo ε). Výsledkom tohto procesu je imunoglobulínový gén, ktorý kóduje protilátku iného izotypu.

Skupina protilátok sa môže nazývať monovalentná (alebo špecifická), ak má afinitu k rovnakému epitopu alebo k rovnakému antigénu (ale potenciálne k rôznym epitopom na molekule), alebo k rovnakému kmeňu mikroorganizmu (ale potenciálne k rôznym antigénom na ňom alebo v ňom). Naopak, skupinu protilátok možno nazvať polyvalentnou (alebo nešpecifickou), ak majú afinitu k rôznym antigénom alebo mikroorganizmom. Intravenózny imunoglobulín, ak nie je uvedené inak, pozostáva z polyvalentného IgG. Naproti tomu monoklonálne protilátky sú monovalentné pre ten istý epitop.

Diagnostika a terapia ochorenia

Detekcia konkrétnych protilátok je veľmi rozšírenou formou lekárskej diagnostiky a aplikácie, ako napríklad sérológia, závisia od týchto metód. Napríklad pri biochemických testoch na diagnostiku chorôb sa z krvi odhaduje titer protilátok namierených proti vírusu Epstein-Barrovej alebo borelióze. Ak tieto protilátky nie sú prítomné, buď osoba nie je infikovaná, alebo sa infekcia vyskytla veľmi dávno a B-bunky vytvárajúce tieto špecifické protilátky prirodzene zanikli. V klinickej imunológii sa hladiny jednotlivých tried imunoglobulínov merajú nefelometricky (alebo turbidimetricky), aby sa charakterizoval protilátkový profil pacienta. Zvýšené hodnoty rôznych tried imunoglobulínov sú niekedy užitočné pri určovaní príčiny poškodenia pečene u pacientov, u ktorých je diagnóza nejasná. Napríklad zvýšený IgA indikuje alkoholovú cirhózu, zvýšený IgM indikuje vírusovú hepatitídu a primárnu biliárnu cirhózu, zatiaľ čo IgG je zvýšený pri vírusovej hepatitíde, autoimunitnej hepatitíde a cirhóze. Autoimunitné poruchy sa často dajú vysledovať na základe protilátok, ktoré viažu telu vlastné epitopy; mnohé sa dajú zistiť pomocou krvných testov. Protilátky namierené proti povrchovým antigénom červených krviniek pri imunitne sprostredkovanej hemolytickej anémii sa zisťujú Coombsovým testom. Coombsov test sa používa aj na skríning protilátok pri príprave krvnej transfúzie a tiež na skríning protilátok u žien pred pôrodom.
Prakticky sa na diagnostiku infekčných ochorení používa niekoľko imunodiagnostických metód založených na detekcii komplexného antigénu – protilátky, napríklad ELISA, imunofluorescencia, Western blot, imunodifúzia, imunoelektroforéza a magnetická imunoanalýza. Protilátky zvýšené proti ľudskému choriovému gonadotropínu sa používajú vo voľne predajných tehotenských testoch.
Terapia cielenými monoklonálnymi protilátkami sa používa na liečbu chorôb, ako je reumatoidná artritída, skleróza multiplex, psoriáza a mnohé formy rakoviny vrátane non-Hodgkinovho lymfómu, kolorektálneho karcinómu, karcinómu hlavy a krku a karcinómu prsníka.
Niektoré imunitné nedostatky, ako napríklad agammaglobulinémia viazaná na chromozóm X a hypogamaglobulinémia, vedú k čiastočnému alebo úplnému nedostatku protilátok. Tieto ochorenia sa často liečia navodením krátkodobej formy imunity nazývanej pasívna imunita. Pasívna imunita sa dosahuje prenosom hotových protilátok vo forme ľudského alebo zvieracieho séra, združeného imunoglobulínu alebo monoklonálnych protilátok do postihnutého jedinca.

Rhesus faktor, známy aj ako RhD antigén, je antigén, ktorý sa nachádza na červených krvinkách; jedinci, ktorí sú Rh pozitívni (Rh+), majú tento antigén na červených krvinkách a jedinci, ktorí sú Rh negatívni (Rh-), ho nemajú. Počas normálneho pôrodu, pôrodnej traumy alebo komplikácií počas tehotenstva sa krv z plodu môže dostať do matkinho organizmu. V prípade Rh-nekompatibilnej matky a dieťaťa môže následné miešanie krvi spôsobiť senzibilizáciu Rh-matky na Rh antigén na krvinkách Rh+ dieťaťa, čím sa zvyšok tehotenstva a všetky nasledujúce tehotenstvá vystavujú riziku hemolytického ochorenia novorodenca.

Doporučujeme:  Medzizubné spoluhlásky

Protilátky proti imunoglobulínu Rho(D) sú špecifické pre ľudský antigén Rhesus D (RhD). Protilátky proti RhD sa podávajú ako súčasť prenatálnej liečby, aby sa zabránilo senzibilizácii, ku ktorej môže dôjsť, keď má Rhesus negatívna matka Rhesus pozitívny plod. Liečba matky protilátkami Anti-RhD pred úrazom a pôrodom a bezprostredne po ňom zničí Rh antigén v matkinom systéme od plodu. Dôležité je, že k tomu dochádza skôr, ako antigén môže stimulovať B bunky matky, aby si „zapamätali“ Rh antigén vytvorením pamäťových B buniek. Preto jej humorálny imunitný systém nebude vytvárať anti Rh protilátky a nebude útočiť na Rh antigény súčasných alebo nasledujúcich detí. Liečba imunoglobulínom Rho(D) zabraňuje senzibilizácii, ktorá môže viesť k ochoreniu Rh, ale nezabraňuje ani nelieči samotné základné ochorenie.

Imunofluorescenčný obraz eukaryotického cytoskeletu. Aktínové vlákna sú zobrazené červenou farbou, mikrotubuly zelenou a jadrá modrou.

Špecifické protilátky sa vyrábajú injekčným podaním antigénu cicavcovi, napríklad myši, potkanovi, králikovi, koze, ovci alebo koňovi, aby sa vytvorilo veľké množstvo protilátok. Krv izolovaná z týchto zvierat obsahuje polyklonálne protilátky – viacero protilátok, ktoré sa viažu na rovnaký antigén – v sére, ktoré sa teraz môže nazývať antisérum. Antigény sa injekčne podávajú aj kurčatám na tvorbu polyklonálnych protilátok vo vaječnom žĺtku. Na získanie protilátky, ktorá je špecifická pre jeden epitop antigénu, sa zo zvieraťa izolujú lymfocyty vylučujúce protilátky a imortalizujú sa spojením s rakovinovou bunkovou líniou. Fúzované bunky sa nazývajú hybridomy a v kultúre neustále rastú a vylučujú protilátky. Jednotlivé hybridómové bunky sa izolujú klonovaním riedením, aby sa vytvorili klony buniek, ktoré všetky produkujú rovnakú protilátku; tieto protilátky sa nazývajú monoklonálne protilátky. Polyklonálne a monoklonálne protilátky sa často čistia pomocou proteínu A/G alebo antigénovej afinitnej chromatografie.

Vo výskume sa purifikované protilátky používajú v mnohých aplikáciách. Najčastejšie sa používajú na identifikáciu a lokalizáciu intracelulárnych a extracelulárnych proteínov. Protilátky sa používajú v prietokovej cytometrii na rozlíšenie typov buniek podľa proteínov, ktoré exprimujú; rôzne typy buniek exprimujú na svojom povrchu rôzne kombinácie klastra diferenciačných molekúl a produkujú rôzne intracelulárne a vylučované proteíny. Používajú sa aj pri imunoprecipitácii na oddelenie proteínov a všetkého, čo sa na ne viaže (koimunoprecipitácia), od iných molekúl v bunkovom lyzáte, pri analýzach Western blot na identifikáciu proteínov oddelených elektroforézou a pri imunohistochémii alebo imunofluorescencii na skúmanie expresie proteínov v tkanivových rezoch alebo na lokalizáciu proteínov v bunkách pomocou mikroskopu. Proteíny sa dajú detegovať a kvantifikovať aj pomocou protilátok, a to technikami ELISA a ELISPOT.

Význam protilátok v zdravotníctve a biotechnologickom priemysle si vyžaduje znalosť ich štruktúry s vysokým rozlíšením. Tieto informácie sa využívajú na proteínové inžinierstvo, modifikáciu väzbovej afinity antigénu a identifikáciu epitopu danej protilátky. Röntgenová kryštalografia je jednou z bežne používaných metód na určenie štruktúry protilátok. Kryštalizácia protilátky je však často prácna a časovo náročná. Výpočtové prístupy predstavujú lacnejšiu a rýchlejšiu alternatívu ku kryštalografii, ale ich výsledky sú nejednoznačnejšie, pretože nevytvárajú empirické štruktúry. Online webové servery, ako napríklad Web Antibody Modeling (WAM) a Prediction of Immunoglobulin Structure (PIGS), umožňujú počítačové modelovanie variabilných oblastí protilátok. Rosetta Antibody je nový server na predpovedanie štruktúry FV oblasti protilátok, ktorý zahŕňa sofistikované techniky na minimalizáciu slučiek CDR a optimalizáciu relatívnej orientácie ľahkých a ťažkých reťazcov, ako aj homologické modely, ktoré predpovedajú úspešné dokovanie protilátok s ich jedinečným antigénom.

Prvýkrát bol pojem „protilátka“ použitý v texte Paula Ehrlicha. Termín Antikörper (nemecký výraz pre protilátku) sa objavuje v závere jeho článku „Experimentálne štúdie o imunite“, uverejnenom v októbri 1891, v ktorom sa uvádza, že „ak dve látky vyvolávajú dva rôzne antikörpery, potom sa musia líšiť aj ony samy“. Tento termín však nebol okamžite prijatý a bolo navrhnutých niekoľko ďalších termínov pre protilátku; patrili medzi ne Immunkörper, Amboceptor, Zwischenkörper, substancia sensibilisatrice, copula, Desmon, philocytase, fixateur a Immunisin. Slovo protilátka má formálnu analógiu so slovom antitoxín a podobný pojem ako Immunkörper.

Anjel Západu (2008) Juliana Voss-Andreae je socha založená na štruktúre protilátok, ktorú publikoval E. Padlan. Vytvorená pre floridský areál Scripps Research Institute, protilátka je umiestnená do kruhu odkazujúceho na Vitruviánskeho človeka od Leonarda da Vinciho, čím sa zdôrazňujú podobné proporcie protilátky a ľudského tela.

Štúdium protilátok sa začalo v roku 1890, keď Kitasato Shibasaburō opísal aktivitu protilátok proti toxínom záškrtu a tetanu. Kitasato predložil teóriu humorálnej imunity a navrhol, že mediátor v sére môže reagovať s cudzím antigénom. Jeho myšlienka podnietila Paula Ehrlicha, aby v roku 1897 navrhol teóriu bočných reťazcov pre interakciu protilátok a antigénov, keď vyslovil hypotézu, že receptory (opísané ako „bočné reťazce“) na povrchu buniek sa môžu špecificky viazať na toxíny – v interakcii „zámok a kľúč“ – a že táto väzbová reakcia je spúšťačom tvorby protilátok. Ďalší výskumníci sa domnievali, že protilátky existujú voľne v krvi, a v roku 1904 Almroth Wright navrhol, že rozpustné protilátky pokrývajú baktérie, aby ich označili na účely fagocytózy a usmrtenia; tento proces nazval opsoninizácia.

V 20. rokoch 20. storočia Michael Heidelberger a Oswald Avery pozorovali, že antigény sa môžu vyzrážať protilátkami, a ďalej dokázali, že protilátky sú tvorené bielkovinami. Biochemické vlastnosti interakcií medzi antigénom a protilátkou podrobnejšie preskúmal koncom 30. rokov 20. storočia John Marrack. 80] Ďalší významný pokrok nastal v 40. rokoch 20. storočia, keď Linus Pauling potvrdil teóriu zámku a kľúča navrhnutú Ehrlichom tým, že ukázal, že interakcie medzi protilátkami a antigénmi závisia viac od ich tvaru ako od ich chemického zloženia. 81] V roku 1948 Astrid Fagreausová zistila, že za tvorbu protilátok sú zodpovedné B-bunky vo forme plazmatických buniek. 82

Ďalšia práca sa sústredila na charakterizáciu štruktúr proteínov protilátok. Významným pokrokom v týchto štruktúrnych štúdiách bol objav ľahkého reťazca protilátky začiatkom 60. rokov 20. storočia Geraldom Edelmanom a Josephom Gallym[83] a ich zistenie, že tento proteín je rovnaký ako proteín Bence-Jones, ktorý v roku 1845 opísal Henry Bence Jones[84]. Edelman ďalej zistil, že protilátky sa skladajú z ťažkého a ľahkého reťazca spojených disulfidovou väzbou. Približne v tom istom čase charakterizoval Rodney Porter oblasti viažuce protilátky (Fab) a chvostové oblasti protilátok (Fc) IgG. 85] Títo vedci spoločne odvodili štruktúru a kompletnú aminokyselinovú sekvenciu IgG, za čo im bola v roku 1972 spoločne udelená Nobelova cena za fyziológiu alebo medicínu. 86] Fragment Fv pripravil a charakterizoval David Givol. 87] Zatiaľ čo väčšina týchto prvých štúdií bola zameraná na IgM a IgG, v 60. rokoch 20. storočia boli identifikované ďalšie izotypy imunoglobulínov: Thomas Tomasi objavil sekrečnú protilátku (IgA)[87] a David S. Rowe a John L. Fahey identifikovali IgD[88] a IgE identifikovali Kimishige Ishizaka a Teruko Ishizaka ako triedu protilátok, ktoré sa podieľajú na alergických reakciách[89].

Komplex MAC – Nanobody – Perforín – Protilátky (ľahký reťazec, ťažký reťazec, IgA, IgD, IgE, IgG, IgM)